Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 23 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Major signaling pathways and key mediators of macrophages in acute kidney injury (Review)

  • Authors:
    • Ning Li
    • Jiale Chen
    • Pengtao Wang
    • Haojun Fan
    • Shike Hou
    • Yanhua Gong
  • View Affiliations / Copyright

    Affiliations: Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 455
    |
    Published online on: April 16, 2021
       https://doi.org/10.3892/mmr.2021.12094
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue‑resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage‑sensing mediators and macrophage‑derived mediators participate in the major macrophage‑related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Messerer DAC, Halbgebauer R, Nilsson B, Pavenstädt H, Radermacher P and Huber-Lang M: Immunopathophysiology of trauma-related acute kidney injury. Nat Rev Nephrol. 17:91–111. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Eppensteiner J, Davis RP, Barbas AS, Kwun J and Lee J: Immunothrombotic activity of damage-associated molecular patterns and extracellular vesicles in secondary organ failure induced by trauma and sterile insults. Front Immunol. 9:1902018. View Article : Google Scholar : PubMed/NCBI

3 

Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Ginhoux F and Guilliams M: Tissue-resident macrophage ontogeny and homeostasis. Immunity. 44:439–449. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F and Rodewald HR: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518:547–551. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Okabe Y and Medzhitov R: Tissue biology perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kim SY and Nair MG: Macrophages in wound healing: Activation and plasticity. Immunol Cell Biol. 97:258–267. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Chen T, Cao Q, Wang Y and Harris DCH: M2 macrophages in kidney disease: Biology, therapies, and perspectives. Kidney Int. 95:760–773. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Verdeguer F and Aouadi M: Macrophage heterogeneity and energy metabolism. Exp Cell Res. 360:35–40. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Smigiel KS and Parks WC: Macrophages, wound healing, and fibrosis: Recent insights. Curr Rheumatol Rep. 20:172018. View Article : Google Scholar : PubMed/NCBI

14 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Funes SC, Rios M, Escobar-Vera J and Kalergis AM: Implications of macrophage polarization in autoimmunity. Immunology. 154:186–195. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Levey AS and James MT: Acute kidney injury. Ann Intern Med. 167:ITC66–ITC80. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Gameiro J, Fonseca JA, Outerelo C and Lopes JA: Acute kidney injury: From diagnosis to prevention and treatment strategies. J Clin Med. 9:17042020. View Article : Google Scholar : PubMed/NCBI

18 

Stewart IJ, Sosnov JA, Howard JT and Chung KK: Acute kidney injury in critically injured combat veterans: A retrospective cohort study. Am J Kidney Dis. 68:564–570. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Rahbar Saadat Y, Hosseiniyan Khatibi SM, Ardalan M, Barzegari A and Zununi Vahed S: Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players. J Cell Physiol. 236:3257–3274. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, et al: Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29:1261–1273.e6. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Ward DB and Valentovic MA: Contrast induced acute kidney injury and direct cytotoxicity of iodinated radiocontrast media on renal proximal tubule cells. J Pharmacol Exp Ther. 370:160–171. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Bellomo R, Kellum JA and Ronco C: Acute kidney injury. Lancet. 380:756–766. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Wang S, Zhang C, Li J, Niyazi S, Zheng L, Xu M, Rong R, Yang C and Zhu T: Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis. 8:e27252017. View Article : Google Scholar : PubMed/NCBI

24 

Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F, Sun L, Liu F and Liu H: Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell Immunol. 316:53–60. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Wu J, Wan X, Zhang H, Li W, Ma M, Pan B, Liang X and Cao C: Retinoic acid attenuates contrast-induced acute kidney injury in a miniature pig model. Biochem Biophys Res Commun. 512:163–169. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Huen SC and Cantley LG: Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 30:199–209. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Jang HR and Rabb H: Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 11:88–101. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Huen SC and Cantley LG: Macrophages in renal injury and repair. Annu Rev Physiol. 79:449–469. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Han HI, Skvarca LB, Espiritu EB, Davidson AJ and Hukriede NA: The role of macrophages during acute kidney injury: Destruction and repair. Pediatr Nephrol. 34:561–569. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Singbartl K, Formeck CL and Kellum JA: Kidney-immune system crosstalk in AKI. Semin Nephrol. 39:96–106. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Li X, Mu G, Song C, Zhou L, He L, Jin Q and Lu Z: Role of M2 Macrophages in Sepsis-induced acute kidney injury. Shock. 50:233–239. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Mao R, Wang C, Zhang F, Zhao M, Liu S, Liao G, Li L, Chen Y, Cheng J, Liu J and Lu Y: Peritoneal M2 macrophage transplantation as a potential cell therapy for enhancing renal repair in acute kidney injury. J Cell Mol Med. 24:3314–3327. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Kim MG, Lim K, Lee YJ, Yang J, Oh SW, Cho WY and Jo SK: M2 macrophages predict worse long-term outcomes in human acute tubular necrosis. Sci Rep. 10:21222020. View Article : Google Scholar : PubMed/NCBI

