|
1
|
Kim M and Li G: Postoperative
complications affecting survival after cardiac arrest in general
surgery patients. Anesth Analg. 126:858–864. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rudd KE, Johnson SC, Agesa KM, Shackelford
KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer
S, et al: Global, regional, and national sepsis incidence and
mortality, 1990–2017: Analysis for the Global Burden of Disease
Study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Davis FM, Schaller MA, Dendekker A, Joshi
AD, Kimball AS, Evanoff H, Wilke C, Obi AT, Melvin WJ, Cavassani K,
et al: Sepsis Induces Prolonged Epigenetic Modifications in Bone
Marrow and Peripheral Macrophages Impairing Inflammation and Wound
Healing. Arterioscler Thromb Vasc Biol. 39:2353–2366. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xu S, Zhou Z, Li H, Liu Z, Pan X, Wang F,
Huang Y, Li X, Xiao Y, Pan J, et al: BMSCs ameliorate septic
coagulopathy by suppressing inflammation in cecal ligation and
puncture-induced sepsis. J Cell Sci. 131:1312018.PubMed/NCBI
|
|
5
|
Gruda MC, Ruggeberg KG, O'Sullivan P,
Guliashvili T, Scheirer AR, Golobish TD, Capponi VJ and Chan PP:
Broad adsorption of sepsis-related PAMP and DAMP molecules,
mycotoxins, and cytokines from whole blood using
CytoSorb® sorbent porous polymer beads. PLoS One.
13:e01916762018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Salomão R, Ferreira BL, Salomão MC, Santos
SS, Azevedo LCP and Brunialti MKC: Sepsis: Evolving concepts and
challenges. Braz J Med Biol Res. 52:e85952019. View Article : Google Scholar
|
|
7
|
Lv X and Wang H: Pathophysiology of
sepsis-induced myocardial dysfunction. Mil Med Res.
3:302016.PubMed/NCBI
|
|
8
|
Nieman GF, Andrews P, Satalin J, Wilcox K,
Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA and
Habashi NM: Acute lung injury: How to stabilize a broken lung. Crit
Care. 22:1362018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Strate LL and Morris AM: Epidemiology,
pathophysiology, and treatment of diverticulitis. Gastroenterology.
156:1282–1298.e1. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zarbock A, Gomez H and Kellum JA:
Sepsis-induced acute kidney injury revisited: Pathophysiology,
prevention and future therapies. Curr Opin Crit Care. 20:588–595.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Varatharaj A and Galea I: The blood-brain
barrier in systemic inflammation. Brain Behav Immun. 60:1–12. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Abderrazak A, Syrovets T, Couchie D, El
Hadri K, Friguet B, Simmet T and Rouis M: NLRP3 inflammasome: From
a danger signal sensor to a regulatory node of oxidative stress and
inflammatory diseases. Redox Biol. 4:296–307. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Swanson KV, Deng M and Ting JP: The NLRP3
inflammasome: Molecular activation and regulation to therapeutics.
Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lu A and Wu H: Structural mechanisms of
inflammasome assembly. FEBS J. 282:435–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Stutz A, Kolbe CC, Stahl R, Horvath GL,
Franklin BS, van Ray O, Brinkschulte R, Geyer M, Meissner F and
Latz E: NLRP3 inflammasome assembly is regulated by phosphorylation
of the pyrin domain. J Exp Med. 214:1725–1736. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim SR, Lee SG, Kim SH, Kim JH, Choi E,
Cho W, Rim JH, Hwang I, Lee CJ, Lee M, et al: SGLT2 inhibition
modulates NLRP3 inflammasome activity via ketones and insulin in
diabetes with cardiovascular disease. Nat Commun. 11:21272020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tumurkhuu G, Shimada K, Dagvadorj J,
Crother TR, Zhang W, Luthringer D, Gottlieb RA, Chen S and Arditi
M: Ogg1-Dependent DNA Repair Regulates NLRP3 Inflammasome and
Prevents Atherosclerosis. Circ Res. 119:e76–e90. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Renaudin F, Orliaguet L, Castelli F,
Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y,
Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote
GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β
activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Afonina IS, Zhong Z, Karin M and Beyaert
R: Limiting inflammation-the negative regulation of NF-κB and the
NLRP3 inflammasome. Nat Immunol. 18:861–869. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
He Y, Hara H and Núñez G: Mechanism and
regulation of NLRP3 inflammasome activation. Trends Biochem Sci.
