|
1
|
Caplan LR: Intracerebral haemorrhage.
Lancet. 339:656–658. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Broderick J, Connolly S, Feldmann E,
Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS,
Vespa P, et al: Guidelines for the management of spontaneous
intracerebral hemorrhage in adults: 2007 update: A guideline from
the American Heart Association/American Stroke Association Stroke
Council, High Blood Pressure Research Council, and the Quality of
Care and Outcomes in Research Interdisciplinary Working Group.
Stroke. 38:2001–2023. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Counsell C, Boonyakarnkul S, Dennis M,
Sandercock P, Bamford J, Burn J and Warlow C: Primary intracerebral
haemorrhage in the oxfordshire community stroke Project.
Cerebrovascular Dis. 5:26–34. 1995. View Article : Google Scholar
|
|
4
|
Keep RF, Hua Y and Xi G: Intracerebral
haemorrhage: Mechanisms of injury and therapeutic targets. Lancet
Neurol. 11:720–731. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nehls DG, Mendelow AD, Graham DI, Sinar EJ
and Teasdale GM: Experimental intracerebral hemorrhage: Progression
of hemodynamic changes after production of a spontaneous mass
lesion. Neurosurgery. 23:439–444. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Belur PK, Chang JJ, He S, Emanuel BA and
Mack WJ: Emerging experimental therapies for intracerebral
hemorrhage: Targeting mechanisms of secondary brain injury.
Neurosurg Focus. 34:E92013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Niu M, Dai X, Zou W, Yu X, Teng W, Chen Q,
Sun X, Yu W, Ma H and Liu P: Autophagy, endoplasmic reticulum
stress and the unfolded protein response in intracerebral
hemorrhage. Transl Neurosci. 8:37–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Klionsky DJ and Emr SD: Autophagy as a
regulated pathway of cellular degradation. Science. 290:1717–1721.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang K and Klionsky DJ: Mitochondria
removal by autophagy. Autophagy. 7:297–300. 2014. View Article : Google Scholar
|
|
11
|
Goldman SJ, Taylor R, Zhang Y and Jin S:
Autophagy and the degradation of mitochondria. Mitochondrion.
10:309–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Graef M and Nunnari J: A role for
mitochondria in autophagy regulation. Autophagy. 7:1245–1246. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wei H, Liu L and Chen Q: Selective removal
of mitochondria via mitophagy: Distinct pathways for different
mitochondrial stresses. Biochim Biophys Acta. 1853:2784–2790. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L,
Liu N and Ji J: Melatonin attenuates traumatic brain injury-induced
inflammation: A possible role for mitophagy. J Pineal Res.
61:177–186. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu
J, Shen Z, Jiang L, Wang L, Yang W, et al: BNIP3L/NIX-mediated
mitophagy protects against ischemic brain injury independent of
PARK2. Autophagy. 13:1754–1766. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li J, Lu J, Mi Y, Shi Z, Chen C, Riley J
and Zhou C: Voltage-dependent anion channels (VDACs) promote
mitophagy to protect neuron from death in an early brain injury
following a subarachnoid hemorrhage in rats. Brain Res. 1573:74–83.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang Y, Xing D, Zhou F and Chen Q:
Mitochondrial autophagy protects against heat shock-induced
apoptosis through reducing cytosolic cytochrome c release and
downstream caspase-3 activation. Biochem Biophys Res Commun.
395:190–195. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Colbert AP, Spaulding K, Larsen A, Ahn AC
and Cutro JA: Electrodermal activity at acupoints: Literature
review and recommendations for reporting clinical trials. J
Acupunct and Meridian Stud. 4:5–13. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang S, Wu B, Liu M, Li N, Zeng X, Liu H,
Yang Q, Han Z, Rao P and Wang D; all Investigators, : Acupuncture
efficacy on ischemic stroke recovery: Multicenter randomized
controlled trial in China. Stroke. 46:1301–1306. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Langevin HM, Schnyer R, MacPherson H,
Davis R, Harris RE, Napadow V, Wayne PM, Milley RJ, Lao L,
Stener-Victorin E, et al: Manual and electrical needle stimulation
in acupuncture research: Pitfalls and challenges of heterogeneity.
J Altern Complement Med. 21:113–128. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhou F, Guo J, Cheng J, Wu G and Xia Y:
Electroacupuncture increased cerebral blood flow and reduced
ischemic brain injury: Dependence on stimulation intensity and
frequency. J Appl Physiol (1985). 111:1877–1887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhu Y, Deng L, Tang H, Gao X, Wang Y, Guo
K, Kong J and Yang C: Electroacupuncture improves neurobehavioral
function and brain injury in rat model of intracerebral hemorrhage.
