Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2021 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy

  • Authors:
    • Qian Mao
    • Shuqi Wu
    • Chang Peng
    • Bohui Peng
    • Xiaomei Luo
    • Lixin Huang
    • Huanting Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Mao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 636
    |
    Published online on: July 6, 2021
       https://doi.org/10.3892/mmr.2021.12275
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiomyocyte hypertrophy is a compensatory phase of chronic heart failure that is induced by the activation of multiple signaling pathways. The extracellular signal‑regulated protein kinase (ERK) signaling pathway is an important regulator of cardiomyocyte hypertrophy. In our previous study, it was demonstrated that phenylephrine (PE)‑induced cardiomyocyte hypertrophy involves the hyperacetylation of histone H3K9ac by P300/CBP‑associated factor (PCAF). However, the upstream signaling pathway has yet to be fully identified. In the present study, the role of the extracellular signal‑regulated protein kinase (ERK)1/2 signaling pathway in PE‑induced cardiomyocyte hypertrophy was investigated. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. The results showed that phospho‑(p‑)ERK1/2 interacted with PCAF and modified the pattern of histone H3K9ac acetylation. An ERK inhibitor (U0126) and/or a histone acetylase inhibitor (anacardic acid; AA) attenuated the overexpression of phospho‑ERK1/2 and H3K9ac hyperacetylation by inhibiting the expression of PCAF in PE‑induced cardiomyocyte hypertrophy. Moreover, U0126 and/or AA could attenuate the overexpression of several biomarker genes related to cardiac hypertrophy (myocyte enhancer factor 2C, atrial natriuretic peptide, brain natriuretic peptide and β‑myosin heavy chain) and prevented cardiomyocyte hypertrophy. These results revealed a novel mechanism in that AA protects against PE‑induced cardiomyocyte hypertrophy in mice via the ERK1/2 signaling pathway, and by modifying the acetylation of H3K9ac. These findings may assist in the development of novel methods for preventing and treating hypertrophic cardiomyopathy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Degoricija V, Trbušić M, Potočnjak I, Radulović B, Terešak SD, Pregartner G, Berghold A, Tiran B and Frank S: Acute heart failure developed as worsening of chronic heart failure is associated with increased mortality compared to de novo cases. Sci Rep. 8:95872018. View Article : Google Scholar : PubMed/NCBI

2 

Yu B, Zhao Y, Zhang H, Xie D, Nie W and Shi K: Inhibition of microRNA-143-3p attenuates myocardial hypertrophy by inhibiting inflammatory response. Cell Biol Int. 42:1584–1593. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Wehbe N, Nasser SA, Pintus G, Badran A, Eid AH and Baydoun E: MicroRNAs in cardiac hypertrophy. Int J Mol Sci. 20:47142019. View Article : Google Scholar : PubMed/NCBI

4 

Peng C, Luo X, Li S and Sun H: Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol Biosyst. 13:714–724. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H and Chi K: Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Biosci Rep. 40:BSR202006692020. View Article : Google Scholar : PubMed/NCBI

6 

Gai Z, Wang Y, Tian L, Gong G and Zhao J: Whole genome level analysis of the Wnt and DIX gene families in mice and their coordination relationship in regulating cardiac hypertrophy. Front Genet. 12:6089362021. View Article : Google Scholar : PubMed/NCBI

7 

Siti HN, Jalil J, Asmadi AY and Kamisah Y: Rutin modulates MAPK pathway differently from Quercetin in angiotensin II–Induced H9c2 cardiomyocyte hypertrophy. Int J Mol Sci. 22:50632021. View Article : Google Scholar : PubMed/NCBI

8 

Bogdanova E, Beresneva O, Galkina O, Zubina I, Ivanova G, Parastaeva M, Semenova N and Dobronravov V: Myocardial hypertrophy and fibrosis are associated with cardiomyocyte Beta-Catenin and TRPC6/Calcineurin/NFAT signaling in spontaneously hypertensive rats with 5/6 Nephrectomy. Int J Mol Sci. 22:46452021. View Article : Google Scholar : PubMed/NCBI

