|
1
|
Messerer DAC, Halbgebauer R, Nilsson B,
Pavenstädt H, Radermacher P and Huber-Lang M: Immunopathophysiology
of trauma-related acute kidney injury. Nat Rev Nephrol. 17:91–111.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Eppensteiner J, Davis RP, Barbas AS, Kwun
J and Lee J: Immunothrombotic activity of damage-associated
molecular patterns and extracellular vesicles in secondary organ
failure induced by trauma and sterile insults. Front Immunol.
9:1902018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wynn TA, Chawla A and Pollard JW:
Macrophage biology in development, homeostasis and disease. Nature.
496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ginhoux F and Guilliams M: Tissue-resident
macrophage ontogeny and homeostasis. Immunity. 44:439–449. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Gomez Perdiguero E, Klapproth K, Schulz C,
Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF,
Geissmann F and Rodewald HR: Tissue-resident macrophages originate
from yolk-sac-derived erythro-myeloid progenitors. Nature.
518:547–551. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Okabe Y and Medzhitov R: Tissue biology
perspective on macrophages. Nat Immunol. 17:9–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kim SY and Nair MG: Macrophages in wound
healing: Activation and plasticity. Immunol Cell Biol. 97:258–267.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Vannella KM and Wynn TA: Mechanisms of
organ injury and repair by macrophages. Annu Rev Physiol.
79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Stein M, Keshav S, Harris N and Gordon S:
Interleukin 4 potently enhances murine macrophage mannose receptor
activity: A marker of alternative immunologic macrophage
activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen T, Cao Q, Wang Y and Harris DCH: M2
macrophages in kidney disease: Biology, therapies, and
perspectives. Kidney Int. 95:760–773. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Verdeguer F and Aouadi M: Macrophage
heterogeneity and energy metabolism. Exp Cell Res. 360:35–40. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Smigiel KS and Parks WC: Macrophages,
wound healing, and fibrosis: Recent insights. Curr Rheumatol Rep.
20:172018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Funes SC, Rios M, Escobar-Vera J and
Kalergis AM: Implications of macrophage polarization in
autoimmunity. Immunology. 154:186–195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Levey AS and James MT: Acute kidney
injury. Ann Intern Med. 167:ITC66–ITC80. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gameiro J, Fonseca JA, Outerelo C and
Lopes JA: Acute kidney injury: From diagnosis to prevention and
treatment strategies. J Clin Med. 9:17042020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Stewart IJ, Sosnov JA, Howard JT and Chung
KK: Acute kidney injury in critically injured combat veterans: A
retrospective cohort study. Am J Kidney Dis. 68:564–570. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM,
Ardalan M, Barzegari A and Zununi Vahed S: Molecular
pathophysiology of acute kidney injury: The role of sirtuins and
their interactions with other macromolecular players. J Cell
Physiol. 236:3257–3274. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue
R, Nishi H, Fujii R, Ishidate F, Tanaka T, Tanaka Y, et al:
Mitochondrial damage causes inflammation via cGAS-STING signaling
in acute kidney injury. Cell Rep. 29:1261–1273.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ward DB and Valentovic MA: Contrast
induced acute kidney injury and direct cytotoxicity of iodinated
radiocontrast media on renal proximal tubule cells. J Pharmacol Exp
Ther. 370:160–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bellomo R, Kellum JA and Ronco C: Acute
kidney injury. Lancet. 380:756–766. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang S, Zhang C, Li J, Niyazi S, Zheng L,
Xu M, Rong R, Yang C and Zhu T: Erythropoietin protects against
rhabdomyolysis-induced acute kidney injury by modulating macrophage
polarization. Cell Death Dis. 8:e27252017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F,
Sun L, Liu F and Liu H: Glycoprotein non-metastatic melanoma
protein b (Gpnmb) is highly expressed in macrophages of acute
injured kidney and promotes M2 macrophages polarization. Cell
Immunol. 316:53–60. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu J, Wan X, Zhang H, Li W, Ma M, Pan B,
Liang X and Cao C: Retinoic acid attenuates contrast-induced acute
kidney injury in a miniature pig model. Biochem Biophys Res Commun.
512:163–169. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huen SC and Cantley LG:
Macrophage-mediated injury and repair after ischemic kidney injury.
