Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
September-2021 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review)

  • Authors:
    • Qingtao Zhang
    • Jian Yu
    • Qiuqiu Chen
    • Honghai Yan
    • Hongjiang Du
    • Wenjing Luo
  • View Affiliations / Copyright

    Affiliations: Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China, Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China, Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 648
    |
    Published online on: July 13, 2021
       https://doi.org/10.3892/mmr.2021.12287
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self‑renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC‑seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC‑based therapy.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Bianco P, Riminucci M, Gronthos S and Robey PG: Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells. 19:180–192. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Zhao H, Feng J, Ho TV, Grimes W, Urata M and Chai Y: The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol. 17:386–396. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P and Chai Y: Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 14:160–173. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Harvanová D, Tóthová T, Sarišský M, Amrichová J and Rosocha J: Isolation and characterization of synovial mesenchymal stem cells. Folia Biol (Praha). 57:119–124. 2011.

7 

Patel AN, Park E, Kuzman M, Benetti F, Silva FJ and Allickson JG: Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation. Cell Transplant. 17:303–311. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Agha-Hosseini F, Jahani MA, Jahani M, Mirzaii-Dizgah I and Ali-Moghaddam K: In vitro isolation of stem cells derived from human dental pulp. Clin Transplant. 24:E23–E28. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G and Troyer D: Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 24:781–792. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, James J and Pillai RM: Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 3:572012. View Article : Google Scholar : PubMed/NCBI

11 

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI

12 

Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA, Hassanzadeh A, Zamani M, Javidi K and Naimi A: Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol. 235:9185–9210. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Hoogduijn MJ and Lombardo E: Mesenchymal stromal cells anno 2019: dawn of the therapeutic Era? concise review. Stem Cells Transl Med. 8:1126–1134. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Najar M, Bouhtit F, Melki R, Afif H, Hamal A, Fahmi H, Merimi M and Lagneaux L: Mesenchymal stromal cell-based therapy: New perspectives and challenges. J Clin Med. 8:6262019. View Article : Google Scholar : PubMed/NCBI

15 

Chen C and Hou J: Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 7:162016. View Article : Google Scholar : PubMed/NCBI

16 

Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 4:7–25. 1978.PubMed/NCBI

17 

Martino MM, Briquez PS, Güç E, Tortelli F, Kilarski WW, Metzger S, Rice JJ, Kuhn GA, Müller R, Swartz MA and Hubbell JA: Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 343:885–888. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Adam RC and Fuchs E: The yin and yang of chromatin dynamics in stem cell fate selection. Trends Genet. 32:89–100. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, et al: Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis. 5:13–31. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Ding L and Morrison SJ: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 495:231–235. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A and Frenette PS: Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 20:1315–1320. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J and Li L: Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 20:1321–1326. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM and Greco V: Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature. 487:496–499. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Spradling A, Drummond-Barbosa D and Kai T: Stem cells find their niche. Nature. 414:98–104. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Bitgood MJ and McMahon AP: Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 172:126–138. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Petrova R and Joyner AL: Roles for Hedgehog signaling in adult organ homeostasis and repair. Development. 141:3445–3457. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Ohishi K, Varnum-Finney B, Flowers D, Anasetti C, Myerson D and Bernstein ID: Monocytes express high amounts of Notch and undergo cytokine specific apoptosis following interaction with the Notch ligand, Delta-1. Blood. 95:2847–2854. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Verrecchia F and Mauviel A: Transforming growth factor-β and fibrosis. World J Gastroenterol. 13:3056–3062. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Han J, Menicanin D, Gronthos S and Bartold PM: Stem cells, tissue engineering and periodontal regeneration. Aust Dent J. 59 (Suppl 1):S117–S130. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Martino MM, Maruyama K, Kuhn GA, Satoh T, Takeuchi O, Müller R and Akira S: Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat Commun. 7:110512016. View Article : Google Scholar : PubMed/NCBI

31 

Kuljanin M, Bell GI, Sherman SE, Lajoie GA and Hess DA: Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation. Diabetologia. 60:1987–1998. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Volleman TNE, Schol J, Morita K, Sakai D and Watanabe M: Wnt3a and wnt5a as potential chondrogenic stimulators for nucleus pulposus cell induction: A comprehensive review. Neurospine. 17:19–35. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Sato A, Yamamoto H, Sakane H, Koyama H and Kikuchi A: Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 29:41–54. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Sharma RP and Chopra VL: Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol. 48:461–465. 1976. View Article : Google Scholar : PubMed/NCBI

35 

Cadigan KM and Nusse R: WNT signaling: A common theme in animal development. Genes Dev. 11:3286–3305. 1997. View Article : Google Scholar : PubMed/NCBI