9 

Tamura S, Marunouchi T and Tanonaka K: Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. J Mol Cell Cardiol. 127:134–142. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Hu B, Song JT, Ji XF, Liu ZQ, Cong ML and Liu DX: Sodium Ferulate protects against angiotensin II–Induced cardiac hypertrophy in mice by regulating the MAPK/ERK and JNK Pathways. Biomed Res Int. 2017:37549422017. View Article : Google Scholar : PubMed/NCBI

11 

Yan ZP, Li JT, Zeng N and Ni GX: Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiol J. 28:473–482. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Gu J, Hu W, Song ZP, Chen YG, Zhang DD and Wang CQ: Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway. Front Physiol. 7:1042016. View Article : Google Scholar : PubMed/NCBI

13 

Huang Y, Wu L, Wu J, Li Y and Hou L: Cellular FLICE-like inhibitory protein protects against cardiac hypertrophy by blocking ASK1/p38signaling in mice. Mol Cell Biochem. 397:87–95. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Zhou J, Gao J, Zhang X, Liu Y, Gu S, Zhang X, An X, Yan J, Xin Y and Su P: MicroRNA-340-5p functions downstream of cardiotrophin-1 to regulate cardiac eccentric hypertrophy and heart failure via target gene dystrophin. Int Heart J. 56:454–458. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Li B, Wang X, Yu M, Yang P and Wang W: G6PD, bond by miR-24, regulates mitochondrial dysfunction and oxidative stress in phenylephrine-induced hypertrophic cardiomyocytes. Life Sci. 260:1183782020. View Article : Google Scholar : PubMed/NCBI

16 

Melchert RB, Liu H, Granberry MC and Kennedy RH: Lovastatin inhibits phenylephrine-induced ERK activation and growth of cardiac. Cardiovasc Toxicol. 1:237–252. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Zhong L, Chiusa M, Cadar AG, Lin A, Samaras S, Davidson JM and Lim CC: Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc Res. 106:261–271. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Schreckenberg R, Taimor G, Piper HM and Schlüter KD: Inhibition of Ca2+-dependent PKC isoforms unmasks ERK-dependent hypertrophic growth evoked by phenylephrine in adult ventricular cardiomyocytes. Cardiovasc Res. 63:553–560. 2004. View Article : Google Scholar : PubMed/NCBI

19 

EUR-Lex, . Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official J European Union. 53:L 276/33–L 276/79. 2010.

20 

Peng BH, Peng C, Huang LX, Luo XM and Han X: The roles of P38 MAPK in the process of anacardic acid attenuating mouse cardiomyocyte hypertrophy induced by phenylephrine. Chin J Pathophys. 36:200–205. 2020.PubMed/NCBI

21 

Yin Y, Guan Y, Duan J, Wei G, Zhu Y, Quan W, Guo C, Zhou D, Wang Y, Xi M and Wen A: Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur J Pharmacol. 699:219–226. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Zhao Q, Zhang X, Cai H, Zhang P, Kong D, Ge X, Du M, Liang R and Dong W: Anticancer effects of plant derived anacardic acid on human breast cancer MDA-MB-231 cells. Am J Transl Res. 10:2424–2434. 2018.PubMed/NCBI

23 

Li Q, Li ZM, Sun SY, Wang LP, Wang PX, Guo Z, Yang HW, Ye JT, Lu J and Liu PQ: PARP1 interacts with HMGB1 and promotes its nuclear export in pathological myocardial hypertrophy. Acta Pharmacol Sin. 40:589–598. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Frias MA, Rebsamen MC, Gerber-Wicht C and Lang U: Prostaglandin E2 activates Stat3 in neonatal rat ventricular cardiomyocytes: A role in cardiac hypertrophy. Cardiovasc Res. 73:57–65. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Peng B, Han X, Peng C, Luo X, Deng L and Huang L: G9α-dependent histone H3K9me3 hypomethylation promotes overexpression of cardiomyogenesis-related genes in foetal mice. J Cell Mol Med. 24:1036–1045. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Ren J, Zhang N, Liao H, Chen S, Xu L, Li J, Yang Z, Deng W and Tang Q: Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro. Life Sci. 181:53–61. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Saleem N, Prasad A and Goswami SK: Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem. 445:79–88. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Önal B, Özen D, Demir B, Gezen Ak D, Dursun E, Demir C, Akkan AG and Özyazgan S: The anti-inflammatory effects of Anacardic acid on a TNF-α-Induced human saphenous vein endothelial cell culture model. Curr Pharm Biotechnol. 21:710–719. 2020. View Article : Google Scholar