Pediatr Nephrol. 30:199–209. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jang HR and Rabb H: Immune cells in
experimental acute kidney injury. Nat Rev Nephrol. 11:88–101. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huen SC and Cantley LG: Macrophages in
renal injury and repair. Annu Rev Physiol. 79:449–469. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han HI, Skvarca LB, Espiritu EB, Davidson
AJ and Hukriede NA: The role of macrophages during acute kidney
injury: Destruction and repair. Pediatr Nephrol. 34:561–569. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Singbartl K, Formeck CL and Kellum JA:
Kidney-immune system crosstalk in AKI. Semin Nephrol. 39:96–106.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li X, Mu G, Song C, Zhou L, He L, Jin Q
and Lu Z: Role of M2 Macrophages in Sepsis-induced acute kidney
injury. Shock. 50:233–239. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mao R, Wang C, Zhang F, Zhao M, Liu S,
Liao G, Li L, Chen Y, Cheng J, Liu J and Lu Y: Peritoneal M2
macrophage transplantation as a potential cell therapy for
enhancing renal repair in acute kidney injury. J Cell Mol Med.
24:3314–3327. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kim MG, Lim K, Lee YJ, Yang J, Oh SW, Cho
WY and Jo SK: M2 macrophages predict worse long-term outcomes in
human acute tubular necrosis. Sci Rep. 10:21222020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Baek JH: The impact of versatile
macrophage functions on acute kidney injury and its outcomes. Front
Physiol. 10:10162019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan
L, Zhang T, Wang J and Zhang F: Breaking the vicious loop between
inflammation, oxidative stress and coagulation, a novel
anti-thrombus insight of nattokinase by inhibiting LPS-induced
inflammation and oxidative stress. Redox Biol. 32:1015002020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yao W, Guo A, Han X, Wu S, Chen C, Luo C,
Li H, Li S and Hei Z: Aerosol inhalation of a hydrogen-rich
solution restored septic renal function. Aging (Albany NY).
11:12097–12113. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kaneda MM, Messer KS, Ralainirina N, Li H,
Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P,
et al: PI3Kγ is a molecular switch that controls immune
suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Qin S, Li J, Zhou C, Privratsky B,
Schettler J, Deng X, Xia Z, Zeng Y, Wu H and Wu M: SHIP-1 regulates
phagocytosis and M2 polarization through the PI3K/Akt-STAT5-Trib1
circuit in pseudomonas aeruginosa infection. Front Immunol.
11:3072020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Duan Y, Zheng H, Li Z, Yao Y, Ding J, Wang
X, Nakkala JR, Zhang D, Wang Z, Zuo X, et al: Unsaturated
polyurethane films grafted with enantiomeric polylysine promotes
macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR
axis. Biomaterials. 246:1200122020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
An C, Wen J, Hu Z, Mitch WE and Wang Y:
Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and
fibrosis in angiotensin II-induced hypertension. Nephrol Dial
Transplant. 35:1491–1500. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Amano MT, Castoldi A, Andrade-Oliveira V,
Latancia MT, Terra FF, Correa-Costa M, Breda CNS, Felizardo RJF,
Pereira WO, da Silva MB, et al: The lack of PI3Kγ favors M1
macrophage polarization and does not prevent kidney diseases
progression. Int Immunopharmacol. 64:151–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu C, Li B, Tang K, Dong X, Xue L, Su G
and Jin Y: Aquaporin 1 alleviates acute kidney injury via
PI3K-mediated macrophage M2 polarization. Inflamm Res. 69:509–521.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Markó L, Vigolo E, Hinze C, Park JK, Roël
G, Balogh A, Choi M, Wübken A, Cording J, Blasig IE, et al: Tubular
epithelial NF-kappaB activity regulates ischemic AKI. J Am Soc
Nephrol. 27:2658–2669. 2016. View Article : Google Scholar
|
|
44
|
Huang RS, Zhou JJ, Feng YY, Shi M, Guo F,
Gou SJ, Salerno S, Ma L and Fu P: Pharmacological inhibition of
macrophage toll-like receptor 4/Nuclear Factor-kappa B alleviates
rhabdomyolysis-induced acute kidney injury. Chin Med J (Engl).