36 

Wodarz A and Nusse R: Mechanisms of WNT signaling in development. Annu Rev Cell Dev Biol. 14:59–88. 1998. View Article : Google Scholar : PubMed/NCBI

37 

Rao TP and Kühl M: An updated overview on Wnt signaling pathways: A prelude for more. Circ Res. 106:1798–1806. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Heethoff M, Helfen L and Norton RA: Description of Neoliodes dominicus n.sp. (Acari, Oribatida) from Dominican amber, aided by synchrotron X-ray microtomography. J Paleontol. 83:153–159. 2009. View Article : Google Scholar

39 

Nelson WJ and Nusse R: Convergence of WNT, beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Komiya Y and Habas R: Wnt signal transduction pathways. Organogenesis. 4:68–75. 2008. View Article : Google Scholar : PubMed/NCBI

41 

He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Matsui T, Raya A, Kawakami Y, Callol-Massot C, Capdevila J, Rodríguez-Esteban C and Izpisúa Belmonte JC: Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes Dev. 19:164–175. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Kaur P, Jin HJ, Lusk JB and Tolwinski NS: Modeling the role of wnt signaling in human and drosophila stem cells. Genes (Basel). 9:1012018. View Article : Google Scholar : PubMed/NCBI

44 

Nusse R: Wnt signaling in disease and in development. Cell Res. 15:28–32. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Baron R and Kneissel M: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Takada I, Kouzmenko AP and Kato S: WNT and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S and Dharmarajan A: Multi-lineage differentiation of mesenchymal stem cells-To WNT, or not WNT. Int J Biochem Cell Biol. 68:139–147. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon SO, Choi H, Prockop DJ and Oh JY: Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci USA. 113:158–163. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Huelsken J and Behrens J: The WNT signalling pathway. J Cell Sci. 115:3977–3978. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Komiya Y and Habas R: WNT signal transduction pathways. Organogenesis. 4:68–75. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Murphy LL and Hughes CC: Endothelial cells stimulate T cell NFAT nuclear translocation in the presence of cyclosporin A: Involvement of the WNT/glycogen synthase kinase-3 beta pathway. J Immunol. 169:3717–3725. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Veltri A, Lang C and Lien WH: Concise review: WNT signaling pathways in skin development and epidermal stem cells. Stem Cells. 36:22–35. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, et al: Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science. 309:1256–1259. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Fei D, Zhang Y, Wu J, Zhang H, Liu A, He X, Wang J, Li B, Wang Q and Jin Y: Cav 1.2 regulates osteogenesis of bone marrow-derived mesenchymal stem cells via canonical Wnt pathway in age-related osteoporosis. Aging Cell. 18:e129672019. View Article : Google Scholar : PubMed/NCBI

55 

Maruyama T, Jeong J, Sheu TJ and Hsu W: Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun. 7:105262016. View Article : Google Scholar : PubMed/NCBI

56 

Jing H, Liao L, An Y, Su X, Liu S, Shuai Y, Zhang X and Jin Y: Suppression of EZH2 Prevents the Shift of Osteoporotic MSC Fate to adipocyte and enhances bone formation during osteoporosis. Mol Ther. 24:217–229. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Niehrs C and Acebron SP: Mitotic and mitogenic WNT signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Li L and Clevers H: Coexistence of quiescent and active adult stem cells in mammals. Science. 327:542–545. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Park JR, Jung JW, Lee YS and Kang KS: The roles of WNT antagonists Dkk1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif. 41:859–874. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Ehrlund A, Mejhert N, Lorente-Cebrián S, Aström G, Dahlman I, Laurencikiene J and Rydén M: Characterization of the WNT inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab. 98:E503–E508. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Hoffmann MM, Werner C, Böhm M, Laufs U and Winkler K: Association of secreted frizzled-related protein 4 (SFRP4) with type 2 diabetes in patients with stable coronary artery disease. Cardiovasc Diabetol. 13:1552014. View Article : Google Scholar : PubMed/NCBI

62 

Mahdi T, Hänzelmann S, Salehi A, Muhammed SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P, et al: Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab. 16:625–633. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Eizirik DL and Cnop M: Mining genes in type 2 diabetic islets and finding gold. Cell Metab. 16:555–557. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Zaragosi LE, Wdziekonski B, Fontaine C, Villageois P, Peraldi P and Dani C: Effects of GSK3 inhibitors on in vitro expansion and differentiation of human adipose-derived stem cells into adipocytes. BMC Cell Biol. 9:112008. View Article : Google Scholar : PubMed/NCBI