Brain Res Bull. 131:123–132. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li HQ, Li Y, Chen ZX, Zhang XG, Zheng XW,
Yang WT, Chen S and Zheng GQ: Electroacupuncture exerts
neuroprotection through caveolin-1 mediated molecular pathway in
intracerebral hemorrhage of rats. Neural Plast. 2016:73082612016.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ting Z, Jianbin Z and Luqi H: Protective
effect of electroacupuncture on neurons autophagy in perfusion
period of cerebral ischemia. Neurosci Lett. 661:41–45. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wu Z, Zou Z, Zou R, Zhou X and Cui S:
Electroacupuncture pretreatment induces tolerance against cerebral
ischemia/reperfusion injury through inhibition of the autophagy
pathway. Mol Med Rep. 11:4438–4446. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Liu W, Shang G, Yang S, Huang J, Xue X,
Lin Y, Zheng Y, Wang X, Wang L, Lin R, et al: Electroacupuncture
protects against ischemic stroke by reducing autophagosome
formation and inhibiting autophagy through the mTORC1-ULK1
complex-Beclin1 pathway. Int J Mol Med. 37:309–318. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wu ZQ, Cui SY, Zhu L and Zou ZQ: Study on
the mechanism of mTOR-Mediated autophagy during electroacupuncture
pretreatment against cerebral ischemic injury. Evid Based
Complement Alternat Med. 2016:91215972016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zou W, Chen QX, Sun XW, Chi QB, Kuang HY,
Yu XP and Dai XH: Acupuncture inhibits Notch1 and Hes1 protein
expression in the basal ganglia of rats with cerebral hemorrhage.
Neural Regen Res. 10:457–462. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu H, Sun X, Zou W, Leng M, Zhang B, Kang
X, He T and Wang H: Scalp acupuncture attenuates neurological
deficits in a rat model of hemorrhagic stroke. Complement Ther Med.
32:85–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Health N: Guide for the care and use of
laboratory animals. NIH contract No. No1-RR-2-2135. 11–28.
1985.
|
|
31
|
Guan R, Zou W, Dai X, Yu X, Liu H, Chen Q
and Teng W: Mitophagy, a potential therapeutic target for stroke. J
Biomed Sci. 25:872018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Q, Zhang T, Wang J, Zhang Z, Zhai Y,
Yang GY and Sun X: Rapamycin attenuates mitochondrial dysfunction
via activation of mitophagy in experimental ischemic stroke.
Biochem Biophys Res Commun. 444:182–188. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Di Y, He YL, Zhao T, Huang X, Wu KW, Liu
SH, Zhao YQ, Fan M, Wu LY and Zhu LL: Methylene blue reduces acute
cerebral ischemic injury via the induction of mitophagy. Mol Med.
21:420–429. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jing CH, Wang L, Liu PP, Wu C, Ruan D and
Chen G: Autophagy activation is associated with neuroprotection
against apoptosis via a mitochondrial pathway in a rat model of
subarachnoid hemorrhage. Neuroscience. 213:144–153. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu XY, Dai XH, Zou W, Yu XP, Teng W, Wang
Y, Yu WW, Ma HH, Chen QX, Liu P, et al: Acupuncture through Baihui
(DU20) to Qubin (GB7) mitigates neurological impairment after
intracerebral hemorrhage. Neural Regen Res. 13:1425–1432. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang B, Dai XH, Yu XP, Zou W, Teng W, Sun
XW, Yu WW, Liu H, Wang H, Sun MJ and Li M: Baihui
(DU20)-penetrating-Qubin (GB7) acupuncture inhibits apoptosis in
the perihemorrhagic penumbra. Neural Regen Res. 13:1602–1608. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang C, Hu Q and Shen HM: Pharmacological
inhibitors of autophagy as novel cancer therapeutic agents.