130:2163–2169. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shu B, Feng Y, Gui Y, Lu Q, Wei W, Xue X,
Sun X, He W, Yang J and Dai C: Blockade of CD38 diminishes
lipopolysaccharide-induced macrophage classical activation and
acute kidney injury involving NF-κB signaling suppression. Cell
Signal. 42:249–258. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R,
Cui X, Yang H, Yang Y, Birnbaumer L, et al: Quercetin alleviates
acute kidney injury by inhibiting ferroptosis. J Adv Res.
28:231–243. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lu H, Wu L, Liu L, Ruan Q, Zhang X, Hong
W, Wu S, Jin G and Bai Y: Quercetin ameliorates kidney injury and
fibrosis by modulating M1/M2 macrophage polarization. Biochem
Pharmacol. 154:203–212. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan RZ, Wang C, Deng C, Zhong X, Yan Y,
Luo Y, Lan HY, He T and Wang L: Quercetin protects against
cisplatin-induced acute kidney injury by inhibiting
Mincle/Syk/NF-κB signaling maintained macrophage inflammation.
Phytother Res. 34:139–152. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tan RZ, Liu J, Zhang YY, Wang HL, Li JC,
Liu YH, Zhong X, Zhang YW, Yan Y, Lan HY and Wang L: Curcumin
relieved cisplatin-induced kidney inflammation through inhibiting
Mincle-maintained M1 macrophage phenotype. Phytomedicine.
52:284–294. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan
W, Jun-Ming F and Li W: Astragalus propinquus Schischkin and
Panax notoginseng (A&P) compound relieved
cisplatin-induced acute kidney injury through inhibiting the mincle
maintained macrophage inflammation. J Ethnopharmacol.
252:1126372020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhou J, Bai Y, Jiang Y, Tarun P, Feng Y,
Huang R and Fu P: Immunomodulatory role of recombinant human
erythropoietin in acute kidney injury induced by crush syndrome via
inhibition of the TLR4/NF-κB signaling pathway in macrophages.
Immunopharmacol Immunotoxicol. 42:37–47. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X,
Chen Q, Bian J, Li Z and Wang J: Janus kinases (JAKs): The
efficient therapeutic targets for autoimmune diseases and
myeloproliferative disorders. Eur J Med Chem. 192:1121552020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bousoik E and Montazeri Aliabadi H: ‘Do We
Know Jack’ About JAK? A closer Look at JAK/STAT signaling pathway.
Front Oncol. 8:2872018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Banerjee S, Biehl A, Gadina M, Hasni S and
Schwartz DM: JAK-STAT signaling as a target for inflammatory and
autoimmune diseases: Current and future prospects. Drugs.
77:521–546. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhu M, Wang L, Yang J, Xie K, Zhu M, Liu
S, Xu C, Wang J, Gu L, Ni Z, et al: Erythropoietin ameliorates lung
injury by accelerating pulmonary endothelium cell proliferation via
janus kinase-signal transducer and activator of transcription 3
pathway after kidney ischemia and reperfusion injury. Transplant
Proc. 51:972–978. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang MZ, Wang X, Wang Y, Niu A, Wang S,
Zou C and Harris RC: IL-4/IL-13-mediated polarization of renal
macrophages/dendritic cells to an M2a phenotype is essential for
recovery from acute kidney injury. Kidney Int. 91:375–386. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
van der Lienden MJC, Gaspar P, Boot R,
Aerts JMFG and van Eijk M: Glycoprotein non-metastatic protein B:
An emerging biomarker for lysosomal dysfunction in macrophages. Int
J Mol Sci. 20:662018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim EK and Choi EJ: Compromised MAPK
signaling in human diseases: An update. Arch Toxicol. 89:867–882.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ren Q, Guo F, Tao S, Huang R, Ma L and Fu
P: Flavonoid fisetin alleviates kidney inflammation and apoptosis
via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways
in septic AKI mice. Biomed Pharmacother. 122:1097722020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun S, Wang J, Wang J, Wang F, Yao S and
Xia H: Maresin 1 mitigates sepsis-associated acute kidney injury in
mice via inhibition of the NF-κB/STAT3/MAPK pathways. Front
Pharmacol. 10:13232019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wen Y and Parikh CR: Current concepts and
advances in biomarkers of acute kidney injury. Crit Rev Clin Lab
Sci. 1–24. 2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tian L, Shao X, Xie Y, Wang Q, Che X,
Zhang M, Xu W, Xu Y, Mou S and Ni Z: Kidney injury molecule-1 is
elevated in nephropathy and mediates macrophage activation via the
mapk signalling pathway. Cell Physiol Biochem. 41:769–783. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li B, Liu C, Tang K, Dong X, Xue L, Su G,
Zhang W and Jin Y: Aquaporin-1 attenuates macrophage-mediated
inflammatory responses by inhibiting p38 mitogen-activated protein
kinase activation in lipopolysaccharide-induced acute kidney
injury. Inflamm Res. 68:1035–1047. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Conserva MR, Anelli L, Zagaria A, Specchia
G and Albano F: The pleiotropic role of retinoic acid/retinoic acid
receptors signaling: From vitamin A metabolism to gene
rearrangements in acute promyelocytic leukemia. Int J Mol Sci.