30 

Lee MJ, Tsai YJ, Lin MY, You HL, Kalyanam N, Ho CT and Pan MH: Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine. 57:377–384. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Li S, Peng B, Luo X, Sun H and Peng C: Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases. J Cell Mol Med. 23:2744–2752. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Luo XM, Che JL, Liu SR, Long S, Zhao PX, Xu P, Wei Y and Peng C: The effects of histone acetylation modification on cardiac hypertrophy induced by two different modeling methods in mice. J Clin Cardiol. 33:1106–1110. 2017.

33 

Zhang G and Ni X: Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/MEF2C axis. Open Life Sci. 16:242–251. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Khajehlandi M, Bolboli L, Siahkuhian M, Rami M, Tabandeh M, Khoramipour K and Suzuki K: Endurance training regulates expression of some angiogenesis-related genes in cardiac tissue of experimentally induced diabetic rats. Biomolecules. 11:4982021. View Article : Google Scholar : PubMed/NCBI

35 

Wang HN, Li JL, Xu T, Yao HQ, Chen GH and Hu J: Effects of Sirt3 autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep. 22:1342–1350. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Ding J, Liu S, Qian W, Wang J, Chu C, Wang J, Li K, Yu Y, Xu G, Mao Z, et al: Swietenine extracted from Swietenia relieves myocardial hypertrophy induced by isoprenaline in mice. Environ Toxicol. 35:1343–1351. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Zhang LX, Du J, Zhao YT, Wang J, Zhang S, Dubielecka PM, Wei L, Zhuang S, Qin G, Chin YE and Zhao TC: Transgenic overexpression of active HDAC4 in the heart attenuates cardiac function and exacerbates remodeling in infarcted myocardium. J Appl Physiol. 125:1968–1978. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Stenzig J, Schneeberger Y, Löser A, Peters BS, Schaefer A, Zhao RR, Ng SL, Höppner G, Geertz B, Hirt MN, et al: Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol. 120:53–63. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Lin L, Xu W, Li Y, Zhu P, Yuan W, Liu M, Shi Y, Chen Y, Liang J, Chen J, et al: Pygo1 regulates pathological cardiac hypertrophy via a β-catenin-dependent mechanism. Am J Physiol Heart Circ Physiol. 320:H1634–H1645. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, et al: MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res. 116:279–288. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI

42 

Breitenbach T, Lorenz K and Dandekar T: How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency. Int J Mol Sci. 20:21792019. View Article : Google Scholar : PubMed/NCBI

43 

Liu R and Molkentin JD: Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardio. 101:44–49. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang Y, Cui Y, Dai S, Deng W, Wang H, Qin W, Yang H, Liu H, Yue J, Wu D, et al: Isorhynchophylline enhances Nrf2 and inhibits MAPK pathway in cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol. 393:203–212. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Peng BH: Role of JNK/MAPK signaling-dependent regulation of histone acetylation on the attenuation of anacardic acid for cardiomyocyte hypertrophy induced by phenylephrine (unpublished PhD thesis). Zunyi Medical University; 2020

46 

Ba L, Gao J, Chen Y, Qi H, Dong C, Pan H, Zhang Q, Shi P, Song C, Guan X, et al: Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine. 58:1527652019. View Article : Google Scholar : PubMed/NCBI

47 

Kim MJ, Im MA, Lee JS, Mun JY, Kim DH, Gu A and Kim IS: Effect of S100A8 and S100A9 on expressions of cytokine and skin barrier protein in human keratinocytes. Mol Med Rep. 20:2476–2483. 2019.PubMed/NCBI