Pharmacol Res. 105:164–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hua XB: On animal acupoints. J Tradit Chi
Med. 7:301–304. 1987.PubMed/NCBI
|
|
39
|
Jittiwat J: Laser Acupuncture at GV20
improves brain damage and oxidative stress in animal model of focal
ischemic stroke. J Acupunct Meridian Stud. 10:324–330. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yin CS, Jeong HS, Park HJ, Baik Y, Yoon
MH, Choi CB and Koh HG: A proposed transpositional acupoint system
in a mouse and rat model. Res Vet Sci. 84:159–165. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Han HJ, Park SJ, Soh KS, Myoung HS, Lee
KJ, Ogay V and Lee YH: Electrical characterization of proposed
transpositional acupoints on the urinary bladder meridian in a rat
model. Evid Based Complement Alternat Med. 2011:2954752011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen J, Sanberg PR, Li Y, Wang L, Lu M,
Willing AE, Sanchez-Ramos J and Chopp M: Intravenous administration
of human umbilical cord blood reduces behavioral deficits after
stroke in rats. Stroke. 32:2682–2688. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Choe SC, Hamacher-Brady A and Brady NR:
Autophagy capacity and sub-mitochondrial heterogeneity shape
Bnip3-induced mitophagy regulation of apoptosis. Cell Commun
Signal. 13:372015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gross A, McDonnell JM and Korsmeyer SJ:
BCL-2 family members and the mitochondria in apoptosis. Genes Dev.
13:1899–1911. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen B, Wang G, Li W, Liu W, Lin R, Tao J,
Jiang M, Chen L and Wang Y: Memantine attenuates cell apoptosis by
suppressing the calpain-caspase-3 pathway in an experimental model
of ischemic stroke. Exp Cell Res. 351:163–172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wagner DC, Riegelsberger UM, Michalk S,
Hartig W, Kranz A and Boltze J: Cleaved caspase-3 expression after
experimental stroke exhibits different phenotypes and is
predominantly non-apoptotic. Brain Res. 1381:237–242. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yan J, Yun H, Yang Y, Jing B, Feng C and
Song-bin F: Upregulation of BNIP3 promotes apoptosis of lung cancer
cells that were induced by p53. Biochem Biophys Res Commun.
346:501–507. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tasdemir E, Chiara Maiuri M, Morselli E,
Criollo A, D'Amelio M, Djavaheri-Mergny M, Cecconi F, Tavernarakis
N and Kroemer G: A dual role of p53 in the control of autophagy.
Autophagy. 4:810–814. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sims NR and Muyderman H: Mitochondria,
oxidative metabolism and cell death in stroke. Biochim Biophys
Acta. 1802:80–91. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kubli DA and Gustafsson AB: Mitochondria
and mitophagy: The yin and yang of cell death control. Circ Res.
111:1208–1221. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang X, Yan H, Yuan Y, Gao J, Shen Z,
Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, et al: Cerebral
ischemia-reperfusion-induced autophagy protects against neuronal
injury by mitochondrial clearance. Autophagy. 9:1321–1333. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou
Y, Yuan Y, Lu S, Jiang L, Qin Z, et al: PARK2-dependent mitophagy
induced by acidic postconditioning protects against focal cerebral
ischemia and extends the reperfusion window. Autophagy. 13:473–485.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Baek SH, Noh AR, Kim KA, Akram M, Shin YJ,
Kim ES, Yu SW, Majid A and Bae ON: Modulation of mitochondrial
function and autophagy mediates carnosine neuroprotection against
ischemic brain damage. Stroke. 45:2438–2443. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shi RY, Zhu SH, Li V, Gibson SB, Xu XS and
Kong JM: BNIP3 interacting with LC3 triggers excessive mitophagy in
delayed neuronal death in stroke. CNS Neurosci Ther. 20:1045–1055.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu M, Lu G, Lao YZ, Zhang H, Zheng D,
Zheng ZQ, Yi J, Xiang Q, Wang LM, Tan HS, et al:
Garciesculenxanthone B induces PINK1-Parkin-mediated mitophagy and
prevents ischemia-reperfusion brain injury in mice. Acta Pharmacol
Sin. 42:199–208. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yin ZL, Meng ZX, Ge S, Zhang MJ and Huang
LH: Clinical observation of dynamic scalp acupuncture combined with
task-oriented mirror therapy for upper limbs function impairment in
patients with hemiplegia after ischemic stroke. Zhongguo Zhen Jiu.