20:29212019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cunningham TJ and Duester G: Mechanisms of
retinoic acid signalling and its roles in organ and limb
development. Nat Rev Mol Cell Biol. 16:110–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ghyselinck NB and Duester G: Retinoic acid
signaling pathways. Development. 146:dev1675022019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vellozo NS, Pereira-Marques ST,
Cabral-Piccin MP, Filardy AA, Ribeiro-Gomes FL, Rigoni TS, DosReis
GA and Lopes MF: All-Trans Retinoic Acid Promotes an M1- to
M2-Phenotype shift and inhibits macrophage-mediated immunity to
leishmania major. Front Immunol. 8:15602017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chiba T, Skrypnyk NI, Skvarca LB, Penchev
R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE,
et al: Retinoic acid signaling coordinates macrophage-dependent
injury and repair after AKI. J Am Soc Nephrol. 27:495–508. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Brilli Skvarca L, Han HI, Espiritu EB,
Missinato MA, Rochon ER, McDaniels MD, Bais AS, Roman BL, Waxman
JS, Watkins SC, et al: Enhancing regeneration after acute kidney
injury by promoting cellular dedifferentiation in zebrafish. Dis
Model Mech. 12:dmm0373902019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Harris J, VanPatten S, Deen NS, Al-Abed Y
and Morand EF: Rediscovering MIF: New tricks for an old cytokine.
Trends Immunol. 40:447–462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kang I and Bucala R: The immunobiology of
MIF: Function, genetics and prospects for precision medicine. Nat
Rev Rheumatol. 15:427–437. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Calandra T and Roger T: Macrophage
migration inhibitory factor: A regulator of innate immunity. Nat
Rev Immunol. 3:791–800. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Averdunk L, Bernhagen J, Fehnle K, Surowy
H, Lüdecke HJ, Mucha S, Meybohm P, Wieczorek D, Leng L, Marx G, et
al: The macrophage migration inhibitory factor (MIF) promoter
polymorphisms (rs3063368, rs755622) predict acute kidney injury and
death after cardiac surgery. J Clin Med. 9:29362020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hong MY, Tseng CC, Chuang CC, Chen CL, Lin
SH and Lin CF: Urinary macrophage migration inhibitory factor
serves as a potential biomarker for acute kidney injury in patients
with acute pyelonephritis. Mediators Inflamm. 2012:3813582012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wu B, Chen J and Yang Y: Biomarkers of
acute kidney injury after cardiac surgery: A narrative review.
Biomed Res Int. 2019:72986352019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fuhrman DY and Kellum JA: Epidemiology and
pathophysiology of cardiac surgery-associated acute kidney injury.
Curr Opin Anaesthesiol. 30:60–65. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Stoppe C, Averdunk L, Goetzenich A,
Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim
BS, et al: The protective role of macrophage migration inhibitory
factor in acute kidney injury after cardiac surgery. Sci Transl
Med. 10:eaan48862018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Leaver SK, MacCallum NS, Pingle V, Hacking
MB, Quinlan GJ, Evans TW and Burke-Gaffney A: Increased plasma
thioredoxin levels in patients with sepsis: Positive association
with macrophage migration inhibitory factor. Intensive Care Med.
36:336–341. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nishida K, Watanabe H, Ogaki S, Kodama A,
Tanaka R, Imafuku T, Ishima Y, Chuang VT, Toyoda M, Kondoh M, et
al: Renoprotective effect of long acting thioredoxin by modulating
oxidative stress and macrophage migration inhibitory factor against
rhabdomyolysis-associated acute kidney injury. Sci Rep.