41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Karmakar M, Katsnelson M, Malak HA, Greene
NG, Howell SJ, Hise AG, Camilli A, Kadioglu A, Dubyak GR and
Pearlman E: Neutrophil IL-1β processing induced by pneumolysin is
mediated by the NLRP3/ASC inflammasome and caspase-1 activation and
is dependent on K+ efflux. J Immunol. 194:1763–1775.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Di A, Xiong S, Ye Z, Malireddi RKS,
Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti T-D, Rehman J, et
al: The TWIK2 potassium efflux channel in macrophages mediates
NLRP3 inflammasome-induced inflammation. Immunity. 49:56–65.e4.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gianfrancesco MA, Dehairs J, L'homme L,
Herinckx G, Esser N, Jansen O, Habraken Y, Lassence C, Swinnen JV,
Rider MH, et al: Saturated fatty acids induce NLRP3 activation in
human macrophages through K+ efflux resulting from
phospholipid saturation and Na, K-ATPase disruption. Biochim
Biophys Acta Mol Cell Biol Lipids. 1864:1017–1030. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W,
Li A, Wang Y, Chen K, Tian M, et al: Paxillin mediates ATP-induced
activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol.
18:1822020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rühl S and Broz P: Caspase-11 activates a
canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J
Immunol. 45:2927–2936. 2015. View Article : Google Scholar
|
|
26
|
Katsnelson MA, Rucker LG, Russo HM and
Dubyak GR: K+ efflux agonists induce NLRP3 inflammasome
activation independently of Ca2+ signaling. J Immunol.
194:3937–3952. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Abais JM, Xia M, Zhang Y, Boini KM and Li
PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or
effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang C, Abdukerim M, Abilailieti M, Tang
L, Ling Y and Pan S: The protective effects of orexin a against
high glucose-induced activation of NLRP3 inflammasome in human
vascular endothelial cells. Arch Biochem Biophys. 672:1080522019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang
W-C, Marin T, Shentu TP, Wen L, Gongol B, et al: Sterol regulatory
element binding protein 2 activation of NLRP3 inflammasome in
endothelium mediates hemodynamic-induced atherosclerosis
susceptibility. Circulation. 128:632–642. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rada B, Park JJ, Sil P, Geiszt M and Leto
TL: NLRP3 inflammasome activation and interleukin-1β release in
macrophages require calcium but are independent of
calcium-activated NADPH oxidases. Inflamm Res. 63:821–830. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Han Y, Xu X, Tang C, Gao P, Chen X, Xiong
X, Yang M, Yang S, Zhu X, Yuan S, et al: Reactive oxygen species
promote tubular injury in diabetic nephropathy: The role of the
mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol.
16:32–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shimada K, Crother TR, Karlin J, Dagvadorj
J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et
al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome
during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhong B, Liu X, Wang X, Liu X, Li H,
Darnay BG, Lin X, Sun SC and Dong C: Ubiquitin-specific protease 25
regulates TLR4-dependent innate immune responses through
deubiquitination of the adaptor protein TRAF3. Sci Signal.
6:ra352013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lee HE, Yang G, Park YB, Kang HC, Cho YY,
Lee HS and Lee JY: Epigallocatechin-3-gallate prevents acute gout
by suppressing NLRP3 inflammasome activation and mitochondrial DNA
synthesis. Molecules. 24:21382019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Park S, Juliana C, Hong S, Datta P, Hwang
I, Fernandes-Alnemri T, Yu JW and Alnemri ES: The mitochondrial
antiviral protein MAVS associates with NLRP3 and regulates its
inflammasome activity. J Immunol. 191:4358–4366. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Subramanian N, Natarajan K, Clatworthy MR,
Wang Z and Germain RN: The adaptor MAVS promotes NLRP3
mitochondrial localization and inflammasome activation. Cell.
153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li H, Zhang S, Li F and Qin L: NLRX1
attenuates apoptosis and inflammatory responses in myocardial
ischemia by inhibiting MAVS-dependent NLRP3 inflammasome
activation. Mol Immunol. 76:90–97. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Iyer SS, He Q, Janczy JR, Elliott EI,
Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, et
al: Mitochondrial cardiolipin is required for Nlrp3 inflammasome
activation. Immunity. 39:311–323. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Elliott EI, Miller AN, Banoth B, Iyer SS,
Stotland A, Weiss JP, Gottlieb RA, Sutterwala FS and Cassel SL:
Cutting edge: Mitochondrial assembly of the NLRP3 inflammasome
complex is initiated at priming. J Immunol. 200:3047–3052. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ichinohe T, Yamazaki T, Koshiba T and
Yanagi Y: Mitochondrial protein mitofusin 2 is required for NLRP3
inflammasome activation after RNA virus infection. Proc Natl Acad
Sci USA. 110:17963–17968. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen J and Chen ZJ: PtdIns4P on dispersed
trans-Golgi network mediates NLRP3 inflammasome activation. Nature.