34 

Baek JH: The impact of versatile macrophage functions on acute kidney injury and its outcomes. Front Physiol. 10:10162019. View Article : Google Scholar : PubMed/NCBI

35 

Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, Zhang T, Wang J and Zhang F: Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol. 32:1015002020. View Article : Google Scholar : PubMed/NCBI

36 

Yao W, Guo A, Han X, Wu S, Chen C, Luo C, Li H, Li S and Hei Z: Aerosol inhalation of a hydrogen-rich solution restored septic renal function. Aging (Albany NY). 11:12097–12113. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al: PI3Kγ is a molecular switch that controls immune suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H and Wu M: SHIP-1 regulates phagocytosis and M2 polarization through the PI3K/Akt-STAT5-Trib1 circuit in pseudomonas aeruginosa infection. Front Immunol. 11:3072020. View Article : Google Scholar : PubMed/NCBI

39 

Duan Y, Zheng H, Li Z, Yao Y, Ding J, Wang X, Nakkala JR, Zhang D, Wang Z, Zuo X, et al: Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials. 246:1200122020. View Article : Google Scholar : PubMed/NCBI

40 

An C, Wen J, Hu Z, Mitch WE and Wang Y: Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II-induced hypertension. Nephrol Dial Transplant. 35:1491–1500. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Amano MT, Castoldi A, Andrade-Oliveira V, Latancia MT, Terra FF, Correa-Costa M, Breda CNS, Felizardo RJF, Pereira WO, da Silva MB, et al: The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression. Int Immunopharmacol. 64:151–161. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Liu C, Li B, Tang K, Dong X, Xue L, Su G and Jin Y: Aquaporin 1 alleviates acute kidney injury via PI3K-mediated macrophage M2 polarization. Inflamm Res. 69:509–521. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Markó L, Vigolo E, Hinze C, Park JK, Roël G, Balogh A, Choi M, Wübken A, Cording J, Blasig IE, et al: Tubular epithelial NF-kappaB activity regulates ischemic AKI. J Am Soc Nephrol. 27:2658–2669. 2016. View Article : Google Scholar

44 

Huang RS, Zhou JJ, Feng YY, Shi M, Guo F, Gou SJ, Salerno S, Ma L and Fu P: Pharmacological inhibition of macrophage toll-like receptor 4/Nuclear Factor-kappa B alleviates rhabdomyolysis-induced acute kidney injury. Chin Med J (Engl). 130:2163–2169. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Shu B, Feng Y, Gui Y, Lu Q, Wei W, Xue X, Sun X, He W, Yang J and Dai C: Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell Signal. 42:249–258. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, Yang H, Yang Y, Birnbaumer L, et al: Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res. 28:231–243. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Lu H, Wu L, Liu L, Ruan Q, Zhang X, Hong W, Wu S, Jin G and Bai Y: Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol. 154:203–212. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Tan RZ, Wang C, Deng C, Zhong X, Yan Y, Luo Y, Lan HY, He T and Wang L: Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation. Phytother Res. 34:139–152. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Tan RZ, Liu J, Zhang YY, Wang HL, Li JC, Liu YH, Zhong X, Zhang YW, Yan Y, Lan HY and Wang L: Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine. 52:284–294. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan W, Jun-Ming F and Li W: Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound relieved cisplatin-induced acute kidney injury through inhibiting the mincle maintained macrophage inflammation. J Ethnopharmacol. 252:1126372020. View Article : Google Scholar : PubMed/NCBI

51 

Zhou J, Bai Y, Jiang Y, Tarun P, Feng Y, Huang R and Fu P: Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-κB signaling pathway in macrophages. Immunopharmacol Immunotoxicol. 42:37–47. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X, Chen Q, Bian J, Li Z and Wang J: Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem. 192:1121552020. View Article : Google Scholar : PubMed/NCBI