5:144712015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li J, Tang Y, Tang PMK, Lv J, Huang XR,
Carlsson-Skwirut C, Da Costa L, Aspesi A, Fröhlich S, Szczęśniak P,
et al: Blocking macrophage migration inhibitory factor protects
against cisplatin-induced acute kidney injury in mice. Mol Ther.
26:2523–2532. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li JH, Tang Y, Lv J, Wang XH, Yang H, Tang
PMK, Huang XR, He ZJ, Zhou ZJ, Huang QY, et al: Macrophage
migration inhibitory factor promotes renal injury induced by
ischemic reperfusion. J Cell Mol Med. 23:3867–3877. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lv J, Huang XR, Klug J, Fröhlich S, Lacher
P, Xu A, Meinhardt A and Lan HY: Ribosomal protein S19 is a novel
therapeutic agent in inflammatory kidney disease. Clin Sci (Lond).
124:627–637. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Matsushita T and Takehara K: Soluble CD163
is a potential biomarker in systemic sclerosis. Expert Rev Mol
Diagn. 19:197–199. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mejia-Vilet JM, Zhang XL, Cruz C,
Cano-Verduzco ML, Shapiro JP, Nagaraja HN, Morales-Buenrostro LE
and Rovin BH: Urinary soluble CD163: A novel noninvasive biomarker
of activity for lupus nephritis. J Am Soc Nephrol. 31:1335–1347.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sun PP, Zhou XJ, Su JQ, Wang C, Yu XJ, Su
T, Liu G, Wang SX, Nie J and Yang L: Urine macrophages reflect
kidney macrophage content during acute tubular interstitial and
glomerular injury. Clin Immunol. 205:65–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Rubio-Navarro A, Carril M, Padro D,
Guerrero-Hue M, Tarín C, Samaniego R, Cannata P, Cano A, Villalobos
JM, Sevillano ÁM, et al: CD163-Macrophages are involved in
rhabdomyolysis-induced kidney injury and may be detected by MRI
with targeted gold-coated iron oxide nanoparticles. Theranostics.
6:896–914. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li D, Yan Sun W, Fu B, Xu A and Wang Y:
Lipocalin-2-The myth of its expression and function. Basic Clin
Pharmacol Toxicol. 127:142–151. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rahimi S, Roushandeh AM, Ahmadzadeh E,
Jahanian-Najafabadi A and Roudkenar MH: Implication and role of
neutrophil gelatinase-associated lipocalin in cancer: Lipocalin-2
as a potential novel emerging comprehensive therapeutic target for
a variety of cancer types. Mol Biol Rep. 47:2327–2346. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Santiago-Sánchez GS, Pita-Grisanti V,
Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z and Vivas-Mejía PE:
Biological functions and therapeutic potential of lipocalin 2 in
cancer. Int J Mol Sci. 21:43652020. View Article : Google Scholar
|
|
90
|
Desanti De Oliveira B, Xu K, Shen TH,
Callahan M, Kiryluk K, D'Agati VD, Tatonetti NP, Barasch J and
Devarajan P: Molecular nephrology: Types of acute tubular injury.
Nat Rev Nephrol. 15:599–612. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Urbschat A, Thiemens AK, Mertens C,
Rehwald C, Meier JK, Baer PC and Jung M: Macrophage-secreted
Lipocalin-2 promotes regeneration of injured primary murine renal
tubular epithelial cells. Int J Mol Sci. 21:20382020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mertens C, Kuchler L, Sola A, Guiteras R,
Grein S, Brüne B, von Knethen A and Jung M: Macrophage-derived
iron-bound lipocalin-2 correlates with renal recovery markers
following sepsis-induced kidney damage. Int J Mol Sci. 21:75272020.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Brinkmann V, Reichard U, Goosmann C,
Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A:
Neutrophil extracellular traps kill bacteria. Science.
303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Doster RS, Rogers LM, Gaddy JA and Aronoff
DM: Macrophage extracellular traps: A scoping review. J Innate
Immun. 10:3–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nakazawa D, Marschner JA, Platen L and
Anders HJ: Extracellular traps in kidney disease. Kidney Int.