564:71–76. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang Z, Meszaros G, He WT, Xu Y, de
Fatima Magliarelli H, Mailly L, Mihlan M, Liu Y, Puig Gámez M,
Goginashvili A, et al: Protein kinase D at the Golgi controls NLRP3
inflammasome activation. J Exp Med. 214:2671–2693. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Riteau N, Baron L, Villeret B, Guillou N,
Savigny F, Ryffel B, Rassendren F, Le Bert M, Gombault A and
Couillin I: ATP release and purinergic signaling: A common pathway
for particle-mediated inflammasome activation. Cell Death Dis.
3:e4032012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jessop F, Hamilton RF Jr, Rhoderick JF,
Fletcher P and Holian A: Phagolysosome acidification is required
for silica and engineered nanoparticle-induced lysosome membrane
permeabilization and resultant NLRP3 inflammasome activity. Toxicol
Appl Pharmacol. 318:58–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Heid ME, Keyel PA, Kamga C, Shiva S,
Watkins SC and Salter RD: Mitochondrial reactive oxygen species
induces NLRP3-dependent lysosomal damage and inflammasome
activation. J Immunol. 191:5230–5238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu A, Gao X, Zhang Q and Cui L: Cathepsin
B inhibition attenuates cardiac dysfunction and remodeling
following myocardial infarction by inhibiting the NLRP3 pathway.
Mol Med Rep. 8:361–366. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Newman ZL, Leppla SH and Moayeri M:
CA-074Me protection against anthrax lethal toxin. Infect Immun.
77:4327–4336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Orlowski GM, Colbert JD, Sharma S, Bogyo
M, Robertson SA and Rock KL: Multiple cathepsins promote Pro-IL-1β
synthesis and NLRP3-mediated IL-1β activation. J Immunol.
195:1685–1697. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chevriaux A, Pilot T, Derangère V, Simonin
H, Martine P, Chalmin F, Ghiringhelli F and Rébé C: Cathepsin B is
required for NLRP3 inflammasome activation in macrophages, through
NLRP3 interaction. Front Cell Dev Biol. 8:1672020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li
ZL, Wu M, Wang FM, Crowley SD and Liu BC: Hydroxychloroquine
attenuates renal ischemia/reperfusion injury by inhibiting
cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis.
9:3512018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bai H, Yang B, Yu W, Xiao Y, Yu D and
Zhang Q: Cathepsin B links oxidative stress to the activation of
NLRP3 inflammasome. Exp Cell Res. 362:180–187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang D, Bu F and Zhang W: The role of
ubiquitination in regulating embryonic stem cell maintenance and
cancer development. Int J Mol Sci. 20:26672019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Song H, Liu B, Huai W, Yu Z, Wang W, Zhao
J, Han L, Jiang G, Zhang L, Gao C, et al: The E3 ubiquitin ligase
TRIM31 attenuates NLRP3 inflammasome activation by promoting
proteasomal degradation of NLRP3. Nat Commun. 7:137272016.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Singh M, Kumari B and Yadav UCS:
Regulation of oxidized LDL-induced inflammatory process through
NLRP3 inflammasome activation by the deubiquitinating enzyme
BRCC36. Inflamm Res. 68:999–1010. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhuo Y, Li D, Cui L, Li C, Zhang S, Zhang
Q, Zhang L, Wang X and Yang L: Treatment with
3,4-dihydroxyphenylethyl alcohol glycoside ameliorates
sepsis-induced ALI in mice by reducing inflammation and regulating
M1 polarization. Biomed Pharmacother. 116:1090122019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kawashima A, Karasawa T, Tago K, Kimura H,
Kamata R, Usui-Kawanishi F, Watanabe S, Ohta S, Funakoshi-Tago M,
Yanagisawa K, et al: ARIH2 ubiquitinates NLRP3 and negatively
regulates NLRP3 inflammasome activation in macrophages. J Immunol.