40:918–922. 2020.(In Chinese). PubMed/NCBI
|
|
57
|
Wang WW, Xie CL, Lu L and Zheng GQ: A
systematic review and meta-analysis of Baihui (GV20)-based scalp
acupuncture in experimental ischemic stroke. Sci Rep. 4:39812014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zheng GQ, Zhao ZM, Wang Y, Gu Y, Li Y,
Chen XM, Fu SP and Shen J: Meta-analysis of scalp acupuncture for
acute hypertensive intracerebral hemorrhage. J Altern Complement
Med. 17:293–299. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lang Y, Cui FY, Li KS, Tan ZJ and Zou YH:
Imaging observation of scalp acupuncture on brain gray matter
injury in stroke patients with cerebral infarction. Zhongguo Zhong
Xi Yi Jie He Za Zhi. 36:294–299. 2016.(In Chinese). PubMed/NCBI
|
|
60
|
Wang HQ, Bao CL, Jiao ZH and Dong GR:
Efficacy and safety of penetration acupuncture on head for acute
intracerebral hemorrhage: A randomized controlled study. Medicine
(Baltimore). 95:e55622016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun ST, Li SR, Zhu YZ, Chen SL, Wan GZ,
Sun YZ, Hou GW and Yu ZH: Clinical study on 500 cases of
cerebro-vascular hemiplegia treated by acupuncture through baihui
to qubin. J Tradit Chin Med. 5:167–170. 1985.PubMed/NCBI
|
|
62
|
Wu Y, Wang X, Guo H, Zhang B, Zhang XB,
Shi ZJ and Yu L: Synthesis and screening of 3-MA derivatives for
autophagy inhibitors. Autophagy. 9:595–603. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shao A, Wang Z, Wu H, Dong X, Li Y, Tu S,
Tang J, Zhao M, Zhang J and Hong Y: Enhancement of autophagy by
histone deacetylase inhibitor trichostatin a ameliorates neuronal
apoptosis after subarachnoid hemorrhage in rats. Mol Neurobiol.
53:18–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia DY, Li W, Qian HR, Yao S, Liu JG and
Qi XK: Ischemia preconditioning is neuroprotective in a rat
cerebral ischemic injury model through autophagy activation and
apoptosis inhibition. Braz J Med Biol Res. 46:580–588. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma H, Chen H, Dong A, Wang Y, Bian Y and
Xie K: Hydrogen-rich saline attenuates hyperalgesia and reduces
cytokines in rats with post-herpetic neuralgia via activating
autophagy. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 33:155–158.
2017.(In Chinese). PubMed/NCBI
|
|
66
|
Tang Y, Cai QH, Wang YJ, Fan SH, Zhang ZF,
Xiao MQ, Zhu JY, Wu DM, Lu J and Zheng YL: Protective effect of
autophagy on endoplasmic reticulum stress induced apoptosis of
alveolar epithelial cells in rat models of COPD. Biosci Rep.
37:BSR201708032017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wu Q, Gao C, Wang H, Zhang X, Li Q, Gu Z,
Shi X, Cui Y, Wang T, Chen X, et al: Mdivi-1 alleviates blood-brain
barrier disruption and cell death in experimental traumatic brain
injury by mitigating autophagy dysfunction and mitophagy
activation. Int J Biochem Cell Biol. 94:44–55. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Guo Z, Cao G, Yang H, Zhou H, Li L, Cao Z,
Yu B and Kou J: A combination of four active compounds alleviates
cerebral ischemia-reperfusion injury in correlation with inhibition
of autophagy and modulation of AMPK/mTOR and JNK pathways. J
Neurosci Res. 92:1295–1306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen X, Wang L, Deng Y, Li X, Li G, Zhou
J, Cheng D, Yang Y, Yang Q, Chen G and Wang G: Inhibition of
autophagy prolongs recipient survival through promoting CD8(+) T
cell apoptosis in a rat liver transplantation model. Front Immunol.
10:13562019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cao S, Shrestha S, Li J, Yu X, Chen J, Yan
F, Ying G, Gu C, Wang L and Chen G: Melatonin-mediated mitophagy
protects against early brain injury after subarachnoid hemorrhage
through inhibition of NLRP3 inflammasome activation. Sci Rep.
7:24172017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zuo W, Zhang S, Xia CY, Guo XF, He WB and
Chen NH: Mitochondria autophagy is induced after hypoxic/ischemic
stress in a Drp1 dependent manner: The role of inhibition of Drp1
in ischemic brain damage. Neuropharmacology. 86:103–115. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hanna RA, Quinsay MN, Orogo AM, Giang K,
Rikka S and Gustafsson AB: Microtubule-associated protein 1 light
chain 3 (LC3) interacts with Bnip3 protein to selectively remove
endoplasmic reticulum and mitochondria via autophagy. J Biol Chem.
287:19094–19104. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang J and Ney PA: Role of BNIP3 and NIX
in cell death, autophagy, and mitophagy. Cell Death Differ.
16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X,
Zhai B, Beach TG and Peng J: Refined phosphopeptide enrichment by
phosphate additive and the analysis of human brain phosphoproteome.
Protemomics. 15:500–507. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liu L, Sakakibara K, Chen Q and Okamoto K:
Receptor-mediated mitophagy in yeast and mammalian systems. Cell
Res. 24:787–795. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kissová I, Plamondon L-T, Brisson L,
Priault M, Renouf V, Schaeffer J, Camougrand N and Manon S:
Evaluation of the roles of apoptosis, autophagy, and mitophagy in
the loss of plating efficiency induced by Bax expression in yeast.