94:1087–1098. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hartl D: Macrophages and platelets join
forces to release kidney-damaging DNA traps. Nat Med. 24:128–129.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Okubo K, Kurosawa M, Kamiya M, Urano Y,
Suzuki A, Yamamoto K, Hase K, Homma K, Sasaki J, Miyauchi H, et al:
Macrophage extracellular trap formation promoted by platelet
activation is a key mediator of rhabdomyolysis-induced acute kidney
injury. Nat Med. 24:232–238. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lichtman A: The kidney gets caught in a
macrophage trap. Sci Immunol. 3:eaat37452018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Satoh T, Kidoya H, Naito H, Yamamoto M,
Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O
and Akira S: Critical role of Trib1 in differentiation of
tissue-resident M2-like macrophages. Nature. 495:524–528. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Eyers PA, Keeshan K and Kannan N: Tribbles
in the 21st century: The evolving roles of tribbles pseudokinases
in biology and disease. Trends Cell Biol. 27:284–298. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu ZZ, Han ZD, Liang YK, Chen JX, Wan S,
Zhuo YJ, Cai ZD, Deng YL, Lin ZY, Mo RJ, et al: TRIB1 induces
macrophages to M2 phenotype by inhibiting IKB-zeta in prostate
cancer. Cell Signal. 59:152–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Shiraishi M, Shintani Y, Shintani Y,
Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K and Suzuki K:
Alternatively activated macrophages determine repair of the
infarcted adult murine heart. J Clin Invest. 126:2151–2166. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Arndt L, Dokas J, Gericke M, Kutzner CE,
Müller S, Jeromin F, Thiery J and Burkhardt R: Tribbles homolog 1
deficiency modulates function and polarization of murine bone
marrow-derived macrophages. J Biol Chem. 293:11527–11536. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xie X, Yang X, Wu J, Ma J, Wei W, Fei X
and Wang M: Trib1 contributes to recovery from
ischemia/reperfusion-induced acute kidney injury by regulating the
polarization of renal macrophages. Front Immunol. 11:4732020.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hughes CE and Nibbs RJB: A guide to
chemokines and their receptors. FEBS J. 285:2944–2971. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ruytinx P, Proost P, Van Damme J and
Struyf S: Chemokine-induced macrophage polarization in inflammatory
conditions. Front Immunol. 9:19302018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lu J, Chatterjee M, Schmid H, Beck S and
Gawaz M: CXCL14 as an emerging immune and inflammatory modulator. J
Inflamm (Lond). 13:12016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lv J, Wu ZL, Gan Z, Gui P and Yao SL:
CXCL14 overexpression attenuates sepsis-associated acute kidney
injury by inhibiting proinflammatory cytokine production. Mediators
Inflamm. 2020:24317052020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yoo KD, Cha RH, Lee S, Kim JE, Kim KH, Lee
JS, Kim DK, Kim YS and Yang SH: Chemokine receptor 5 blockade
modulates macrophage trafficking in renal ischaemic-reperfusion
injury. J Cell Mol Med. 24:5515–5527. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yang Q, Wang Y, Pei G, Deng X, Jiang H, Wu
J, Zhou C, Guo Y, Yao Y, Zeng R and Xu G: Bone marrow-derived
Ly6C(−) macrophages promote ischemia-induced chronic kidney
disease. Cell Death Dis. 10:2912019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Rudemiller NP, Patel MB, Zhang JD, Jeffs
AD, Karlovich NS, Griffiths R, Kan MJ, Buckley AF, Gunn MD and
Crowley SD: C-C Motif Chemokine 5 Attenuates Angiotensin
II-Dependent kidney injury by limiting renal macrophage
infiltration. Am J Pathol. 186:2846–2856. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Prakoura N and Chatziantoniou C: Periostin
in kidney diseases. Cell Mol Life Sci. 74:4315–4320. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wallace DP: Periostin in the kidney. Adv
Exp Med Biol. 1132:99–112. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kormann R, Kavvadas P, Placier S,
Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE,
Prakoura N and Chatziantoniou C: Periostin promotes cell
proliferation and macrophage polarization to drive repair after
AKI. J Am Soc Nephrol. 31:85–100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Roedig H, Nastase MV, Wygrecka M and
Schaefer L: Breaking down chronic inflammatory diseases: The role
of biglycan in promoting a switch between inflammation and
autophagy. FEBS J. 286:2965–2979. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Roedig H, Nastase MV, Frey H, Moreth K,
Zeng-Brouwers J, Poluzzi C, Hsieh LT, Brandts C, Fulda S, Wygrecka
M and Schaefer L: Biglycan is a new high-affinity ligand for CD14
in macrophages. Matrix Biol. 77:4–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Poluzzi C, Nastase MV, Zeng-Brouwers J,
Roedig H, Hsieh LT, Michaelis JB, Buhl EM, Rezende F, Manavski Y,
Bleich A, et al: Biglycan evokes autophagy in macrophages via a
novel CD44/Toll-like receptor 4 signaling axis in
ischemia/reperfusion injury. Kidney Int. 95:540–562. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Meissner M, Viehmann SF and Kurts C:
DAMPening sterile inflammation of the kidney. Kidney Int.