199:3614–3622. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Humphries F, Bergin R, Jackson R, Delagic
N, Wang B, Yang S, Dubois AV, Ingram RJ and Moynagh PN: The E3
ubiquitin ligase Pellino2 mediates priming of the NLRP3
inflammasome. Nat Commun. 9:15602018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xing Y, Yao X, Li H, Xue G, Guo Q, Yang G,
An L, Zhang Y and Meng G: Cutting edge: TRAF6 mediates TLR/IL-1R
signaling-induced nontranscriptional priming of the NLRP3
inflammasome. J Immunol. 199:1561–1566. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Weng L, Mitoma H, Trichot C, Bao M, Liu Y,
Zhang Z and Liu YJ: The E3 ubiquitin ligase tripartite motif 33 is
essential for cytosolic RNA-induced NLRP3 inflammasome activation.
J Immunol. 193:3676–3682. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guan K, Wei C, Zheng Z, Song T, Wu F,
Zhang Y, Cao Y, Ma S, Chen W, Xu Q, et al: MAVS promotes
inflammasome activation by targeting ASC for K63-linked
ubiquitination via the E3 ligase TRAF3. J Immunol. 194:4880–4890.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chiu HW, Chen CH, Chang JN, Chen CH and
Hsu YH: Far-infrared promotes burn wound healing by suppressing
NLRP3 inflammasome caused by enhanced autophagy. J Mol Med (Berl).
94:809–819. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rodgers MA, Bowman JW, Fujita H, Orazio N,
Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J, et al: The
linear ubiquitin assembly complex (LUBAC) is essential for NLRP3
inflammasome activation. J Exp Med. 211:1333–1347. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Labbé K, McIntire CR, Doiron K, Leblanc PM
and Saleh M: Cellular inhibitors of apoptosis proteins cIAP1 and
cIAP2 are required for efficient caspase-1 activation by the
inflammasome. Immunity. 35:897–907. 2011. View Article : Google Scholar
|
|
64
|
Vince JE, Wong WW-L, Gentle I, Lawlor KE,
Allam R, O'Reilly L, Mason K, Gross O, Ma S, Guarda G, et al:
Inhibitor of apoptosis proteins limit RIP3 kinase-dependent
interleukin-1 activation. Immunity. 36:215–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Basak C, Pathak SK, Bhattacharyya A,
Mandal D, Pathak S and Kundu M: NF-kappaB- and C/EBPbeta-driven
interleukin-1beta gene expression and PAK1-mediated caspase-1
activation play essential roles in interleukin-1beta release from
Helicobacter pylori lipopolysaccharide-stimulated
macrophages. J Biol Chem. 280:4279–4288. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li C-G, Yan L, Mai F-Y, Shi Z-J, Xu L-H,
Jing Y-Y, Zha Q-B, Ouyang D-Y and He X-H: Baicalin inhibits
NOD-like receptor family, pyrin containing domain 3 inflammasome
activation in murine macrophages by augmenting protein kinase A
signaling. Front Immunol. 8:14092017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang
L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control
inflammation and metabolic disorder through inhibition of NLRP3
inflammasome. Immunity. 45:802–816. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Spalinger MR, Kasper S, Gottier C, Lang S,
Atrott K, Vavricka SR, Scharl S, Raselli T, Frey-Wagner I, Gutte
PM, et al: NLRP3 tyrosine phosphorylation is controlled by protein
tyrosine phosphatase PTPN22. J Clin Invest. 126:1783–1800. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Martin BN, Wang C, Willette-Brown J,
Herjan T, Gulen MF, Zhou H, Bulek K, Franchi L, Sato T, Alnemri ES,
et al: IKKα negatively regulates ASC-dependent inflammasome
activation. Nat Commun. 5:49772014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhou R, Yang X, Li X, Qu Y, Huang Q, Sun X
and Mu D: Recombinant CC16 inhibits NLRP3/caspase-1-induced
pyroptosis through p38 MAPK and ERK signaling pathways in the brain
of a neonatal rat model with sepsis. J Neuroinflammation.
16:2392019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fu Q, Wu J, Zhou XY, Ji MH, Mao QH, Li Q,
Zong MM, Zhou ZQ and Yang JJ: NLRP3/Caspase-1 Pathway-induced
pyroptosis mediated cognitive deficits in a mouse model of
sepsis-associated encephalopathy. Inflammation. 42:306–318. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Xu G, Shi D, Zhi Z, Ao R and Yu B:
Melatonin ameliorates spinal cord injury by suppressing the
activation of inflammasomes in rats. J Cell Biochem. 120:5183–5192.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cao S, Shrestha S, Li J, Yu X, Chen J, Yan
F, Ying G, Gu C, Wang L and Chen G: Melatonin-mediated mitophagy
protects against early brain injury after subarachnoid hemorrhage
through inhibition of NLRP3 inflammasome activation. Sci Rep.