J Biol Chem. 281:36187–36197. 2006. View Article : Google Scholar
|
|
77
|
Li XX, Tsoi B, Li YF, Kurihara H and He
RR: Cardiolipin and its different properties in mitophagy and
apoptosis. J Histochem Cytochem. 63:301–311. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Levine B, Sinha SC and Kroemer G: Bcl-2
family members: Dual regulators of apoptosis and autophagy.
Autophagy. 4:600–606. 2008. View Article : Google Scholar
|
|
79
|
Ney PA: Mitochondrial autophagy: Origins,
significance, and role of BNIP3 and NIX. Biochim Biophys Acta.
1853:2775–2783. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Feng X, Liu X, Zhang W and Xiao W: p53
directly suppresses BNIP3 expression to protect against
hypoxia-induced cell death. EMBO J. 30:3397–3415. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hoshino A, Matoba S, Iwai-Kanai E,
Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M,
Mita Y, et al: p53-TIGAR axis attenuates mitophagy to exacerbate
cardiac damage after ischemia. J Mol Cell Cardiol. 52:175–184.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Marino G, Niso-Santano M, Baehrecke EH and
Kroemer G: Self-consumption: The interplay of autophagy and
apoptosis. Nat Rev Mol Cell Biol. 15:81–94. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jevtić G, Nikolić T, Mirčić A, Stojković
T, Velimirović M, Trajković V, Marković I, Trbovich AM, Radonjić NV
and Petronijević ND: Mitochondrial impairment, apoptosis and
autophagy in a rat brain as immediate and long-term effects of
perinatal phencyclidine treatment-influence of restraint stress.
Prog Neuropsychopharmacol Biol Psychiatry. 66:87–96. 2016.
View Article : Google Scholar
|
|
84
|
Chipuk JE, Kuwana T, Bouchier-Hayes L,
Droin NM, Newmeyer DD, Schuler M and Green DR: Direct activation of
Bax by p53 mediates mitochondrial membrane permeabilization and
apoptosis. Science. 303:1010–1014. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Livesey KM, Kang R, Vernon P, Buchser W,
Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ III, Li L, et
al: p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer
Res. 72:1996–2005. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Culmsee C and Mattson MP: p53 in neuronal
apoptosis. Biochem Biophys Res Commun. 331:761–777. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Morselli E, Tasdemir E, Maiuri MC,
Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T and Kroemer G:
Mutant p53 protein localized in the cytoplasm inhibits autophagy.
Cell Cycle. 7:3056–3061. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chipuk JE and Green DR: p53's believe it
or not: Lessons on transcription-independent death. J Clin Immunol.
23:355–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Moll UM and Zaika A: Nuclear and
mitochondrial apoptotic pathways of p53. FEBS Lett. 493:65–69.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang EY, Gang H, Aviv Y, Dhingra R,
Margulets V and Kirshenbaum LA: p53 mediates autophagy and cell
death by a mechanism contingent on Bnip3. Hypertension. 62:70–77.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hendgen-Cotta UB, Esfeld S, Rudi K,
Miinalainen I, Klare JP and Rassaf T: Cytosolic BNIP3 dimer
interacts with mitochondrial BAX forming heterodimers in the
mitochondrial outer membrane under basal conditions. Int J Mol Sci.
18:6872017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Namas RA, Metukuri MR, Dhupar R, Velosa C,
Jefferson BS, Myer E, Constantine GM, Billiar TR, Vodovotz Y and
Zamora R: Hypoxia-induced overexpression of BNIP3 is not dependent
on hypoxia-inducible factor 1α in mouse hepatocytes. Shock.
36:196–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hanna Akram R: Bnip3 interacts with LC3 to
induce selective removal of endoplasmic reticulum and mitochondria
via autophagy. UC San Diego Electronic Theses & Dissertations.
12–33. 2011.https://escholarship.org/content/qt1wq0k372/qt1wq0k372.pdfJuly
1–2019
|
|
94
|
Durcan TM and Fon EA: The three ‘P's of
mitophagy: PARKIN, PINK1, and post-translational modifications.
Genes Dev. 29:989–999. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen Y and Dorn GW: PINK1-phosphorylated
mitofusin 2 is a parkin receptor for culling damaged mitochondria.
Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim-Han J, Kopp S, Dugan L and Diringer M:
Perihematomal mitochondrial dysfunction after intracerebral
Hemorrhage. Stroke. 37:2457–2462. 2006. View Article : Google Scholar : PubMed/NCBI
|