48 

Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Gentile MT, Russo R, Pastorino O, Cioffi S, Barbieri F, Illingworth EA, Grieco M, Chambery A and Colucci-D'Amato L: Ruta graveolens water extract inhibits cell-cell network formation in human umbilical endothelial cells via MEK-ERK1/2 pathway. Exp Cell Res. 64:50–58. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Dai X, Song R and Xiong Y: The expression of ERK and JNK in patients with an endemic osteochondropathy, Kashin-Beck disease. Exp Cell Res. 359:337–341. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Cipolletta E, Rusciano MR, Maione AS, Santulli G, Sorriento D, Del Giudice C, Ciccarelli M, Franco A, Crola C, Campiglia P, et al: Targeting the CaMKII/ERK interaction in the heart prevents cardiac hypertrophy. PLoS One. 10:e01304772015. View Article : Google Scholar : PubMed/NCBI

52 

Wang Y, Guo Z, Gao Y, Liang P, Shan Y and He J: Angiotensin II receptor blocker LCZ696 attenuates cardiac remodeling through the inhibition of the ERK signaling pathway in mice with pregnancy-associated cardiomyopathy. Cell Biosci. 9:862019. View Article : Google Scholar : PubMed/NCBI

53 

Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, et al: The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy. J Clin Invest. 127:335–348. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Xing S, Tian JZ, Yang SH, Huang XT, Ding YF, Lu QY, Yang JS and Yang WJ: Setd4 controlled quiescent c-Kit+ cells contribute to cardiac neovascularization of capillaries beyond activation. Sci Rep. 11:116032021. View Article : Google Scholar : PubMed/NCBI

55 

Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, Wu Y, Gai D, Jain S, Hoosien M, et al: Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight. 2:e910682017. View Article : Google Scholar : PubMed/NCBI

56 

Marmorstein R and Zhou MM: Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 6:a0187622014. View Article : Google Scholar : PubMed/NCBI

57 

Gao W, Pan B, Liu L, Huang X, Liu Z and Tian J: Alcohol exposure increases the expression of cardiac transcription factors through ERK1/2-mediated histone3 hyperacetylation in H9c2 cells. Biochem Biophys Res Commun. 466:670–675. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Ferguson BS, Harrison BC, Jeong MY, Reid BG, Wempe MF, Wagner FF, Holson EB and McKinsey TA: Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci USA. 110:9806–9811. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Lambert M, Jambon S, Depauw S and David-Cordonnier MH: Targeting transcription factors for cancer treatment. Molecules. 23:14792018. View Article : Google Scholar : PubMed/NCBI

60 

Peng C, Zhang W, Zhao W, Zhu J, Huang X and Tian J: Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie. 113:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Peng C, Zhu J, Sun HC, Huang XP, Zhao WA, Zheng M, Liu LJ and Tian J: Inhibition of histone H3K9 acetylation by anacardic acid can correct the over-expression of Gata4 in the hearts of fetal mice exposed to alcohol during pregnancy. PLoS One. 9:e1041352014. View Article : Google Scholar : PubMed/NCBI

62 

Cardoso AC, Pereira AHM, Ambrosio ALB, Consonni SR, Rocha de Oliveira R, Bajgelman MC, Dias SMG and Franchini KG: FAK forms a complex with MEF2 to couple biomechanical signaling to transcription in cardiomyocytes. Structure. 24:1301–1310. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L and Zhang H: Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 24: 636, 2021.
APA
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., & Zhang, H. (2021). Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Molecular Medicine Reports, 24, 636. https://doi.org/10.3892/mmr.2021.12275
MLA
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., Zhang, H."Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy". Molecular Medicine Reports 24.3 (2021): 636.
Chicago
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., Zhang, H."Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy". Molecular Medicine Reports 24, no. 3 (2021): 636. https://doi.org/10.3892/mmr.2021.12275
Copy and paste a formatted citation
x
Spandidos Publications style
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L and Zhang H: Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 24: 636, 2021.
APA
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., & Zhang, H. (2021). Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Molecular Medicine Reports, 24, 636. https://doi.org/10.3892/mmr.2021.12275
MLA
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., Zhang, H."Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy". Molecular Medicine Reports 24.3 (2021): 636.
Chicago
Mao, Q., Wu, S., Peng, C., Peng, B., Luo, X., Huang, L., Zhang, H."Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy". Molecular Medicine Reports 24, no. 3 (2021): 636. https://doi.org/10.3892/mmr.2021.12275
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team