53 

Bousoik E and Montazeri Aliabadi H: ‘Do We Know Jack’ About JAK? A closer Look at JAK/STAT signaling pathway. Front Oncol. 8:2872018. View Article : Google Scholar : PubMed/NCBI

54 

Banerjee S, Biehl A, Gadina M, Hasni S and Schwartz DM: JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs. 77:521–546. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Zhu M, Wang L, Yang J, Xie K, Zhu M, Liu S, Xu C, Wang J, Gu L, Ni Z, et al: Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. Transplant Proc. 51:972–978. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Zhang MZ, Wang X, Wang Y, Niu A, Wang S, Zou C and Harris RC: IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 91:375–386. 2017. View Article : Google Scholar : PubMed/NCBI

57 

van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG and van Eijk M: Glycoprotein non-metastatic protein B: An emerging biomarker for lysosomal dysfunction in macrophages. Int J Mol Sci. 20:662018. View Article : Google Scholar : PubMed/NCBI

58 

Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Ren Q, Guo F, Tao S, Huang R, Ma L and Fu P: Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 122:1097722020. View Article : Google Scholar : PubMed/NCBI

60 

Sun S, Wang J, Wang J, Wang F, Yao S and Xia H: Maresin 1 mitigates sepsis-associated acute kidney injury in mice via inhibition of the NF-κB/STAT3/MAPK pathways. Front Pharmacol. 10:13232019. View Article : Google Scholar : PubMed/NCBI

61 

Wen Y and Parikh CR: Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 1–24. 2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

62 

Tian L, Shao X, Xie Y, Wang Q, Che X, Zhang M, Xu W, Xu Y, Mou S and Ni Z: Kidney injury molecule-1 is elevated in nephropathy and mediates macrophage activation via the mapk signalling pathway. Cell Physiol Biochem. 41:769–783. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Li B, Liu C, Tang K, Dong X, Xue L, Su G, Zhang W and Jin Y: Aquaporin-1 attenuates macrophage-mediated inflammatory responses by inhibiting p38 mitogen-activated protein kinase activation in lipopolysaccharide-induced acute kidney injury. Inflamm Res. 68:1035–1047. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Conserva MR, Anelli L, Zagaria A, Specchia G and Albano F: The pleiotropic role of retinoic acid/retinoic acid receptors signaling: From vitamin A metabolism to gene rearrangements in acute promyelocytic leukemia. Int J Mol Sci. 20:29212019. View Article : Google Scholar : PubMed/NCBI

65 

Cunningham TJ and Duester G: Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol. 16:110–123. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Ghyselinck NB and Duester G: Retinoic acid signaling pathways. Development. 146:dev1675022019. View Article : Google Scholar : PubMed/NCBI

67 

Vellozo NS, Pereira-Marques ST, Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis GA and Lopes MF: All-Trans Retinoic Acid Promotes an M1- to M2-Phenotype shift and inhibits macrophage-mediated immunity to leishmania major. Front Immunol. 8:15602017. View Article : Google Scholar : PubMed/NCBI

68 

Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, et al: Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J Am Soc Nephrol. 27:495–508. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Brilli Skvarca L, Han HI, Espiritu EB, Missinato MA, Rochon ER, McDaniels MD, Bais AS, Roman BL, Waxman JS, Watkins SC, et al: Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. Dis Model Mech. 12:dmm0373902019. View Article : Google Scholar : PubMed/NCBI

70 

Harris J, VanPatten S, Deen NS, Al-Abed Y and Morand EF: Rediscovering MIF: New tricks for an old cytokine. Trends Immunol. 40:447–462. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Kang I and Bucala R: The immunobiology of MIF: Function, genetics and prospects for precision medicine. Nat Rev Rheumatol. 15:427–437. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Calandra T and Roger T: Macrophage migration inhibitory factor: A regulator of innate immunity. Nat Rev Immunol. 3:791–800. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Averdunk L, Bernhagen J, Fehnle K, Surowy H, Lüdecke HJ, Mucha S, Meybohm P, Wieczorek D, Leng L, Marx G, et al: The macrophage migration inhibitory factor (MIF) promoter polymorphisms (rs3063368, rs755622) predict acute kidney injury and death after cardiac surgery. J Clin Med. 9:29362020. View Article : Google Scholar : PubMed/NCBI

74 

Hong MY, Tseng CC, Chuang CC, Chen CL, Lin SH and Lin CF: Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis. Mediators Inflamm. 2012:3813582012. View Article : Google Scholar : PubMed/NCBI