7:24172017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tong Z, Jiang B, Zhang L, Liu Y, Gao M,
Jiang Y, Li Y, Lu Q, Yao Y and Xiao X: HSF-1 is involved in
attenuating the release of inflammatory cytokines induced by LPS
through regulating autophagy. Shock. 41:449–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang W, Tao A, Lan T, Cepinskas G, Kao R,
Martin CM and Rui T: Carbon monoxide releasing molecule-3 improves
myocardial function in mice with sepsis by inhibiting NLRP3
inflammasome activation in cardiac fibroblasts. Basic Res Cardiol.
112:162017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tanuseputero SA, Lin MT, Yeh SL and Yeh
CL: Intravenous arginine administration downregulates NLRP3
inflammasome activity and attenuates acute kidney injury in mice
with polymicrobial sepsis. Mediators Inflamm. 2020:32016352020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang YC, Liu QX, Zheng Q, Liu T, Xu XE,
Liu XH, Gao W, Bai XJ and Li ZF: Dihydromyricetin alleviates
sepsis-induced acute lung injury through inhibiting NLRP3
inflammasome-dependent pyroptosis in mice model. Inflammation.
42:1301–1310. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lyubasyuk V, Ouyang H, Yu FX, Guan KL and
Zhang K: YAP inhibition blocks uveal melanogenesis driven by GNAQ
or GNA11 mutations. Mol Cell Oncol. 2:e9709572014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou Y, Zhang CY, Duan JX, Li Q, Yang HH,
Sun CC, Zhang J, Luo XQ and Liu SK: Vasoactive intestinal peptide
suppresses the NLRP3 inflammasome activation in
lipopolysaccharide-induced acute lung injury mice and macrophages.
Biomed Pharmacother. 121:1095962020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ying Y, Mao Y and Yao M: NLRP3
inflammasome activation by microRNA-495 promoter methylation may
contribute to the progression of acute lung injury. Mol Ther
Nucleic Acids. 18:801–814. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang L, Mosoian A, Schwartz ME, Florman
SS, Gunasekaran G, Schiano T, Fiel MI, Jiang W, Shen Q, Branch AD,
et al: HIV infection modulates IL-1β response to LPS stimulation
through a TLR4-NLRP3 pathway in human liver macrophages. J Leukoc
Biol. 105:783–795. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen X, Liu G, Yuan Y, Wu G, Wang S and
Yuan L: NEK7 interacts with NLRP3 to modulate the pyroptosis in
inflammatory bowel disease via NF-κB signaling. Cell Death Dis.
10:9062019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bai RX, Xu YY, Qin G, Chen YM, Wang HF,
Wang M and Du SY: Repression of TXNIP-NLRP3 axis restores
intestinal barrier function via inhibition of myeloperoxidase
activity and oxidative stress in nonalcoholic steatohepatitis. J
Cell Physiol. 234:7524–7538. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Han J, Bae J, Choi CY, Choi SP, Kang HS,
Jo EK, Park J, Lee YS, Moon HS, Park CG, et al: Autophagy induced
by AXL receptor tyrosine kinase alleviates acute liver injury via
inhibition of NLRP3 inflammasome activation in mice. Autophagy.
12:2326–2343. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yang M, Lu L, Kang Z, Ma T and Wang Y:
Overexpressed CD39 mitigates sepsis-induced kidney epithelial cell
injury via suppressing the activation of NLR family pyrin domain
containing 3. Int J Mol Med. 44:1707–1718. 2019.PubMed/NCBI
|
|
86
|
Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu
X, Tian D and Wu Y: Hydrogen sulfide attenuates LPS-induced acute
kidney injury by inhibiting inflammation and oxidative stress. Oxid
Med Cell Longev. 2018:67172122018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yao Y, Hu X, Feng X, Zhao Y, Song M, Wang
C and Fan H: Dexmedetomidine alleviates lipopolysaccharide-induced
acute kidney injury by inhibiting the NLRP3 inflammasome activation
via regulating the TLR4/NOX4/NF-κB pathway. J Cell Biochem.
120:18509–18523. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cornelius DC, Travis OK, Tramel RW,
Borges-Rodriguez M, Baik CH, Greer M, Giachelli CA, Tardo GA and
Williams JM: NLRP3 inflammasome inhibition attenuates
sepsis-induced platelet activation and prevents multi-organ injury
in cecal-ligation puncture. PLoS One. 15:e02340392020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (Sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|