Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2021 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

NLRP3 inflammasome in sepsis (Review)

  • Authors:
    • Xueyan Shi
    • Sichuang Tan
    • Sipin Tan
  • View Affiliations / Copyright

    Affiliations: Department of Sepsis Translational Medicine, Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
  • Article Number: 514
    |
    Published online on: May 13, 2021
       https://doi.org/10.3892/mmr.2021.12153
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sepsis is an imbalanced response to infection that leads to life-threatening organ dysfunction. Although an increasing number of anti-inflammatory drugs are available, the options for treating sepsis remain limited. Therefore, it is imperative to understand the pathogenesis and pathophysiology of sepsis and develop novel therapeutic targets to treat this state. The Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic high-molecular weight protein complex composed of the sensor NLRP3, adapter protein apoptosis-related speck-like protein and pro-caspase-1. It functions by cleaving pro-caspase-1 to become active caspase-1, resulting in the maturation and release of IL-1β and IL-18. Activation of the NLRP3 inflammasome is necessary for innate immune defense and also serves an important role in adaptive immune responses. Studies have shown that the NLRP3 inflammasome is involved in the occurrence and evolution of sepsis and other immune inflammatory diseases. The present paper reviews the activation pathways and biological function of the NLRP3 inflammasome in sepsis, with the aim to provide a basis for further research.
View Figures

Figure 1

View References

1 

Kim M and Li G: Postoperative complications affecting survival after cardiac arrest in general surgery patients. Anesth Analg. 126:858–864. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al: Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Davis FM, Schaller MA, Dendekker A, Joshi AD, Kimball AS, Evanoff H, Wilke C, Obi AT, Melvin WJ, Cavassani K, et al: Sepsis Induces Prolonged Epigenetic Modifications in Bone Marrow and Peripheral Macrophages Impairing Inflammation and Wound Healing. Arterioscler Thromb Vasc Biol. 39:2353–2366. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Xu S, Zhou Z, Li H, Liu Z, Pan X, Wang F, Huang Y, Li X, Xiao Y, Pan J, et al: BMSCs ameliorate septic coagulopathy by suppressing inflammation in cecal ligation and puncture-induced sepsis. J Cell Sci. 131:1312018.PubMed/NCBI

5 

Gruda MC, Ruggeberg KG, O'Sullivan P, Guliashvili T, Scheirer AR, Golobish TD, Capponi VJ and Chan PP: Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS One. 13:e01916762018. View Article : Google Scholar : PubMed/NCBI

6 

Salomão R, Ferreira BL, Salomão MC, Santos SS, Azevedo LCP and Brunialti MKC: Sepsis: Evolving concepts and challenges. Braz J Med Biol Res. 52:e85952019. View Article : Google Scholar

7 

Lv X and Wang H: Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res. 3:302016.PubMed/NCBI

8 

Nieman GF, Andrews P, Satalin J, Wilcox K, Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA and Habashi NM: Acute lung injury: How to stabilize a broken lung. Crit Care. 22:1362018. View Article : Google Scholar : PubMed/NCBI

9 

Strate LL and Morris AM: Epidemiology, pathophysiology, and treatment of diverticulitis. Gastroenterology. 156:1282–1298.e1. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Zarbock A, Gomez H and Kellum JA: Sepsis-induced acute kidney injury revisited: Pathophysiology, prevention and future therapies. Curr Opin Crit Care. 20:588–595. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Varatharaj A and Galea I: The blood-brain barrier in systemic inflammation. Brain Behav Immun. 60:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T and Rouis M: NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 4:296–307. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Lu A and Wu H: Structural mechanisms of inflammasome assembly. FEBS J. 282:435–444. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Stutz A, Kolbe CC, Stahl R, Horvath GL, Franklin BS, van Ray O, Brinkschulte R, Geyer M, Meissner F and Latz E: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med. 214:1725–1736. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, Rim JH, Hwang I, Lee CJ, Lee M, et al: SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 11:21272020. View Article : Google Scholar : PubMed/NCBI

17 

Tumurkhuu G, Shimada K, Dagvadorj J, Crother TR, Zhang W, Luthringer D, Gottlieb RA, Chen S and Arditi M: Ogg1-Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis. Circ Res. 119:e76–e90. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Renaudin F, Orliaguet L, Castelli F, Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y, Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Afonina IS, Zhong Z, Karin M and Beyaert R: Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol. 18:861–869. 2017. View Article : Google Scholar : PubMed/NCBI