95:489–491. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Roedig H, Damiescu R, Zeng-Brouwers J,
Kutija I, Trebicka J, Wygrecka M and Schaefer L: Danger matrix
molecules orchestrate CD14/CD44 signaling in cancer development.
Semin Cancer Biol. 62:31–47. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang PL and Liu ML: Extracellular
vesicles mediate cellular interactions in renal diseases-Novel
views of intercellular communications in the kidney. J Cell
Physiol. 2021.(Epub ahead of print). View Article : Google Scholar
|
|
121
|
Rigalli JP, Barros ER, Sommers V, Bindels
RJM and Hoenderop JGJ: Novel aspects of extracellular vesicles in
the regulation of renal physiological and pathophysiological
processes. Front Cell Dev Biol. 8:2442020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wu P, Zhang B, Ocansey DKW, Xu W and Qian
H: Extracellular vesicles: A bright star of nanomedicine.
Biomaterials. 269:1204672020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang X, Zhang H, Gu J, Zhang J, Shi H,
Qian H, Wang D, Xu W, Pan J and Santos HA: Engineered extracellular
vesicles for cancer therapy. Adv Mater e2005709. 2021.(Epub ahead
of print). PubMed/NCBI
|
|
124
|
Quaglia M, Dellepiane S, Guglielmetti G,
Merlotti G, Castellano G and Cantaluppi V: Extracellular vesicles
as mediators of cellular crosstalk between immune system and kidney
graft. Front Immunol. 11:742020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao
JY, Yin D, Liu H, Tang RN, Crowley SD, et al: Extracellular
vesicle-encapsulated IL-10 as novel nanotherapeutics against
ischemic AKI. Sci Adv. 6:eaaz07482020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Console L, Scalise M and Indiveri C:
Exosomes in inflammation and role as biomarkers. Clin Chim Acta.
488:165–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ståhl AL, Johansson K, Mossberg M, Kahn R
and Karpman D: Exosomes and microvesicles in normal physiology,
pathophysiology, and renal diseases. Pediatr Nephrol. 34:11–30.
2019. View Article : Google Scholar
|
|
128
|
Thongboonkerd V: Roles for exosome in
various kidney diseases and disorders. Front Pharmacol.
10:16552020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang ZW and Zhu X: Exosomal miR-19b-3p
communicates tubular epithelial cells and M1 macrophage. Cell Death
Dis. 10:7622019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong
X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of
tubular epithelial cells promotes M1 macrophage activation in
kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Li ZL, Lv LL, Tang TT, Wang B, Feng Y,
Zhou LT, Cao JY, Tang RN, Wu M, Liu H, et al: HIF-1α inducing
exosomal microRNA-23a expression mediates the cross-talk between
tubular epithelial cells and macrophages in tubulointerstitial
inflammation. Kidney Int. 95:388–404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Harrois A, Soyer B, Gauss T, Hamada S,
Raux M and Duranteau J: Prevalence and risk factors for acute
kidney injury among trauma patients: A multicenter cohort study.
Crit Care. 22:3442018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zuk A and Bonventre JV: Acute kidney
injury. Annu Rev Med. 67:293–307. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Wen Y and Crowley SD: The varying roles of
macrophages in kidney injury and repair. Curr Opin Nephrol
Hypertens. 29:286–292. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tang PM, Nikolic-Paterson DJ and Lan HY:
Macrophages: Versatile players in renal inflammation and fibrosis.
Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Poeck H, Bscheider M, Gross O, Finger K,
Roth S, Rebsamen M, Hannesschläger N, Schlee M, Rothenfusser S,
Barchet W, et al: Recognition of RNA virus by RIG-I results in
activation of CARD9 and inflammasome signaling for interleukin 1
beta production. Nat Immunol. 11:63–69. 2010. View Article : Google Scholar : PubMed/NCBI
|