75 

Wu B, Chen J and Yang Y: Biomarkers of acute kidney injury after cardiac surgery: A narrative review. Biomed Res Int. 2019:72986352019. View Article : Google Scholar : PubMed/NCBI

76 

Fuhrman DY and Kellum JA: Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 30:60–65. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim BS, et al: The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med. 10:eaan48862018. View Article : Google Scholar : PubMed/NCBI

78 

Leaver SK, MacCallum NS, Pingle V, Hacking MB, Quinlan GJ, Evans TW and Burke-Gaffney A: Increased plasma thioredoxin levels in patients with sepsis: Positive association with macrophage migration inhibitory factor. Intensive Care Med. 36:336–341. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Nishida K, Watanabe H, Ogaki S, Kodama A, Tanaka R, Imafuku T, Ishima Y, Chuang VT, Toyoda M, Kondoh M, et al: Renoprotective effect of long acting thioredoxin by modulating oxidative stress and macrophage migration inhibitory factor against rhabdomyolysis-associated acute kidney injury. Sci Rep. 5:144712015. View Article : Google Scholar : PubMed/NCBI

80 

Li J, Tang Y, Tang PMK, Lv J, Huang XR, Carlsson-Skwirut C, Da Costa L, Aspesi A, Fröhlich S, Szczęśniak P, et al: Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol Ther. 26:2523–2532. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Li JH, Tang Y, Lv J, Wang XH, Yang H, Tang PMK, Huang XR, He ZJ, Zhou ZJ, Huang QY, et al: Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. J Cell Mol Med. 23:3867–3877. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Lv J, Huang XR, Klug J, Fröhlich S, Lacher P, Xu A, Meinhardt A and Lan HY: Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clin Sci (Lond). 124:627–637. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Matsushita T and Takehara K: Soluble CD163 is a potential biomarker in systemic sclerosis. Expert Rev Mol Diagn. 19:197–199. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Mejia-Vilet JM, Zhang XL, Cruz C, Cano-Verduzco ML, Shapiro JP, Nagaraja HN, Morales-Buenrostro LE and Rovin BH: Urinary soluble CD163: A novel noninvasive biomarker of activity for lupus nephritis. J Am Soc Nephrol. 31:1335–1347. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Sun PP, Zhou XJ, Su JQ, Wang C, Yu XJ, Su T, Liu G, Wang SX, Nie J and Yang L: Urine macrophages reflect kidney macrophage content during acute tubular interstitial and glomerular injury. Clin Immunol. 205:65–74. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Rubio-Navarro A, Carril M, Padro D, Guerrero-Hue M, Tarín C, Samaniego R, Cannata P, Cano A, Villalobos JM, Sevillano ÁM, et al: CD163-Macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics. 6:896–914. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Li D, Yan Sun W, Fu B, Xu A and Wang Y: Lipocalin-2-The myth of its expression and function. Basic Clin Pharmacol Toxicol. 127:142–151. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Rahimi S, Roushandeh AM, Ahmadzadeh E, Jahanian-Najafabadi A and Roudkenar MH: Implication and role of neutrophil gelatinase-associated lipocalin in cancer: Lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep. 47:2327–2346. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z and Vivas-Mejía PE: Biological functions and therapeutic potential of lipocalin 2 in cancer. Int J Mol Sci. 21:43652020. View Article : Google Scholar

90 

Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D'Agati VD, Tatonetti NP, Barasch J and Devarajan P: Molecular nephrology: Types of acute tubular injury. Nat Rev Nephrol. 15:599–612. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Urbschat A, Thiemens AK, Mertens C, Rehwald C, Meier JK, Baer PC and Jung M: Macrophage-secreted Lipocalin-2 promotes regeneration of injured primary murine renal tubular epithelial cells. Int J Mol Sci. 21:20382020. View Article : Google Scholar : PubMed/NCBI

92 

Mertens C, Kuchler L, Sola A, Guiteras R, Grein S, Brüne B, von Knethen A and Jung M: Macrophage-derived iron-bound lipocalin-2 correlates with renal recovery markers following sepsis-induced kidney damage. Int J Mol Sci. 21:75272020. View Article : Google Scholar : PubMed/NCBI