20 

He Y, Hara H and Núñez G: Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, Hise AG, Camilli A, Kadioglu A, Dubyak GR and Pearlman E: Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol. 194:1763–1775. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti T-D, Rehman J, et al: The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity. 49:56–65.e4. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Gianfrancesco MA, Dehairs J, L'homme L, Herinckx G, Esser N, Jansen O, Habraken Y, Lassence C, Swinnen JV, Rider MH, et al: Saturated fatty acids induce NLRP3 activation in human macrophages through K+ efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim Biophys Acta Mol Cell Biol Lipids. 1864:1017–1030. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M, et al: Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol. 18:1822020. View Article : Google Scholar : PubMed/NCBI

25 

Rühl S and Broz P: Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J Immunol. 45:2927–2936. 2015. View Article : Google Scholar

26 

Katsnelson MA, Rucker LG, Russo HM and Dubyak GR: K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol. 194:3937–3952. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Abais JM, Xia M, Zhang Y, Boini KM and Li PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zhang C, Abdukerim M, Abilailieti M, Tang L, Ling Y and Pan S: The protective effects of orexin a against high glucose-induced activation of NLRP3 inflammasome in human vascular endothelial cells. Arch Biochem Biophys. 672:1080522019. View Article : Google Scholar : PubMed/NCBI

29 

Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang W-C, Marin T, Shentu TP, Wen L, Gongol B, et al: Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation. 128:632–642. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Rada B, Park JJ, Sil P, Geiszt M and Leto TL: NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res. 63:821–830. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, Yang M, Yang S, Zhu X, Yuan S, et al: Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 16:32–46. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Zhong B, Liu X, Wang X, Liu X, Li H, Darnay BG, Lin X, Sun SC and Dong C: Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci Signal. 6:ra352013. View Article : Google Scholar : PubMed/NCBI

34 

Lee HE, Yang G, Park YB, Kang HC, Cho YY, Lee HS and Lee JY: Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules. 24:21382019. View Article : Google Scholar : PubMed/NCBI

35 

Park S, Juliana C, Hong S, Datta P, Hwang I, Fernandes-Alnemri T, Yu JW and Alnemri ES: The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J Immunol. 191:4358–4366. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Li H, Zhang S, Li F and Qin L: NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol Immunol. 76:90–97. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, et al: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 39:311–323. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Elliott EI, Miller AN, Banoth B, Iyer SS, Stotland A, Weiss JP, Gottlieb RA, Sutterwala FS and Cassel SL: Cutting edge: Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J Immunol. 200:3047–3052. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Ichinohe T, Yamazaki T, Koshiba T and Yanagi Y: Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci USA. 110:17963–17968. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Chen J and Chen ZJ: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature. 564:71–76. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Zhang Z, Meszaros G, He WT, Xu Y, de Fatima Magliarelli H, Mailly L, Mihlan M, Liu Y, Puig Gámez M, Goginashvili A, et al: Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med. 214:2671–2693. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, Rassendren F, Le Bert M, Gombault A and Couillin I: ATP release and purinergic signaling: A common pathway for particle-mediated inflammasome activation. Cell Death Dis. 3:e4032012. View Article : Google Scholar : PubMed/NCBI

44 

Jessop F, Hamilton RF Jr, Rhoderick JF, Fletcher P and Holian A: Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol. 318:58–68. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC and Salter RD: Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 191:5230–5238. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Liu A, Gao X, Zhang Q and Cui L: Cathepsin B inhibition attenuates cardiac dysfunction and remodeling following myocardial infarction by inhibiting the NLRP3 pathway. Mol Med Rep. 8:361–366. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Newman ZL, Leppla SH and Moayeri M: CA-074Me protection against anthrax lethal toxin. Infect Immun. 77:4327–4336. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA and Rock KL: Multiple cathepsins promote Pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J Immunol. 195:1685–1697. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Chevriaux A, Pilot T, Derangère V, Simonin H, Martine P, Chalmin F, Ghiringhelli F and Rébé C: Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front Cell Dev Biol. 8:1672020. View Article : Google Scholar : PubMed/NCBI

50 

Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li ZL, Wu M, Wang FM, Crowley SD and Liu BC: Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis. 9:3512018. View Article : Google Scholar : PubMed/NCBI

51 

Bai H, Yang B, Yu W, Xiao Y, Yu D and Zhang Q: Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Exp Cell Res. 362:180–187. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Wang D, Bu F and Zhang W: The role of ubiquitination in regulating embryonic stem cell maintenance and cancer development. Int J Mol Sci. 20:26672019. View Article : Google Scholar : PubMed/NCBI

53 

Song H, Liu B, Huai W, Yu Z, Wang W, Zhao J, Han L, Jiang G, Zhang L, Gao C, et al: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun. 7:137272016. View Article : Google Scholar : PubMed/NCBI