93 

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A: Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Doster RS, Rogers LM, Gaddy JA and Aronoff DM: Macrophage extracellular traps: A scoping review. J Innate Immun. 10:3–13. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Nakazawa D, Marschner JA, Platen L and Anders HJ: Extracellular traps in kidney disease. Kidney Int. 94:1087–1098. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Hartl D: Macrophages and platelets join forces to release kidney-damaging DNA traps. Nat Med. 24:128–129. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Okubo K, Kurosawa M, Kamiya M, Urano Y, Suzuki A, Yamamoto K, Hase K, Homma K, Sasaki J, Miyauchi H, et al: Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med. 24:232–238. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Lichtman A: The kidney gets caught in a macrophage trap. Sci Immunol. 3:eaat37452018. View Article : Google Scholar : PubMed/NCBI

99 

Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O and Akira S: Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature. 495:524–528. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Eyers PA, Keeshan K and Kannan N: Tribbles in the 21st century: The evolving roles of tribbles pseudokinases in biology and disease. Trends Cell Biol. 27:284–298. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Liu ZZ, Han ZD, Liang YK, Chen JX, Wan S, Zhuo YJ, Cai ZD, Deng YL, Lin ZY, Mo RJ, et al: TRIB1 induces macrophages to M2 phenotype by inhibiting IKB-zeta in prostate cancer. Cell Signal. 59:152–162. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K and Suzuki K: Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 126:2151–2166. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, Thiery J and Burkhardt R: Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J Biol Chem. 293:11527–11536. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Xie X, Yang X, Wu J, Ma J, Wei W, Fei X and Wang M: Trib1 contributes to recovery from ischemia/reperfusion-induced acute kidney injury by regulating the polarization of renal macrophages. Front Immunol. 11:4732020. View Article : Google Scholar : PubMed/NCBI

105 

Hughes CE and Nibbs RJB: A guide to chemokines and their receptors. FEBS J. 285:2944–2971. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Ruytinx P, Proost P, Van Damme J and Struyf S: Chemokine-induced macrophage polarization in inflammatory conditions. Front Immunol. 9:19302018. View Article : Google Scholar : PubMed/NCBI

107 

Lu J, Chatterjee M, Schmid H, Beck S and Gawaz M: CXCL14 as an emerging immune and inflammatory modulator. J Inflamm (Lond). 13:12016. View Article : Google Scholar : PubMed/NCBI

108 

Lv J, Wu ZL, Gan Z, Gui P and Yao SL: CXCL14 overexpression attenuates sepsis-associated acute kidney injury by inhibiting proinflammatory cytokine production. Mediators Inflamm. 2020:24317052020. View Article : Google Scholar : PubMed/NCBI

109 

Yoo KD, Cha RH, Lee S, Kim JE, Kim KH, Lee JS, Kim DK, Kim YS and Yang SH: Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury. J Cell Mol Med. 24:5515–5527. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Yang Q, Wang Y, Pei G, Deng X, Jiang H, Wu J, Zhou C, Guo Y, Yao Y, Zeng R and Xu G: Bone marrow-derived Ly6C(−) macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis. 10:2912019. View Article : Google Scholar : PubMed/NCBI

111 

Rudemiller NP, Patel MB, Zhang JD, Jeffs AD, Karlovich NS, Griffiths R, Kan MJ, Buckley AF, Gunn MD and Crowley SD: C-C Motif Chemokine 5 Attenuates Angiotensin II-Dependent kidney injury by limiting renal macrophage infiltration. Am J Pathol. 186:2846–2856. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Prakoura N and Chatziantoniou C: Periostin in kidney diseases. Cell Mol Life Sci. 74:4315–4320. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Wallace DP: Periostin in the kidney. Adv Exp Med Biol. 1132:99–112. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Kormann R, Kavvadas P, Placier S, Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE, Prakoura N and Chatziantoniou C: Periostin promotes cell proliferation and macrophage polarization to drive repair after AKI. J Am Soc Nephrol. 31:85–100. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Roedig H, Nastase MV, Wygrecka M and Schaefer L: Breaking down chronic inflammatory diseases: The role of biglycan in promoting a switch between inflammation and autophagy. FEBS J. 286:2965–2979. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Roedig H, Nastase MV, Frey H, Moreth K, Zeng-Brouwers J, Poluzzi C, Hsieh LT, Brandts C, Fulda S, Wygrecka M and Schaefer L: Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol. 77:4–22. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Poluzzi C, Nastase MV, Zeng-Brouwers J, Roedig H, Hsieh LT, Michaelis JB, Buhl EM, Rezende F, Manavski Y, Bleich A, et al: Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int. 95:540–562. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Meissner M, Viehmann SF and Kurts C: DAMPening sterile inflammation of the kidney. Kidney Int. 95:489–491. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M and Schaefer L: Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol. 62:31–47. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Zhang PL and Liu ML: Extracellular vesicles mediate cellular interactions in renal diseases-Novel views of intercellular communications in the kidney. J Cell Physiol. 2021.(Epub ahead of print). View Article : Google Scholar

121 

Rigalli JP, Barros ER, Sommers V, Bindels RJM and Hoenderop JGJ: Novel aspects of extracellular vesicles in the regulation of renal physiological and pathophysiological processes. Front Cell Dev Biol. 8:2442020. View Article : Google Scholar : PubMed/NCBI

122 

Wu P, Zhang B, Ocansey DKW, Xu W and Qian H: Extracellular vesicles: A bright star of nanomedicine. Biomaterials. 269:1204672020. View Article : Google Scholar : PubMed/NCBI

123 

Zhang X, Zhang H, Gu J, Zhang J, Shi H, Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular vesicles for cancer therapy. Adv Mater e2005709. 2021.(Epub ahead of print). PubMed/NCBI

124 

Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G and Cantaluppi V: Extracellular vesicles as mediators of cellular crosstalk between immune system and kidney graft. Front Immunol. 11:742020. View Article : Google Scholar : PubMed/NCBI

125 

Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, Yin D, Liu H, Tang RN, Crowley SD, et al: Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv. 6:eaaz07482020. View Article : Google Scholar : PubMed/NCBI

126 

Console L, Scalise M and Indiveri C: Exosomes in inflammation and role as biomarkers. Clin Chim Acta. 488:165–171. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Ståhl AL, Johansson K, Mossberg M, Kahn R and Karpman D: Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol. 34:11–30. 2019. View Article : Google Scholar

128 

Thongboonkerd V: Roles for exosome in various kidney diseases and disorders. Front Pharmacol. 10:16552020. View Article : Google Scholar : PubMed/NCBI

129 

Wang ZW and Zhu X: Exosomal miR-19b-3p communicates tubular epithelial cells and M1 macrophage. Cell Death Dis. 10:7622019. View Article : Google Scholar : PubMed/NCBI

130 

Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Li ZL, Lv LL, Tang TT, Wang B, Feng Y, Zhou LT, Cao JY, Tang RN, Wu M, Liu H, et al: HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int. 95:388–404. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Harrois A, Soyer B, Gauss T, Hamada S, Raux M and Duranteau J: Prevalence and risk factors for acute kidney injury among trauma patients: A multicenter cohort study. Crit Care. 22:3442018. View Article : Google Scholar : PubMed/NCBI

133 

Zuk A and Bonventre JV: Acute kidney injury. Annu Rev Med. 67:293–307. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Wen Y and Crowley SD: The varying roles of macrophages in kidney injury and repair. Curr Opin Nephrol Hypertens. 29:286–292. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschläger N, Schlee M, Rothenfusser S, Barchet W, et al: Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 11:63–69. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li N, Chen J, Wang P, Fan H, Hou S and Gong Y: Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 23: 455, 2021.
APA
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., & Gong, Y. (2021). Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Molecular Medicine Reports, 23, 455. https://doi.org/10.3892/mmr.2021.12094
MLA
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., Gong, Y."Major signaling pathways and key mediators of macrophages in acute kidney injury (Review)". Molecular Medicine Reports 23.6 (2021): 455.
Chicago
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., Gong, Y."Major signaling pathways and key mediators of macrophages in acute kidney injury (Review)". Molecular Medicine Reports 23, no. 6 (2021): 455. https://doi.org/10.3892/mmr.2021.12094
Copy and paste a formatted citation
x
Spandidos Publications style
Li N, Chen J, Wang P, Fan H, Hou S and Gong Y: Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 23: 455, 2021.
APA
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., & Gong, Y. (2021). Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Molecular Medicine Reports, 23, 455. https://doi.org/10.3892/mmr.2021.12094
MLA
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., Gong, Y."Major signaling pathways and key mediators of macrophages in acute kidney injury (Review)". Molecular Medicine Reports 23.6 (2021): 455.
Chicago
Li, N., Chen, J., Wang, P., Fan, H., Hou, S., Gong, Y."Major signaling pathways and key mediators of macrophages in acute kidney injury (Review)". Molecular Medicine Reports 23, no. 6 (2021): 455. https://doi.org/10.3892/mmr.2021.12094
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team