54 

Singh M, Kumari B and Yadav UCS: Regulation of oxidized LDL-induced inflammatory process through NLRP3 inflammasome activation by the deubiquitinating enzyme BRCC36. Inflamm Res. 68:999–1010. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Zhuo Y, Li D, Cui L, Li C, Zhang S, Zhang Q, Zhang L, Wang X and Yang L: Treatment with 3,4-dihydroxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization. Biomed Pharmacother. 116:1090122019. View Article : Google Scholar : PubMed/NCBI

56 

Kawashima A, Karasawa T, Tago K, Kimura H, Kamata R, Usui-Kawanishi F, Watanabe S, Ohta S, Funakoshi-Tago M, Yanagisawa K, et al: ARIH2 ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages. J Immunol. 199:3614–3622. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Humphries F, Bergin R, Jackson R, Delagic N, Wang B, Yang S, Dubois AV, Ingram RJ and Moynagh PN: The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun. 9:15602018. View Article : Google Scholar : PubMed/NCBI

58 

Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G, An L, Zhang Y and Meng G: Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J Immunol. 199:1561–1566. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Weng L, Mitoma H, Trichot C, Bao M, Liu Y, Zhang Z and Liu YJ: The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation. J Immunol. 193:3676–3682. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Guan K, Wei C, Zheng Z, Song T, Wu F, Zhang Y, Cao Y, Ma S, Chen W, Xu Q, et al: MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3. J Immunol. 194:4880–4890. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Chiu HW, Chen CH, Chang JN, Chen CH and Hsu YH: Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med (Berl). 94:809–819. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J, et al: The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 211:1333–1347. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Labbé K, McIntire CR, Doiron K, Leblanc PM and Saleh M: Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity. 35:897–907. 2011. View Article : Google Scholar

64 

Vince JE, Wong WW-L, Gentle I, Lawlor KE, Allam R, O'Reilly L, Mason K, Gross O, Ma S, Guarda G, et al: Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity. 36:215–227. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S and Kundu M: NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem. 280:4279–4288. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Li C-G, Yan L, Mai F-Y, Shi Z-J, Xu L-H, Jing Y-Y, Zha Q-B, Ouyang D-Y and He X-H: Baicalin inhibits NOD-like receptor family, pyrin containing domain 3 inflammasome activation in murine macrophages by augmenting protein kinase A signaling. Front Immunol. 8:14092017. View Article : Google Scholar : PubMed/NCBI

67 

Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 45:802–816. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR, Scharl S, Raselli T, Frey-Wagner I, Gutte PM, et al: NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest. 126:1783–1800. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Martin BN, Wang C, Willette-Brown J, Herjan T, Gulen MF, Zhou H, Bulek K, Franchi L, Sato T, Alnemri ES, et al: IKKα negatively regulates ASC-dependent inflammasome activation. Nat Commun. 5:49772014. View Article : Google Scholar : PubMed/NCBI

70 

Zhou R, Yang X, Li X, Qu Y, Huang Q, Sun X and Mu D: Recombinant CC16 inhibits NLRP3/caspase-1-induced pyroptosis through p38 MAPK and ERK signaling pathways in the brain of a neonatal rat model with sepsis. J Neuroinflammation. 16:2392019. View Article : Google Scholar : PubMed/NCBI

71 

Fu Q, Wu J, Zhou XY, Ji MH, Mao QH, Li Q, Zong MM, Zhou ZQ and Yang JJ: NLRP3/Caspase-1 Pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation. 42:306–318. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Xu G, Shi D, Zhi Z, Ao R and Yu B: Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. J Cell Biochem. 120:5183–5192. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F, Ying G, Gu C, Wang L and Chen G: Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep. 7:24172017. View Article : Google Scholar : PubMed/NCBI

74 

Tong Z, Jiang B, Zhang L, Liu Y, Gao M, Jiang Y, Li Y, Lu Q, Yao Y and Xiao X: HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy. Shock. 41:449–453. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Zhang W, Tao A, Lan T, Cepinskas G, Kao R, Martin CM and Rui T: Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Res Cardiol. 112:162017. View Article : Google Scholar : PubMed/NCBI

76 

Tanuseputero SA, Lin MT, Yeh SL and Yeh CL: Intravenous arginine administration downregulates NLRP3 inflammasome activity and attenuates acute kidney injury in mice with polymicrobial sepsis. Mediators Inflamm. 2020:32016352020. View Article : Google Scholar : PubMed/NCBI

77 

Wang YC, Liu QX, Zheng Q, Liu T, Xu XE, Liu XH, Gao W, Bai XJ and Li ZF: Dihydromyricetin alleviates sepsis-induced acute lung injury through inhibiting NLRP3 inflammasome-dependent pyroptosis in mice model. Inflammation. 42:1301–1310. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Lyubasyuk V, Ouyang H, Yu FX, Guan KL and Zhang K: YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations. Mol Cell Oncol. 2:e9709572014. View Article : Google Scholar : PubMed/NCBI

79 

Zhou Y, Zhang CY, Duan JX, Li Q, Yang HH, Sun CC, Zhang J, Luo XQ and Liu SK: Vasoactive intestinal peptide suppresses the NLRP3 inflammasome activation in lipopolysaccharide-induced acute lung injury mice and macrophages. Biomed Pharmacother. 121:1095962020. View Article : Google Scholar : PubMed/NCBI

80 

Ying Y, Mao Y and Yao M: NLRP3 inflammasome activation by microRNA-495 promoter methylation may contribute to the progression of acute lung injury. Mol Ther Nucleic Acids. 18:801–814. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Zhang L, Mosoian A, Schwartz ME, Florman SS, Gunasekaran G, Schiano T, Fiel MI, Jiang W, Shen Q, Branch AD, et al: HIV infection modulates IL-1β response to LPS stimulation through a TLR4-NLRP3 pathway in human liver macrophages. J Leukoc Biol. 105:783–795. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Chen X, Liu G, Yuan Y, Wu G, Wang S and Yuan L: NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 10:9062019. View Article : Google Scholar : PubMed/NCBI

83 

Bai RX, Xu YY, Qin G, Chen YM, Wang HF, Wang M and Du SY: Repression of TXNIP-NLRP3 axis restores intestinal barrier function via inhibition of myeloperoxidase activity and oxidative stress in nonalcoholic steatohepatitis. J Cell Physiol. 234:7524–7538. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, Park J, Lee YS, Moon HS, Park CG, et al: Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 12:2326–2343. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Yang M, Lu L, Kang Z, Ma T and Wang Y: Overexpressed CD39 mitigates sepsis-induced kidney epithelial cell injury via suppressing the activation of NLR family pyrin domain containing 3. Int J Mol Med. 44:1707–1718. 2019.PubMed/NCBI

86 

Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu X, Tian D and Wu Y: Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid Med Cell Longev. 2018:67172122018. View Article : Google Scholar : PubMed/NCBI

87 

Yao Y, Hu X, Feng X, Zhao Y, Song M, Wang C and Fan H: Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting the NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway. J Cell Biochem. 120:18509–18523. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Cornelius DC, Travis OK, Tramel RW, Borges-Rodriguez M, Baik CH, Greer M, Giachelli CA, Tardo GA and Williams JM: NLRP3 inflammasome inhibition attenuates sepsis-induced platelet activation and prevents multi-organ injury in cecal-ligation puncture. PLoS One. 15:e02340392020. View Article : Google Scholar : PubMed/NCBI

89 

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shi X, Tan S and Tan S: NLRP3 inflammasome in sepsis (Review). Mol Med Rep 24: 514, 2021.
APA
Shi, X., Tan, S., & Tan, S. (2021). NLRP3 inflammasome in sepsis (Review). Molecular Medicine Reports, 24, 514. https://doi.org/10.3892/mmr.2021.12153
MLA
Shi, X., Tan, S., Tan, S."NLRP3 inflammasome in sepsis (Review)". Molecular Medicine Reports 24.1 (2021): 514.
Chicago
Shi, X., Tan, S., Tan, S."NLRP3 inflammasome in sepsis (Review)". Molecular Medicine Reports 24, no. 1 (2021): 514. https://doi.org/10.3892/mmr.2021.12153
Copy and paste a formatted citation
x
Spandidos Publications style
Shi X, Tan S and Tan S: NLRP3 inflammasome in sepsis (Review). Mol Med Rep 24: 514, 2021.
APA
Shi, X., Tan, S., & Tan, S. (2021). NLRP3 inflammasome in sepsis (Review). Molecular Medicine Reports, 24, 514. https://doi.org/10.3892/mmr.2021.12153
MLA
Shi, X., Tan, S., Tan, S."NLRP3 inflammasome in sepsis (Review)". Molecular Medicine Reports 24.1 (2021): 514.
Chicago
Shi, X., Tan, S., Tan, S."NLRP3 inflammasome in sepsis (Review)". Molecular Medicine Reports 24, no. 1 (2021): 514. https://doi.org/10.3892/mmr.2021.12153
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team