65 

Gaur T, Rich L, Lengner CJ, Hussain S, Trevant B, Ayers D, Stein JL, Bodine PV, Komm BS, Stein GS and Lian JB: Secreted frizzled related protein 1 regulates WNT signaling for BMP2 induced chondrocyte differentiation. J Cell Physiol. 208:87–96. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Jin EJ, Park JH, Lee SY, Chun JS, Bang OS and Kang SS: WNT-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int J Biochem Cell Biol. 38:183–195. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Fischer L, Boland G and Tuan RS: WNT signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem. 84:816–831. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Luo S, Shi Q, Zha Z, Yao P, Lin H, Liu N, Wu H and Sun S: Inactivation of WNT/β-catenin signaling in human adipose-derived stem cells is necessary for chondrogenic differentiation and maintenance. Biomed Pharmacother. 67:819–824. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Im GI and Quan Z: The effects of WNT inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Eng Part A. 16:2405–2413. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Im GI, Lee JM and Kim HJ: WNT inhibitors enhance chondrogenesis of human mesenchymal stem cells in a long-term pellet culture. Biotechnol Lett. 33:1061–1068. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G and Aaronson SA: Canonical WNTs function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol. 185:67–75. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ and Zhao H: Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force. Dev Cell. 54:639–654.e6. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, et al: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 107:513–523. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA II, Hartmann C, Li L, Hwang TH, Brayton CF, et al: Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a WNT coreceptor. J Cell Biol. 157:303–314. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K and Lifton RP: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 346:1513–1521. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by WNT10b. Proc Natl Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Jiang M, Zheng C, Shou P, Li N, Cao G, Chen Q, Xu C, Du L, Yang Q, Cao J, et al: SHP1 regulates bone mass by directing mesenchymal stem cell differentiation. Cell Rep. 16:769–780. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Yamada A, Iwata T, Yamato M, Okano T and Izumi Y: Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells. Biomaterials. 34:3270–3278. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Yao W, Cheng Z, Shahnazari M, Dai W, Johnson ML and Lane NE: Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J Bone Miner Res. 25:190–199. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Nakanishi R, Akiyama H, Kimura H, Otsuki B, Shimizu M, Tsuboyama T and Nakamura T: Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res. 23:271–277. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Bodine PV, Billiard J, Moran RA, Ponce-de-Leon H, McLarney S, Mangine A, Scrimo MJ, Bhat RA, Stauffer B, Green J, et al: The WNT antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem. 96:1212–1230. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS and Lian JB: Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol. 220:174–181. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PV, Stein GS and Lian JB: Expression of secreted frizzled related protein 1, a WNT antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol. 217:113–126. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Rashedi I, Gómez-Aristizábal A, Wang XH, Viswanathan S and Keating A: TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated treg induction via notch signaling. Stem Cells. 35:265–275. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Di Meglio P, Perera GK and Nestle FO: The multitasking organ: Recent insights into skin immune function. Immunity. 35:857–869. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Gurtner GC, Werner S, Barrandon Y and Longaker MT: Wound repair and regeneration. Nature. 453:314–321. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Aurora AB and Olson EN: Immune modulation of stem cells and regeneration. Cell Stem Cell. 15:14–25. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Forbes SJ and Rosenthal N: Preparing the ground for tissue regeneration: From mechanism to therapy. Nat Med. 20:857–869. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Takemura N, Kawasaki T, Kunisawa J, Sato S, Lamichhane A, Kobiyama K, Aoshi T, Ito J, Mizuguchi K, Karuppuchamy T, et al: Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nat Commun. 5:34922014. View Article : Google Scholar : PubMed/NCBI

92 

Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ and Mathis D: A special population of regulatory T cells potentiates muscle repair. Cell. 155:1282–1295. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, Yang R, Chen W, Wang S and Shi S: Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med. 17:1594–1601. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Li X, Wang S, Zhu R, Li H, Han Q and Zhao RC: Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 9:422016. View Article : Google Scholar : PubMed/NCBI

95 

Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Mejia-Ramirez E and Florian MC: Understanding intrinsic hematopoietic stem cell aging. Haematologica. 105:22–37. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Oh J, Lee YD and Wagers AJ: Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med. 20:870–880. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Liu L and Rando TA: Manifestations and mechanisms of stem cell aging. J Cell Biol. 193:257–266. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Keyes BE and Fuchs E: Stem cells: Aging and transcriptional fingerprints. J Cell Biol. 217:79–92. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Janeway CA Jr: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 54:1–13. 1989. View Article : Google Scholar : PubMed/NCBI

101 

Kubelkova K and Macela A: Innate immune recognition: An issue more complex than expected. Front Cell Infect Microbiol. 9:2412019. View Article : Google Scholar : PubMed/NCBI

102 

Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, et al: IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 11:997–1004. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Martinon F, Mayor A and Tschopp J: The inflammasomes: Guardians of the body. Annu Rev Immunol. 27:229–265. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Davis BK, Wen H and Ting JP: The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Mahla RS, Reddy MC, Prasad DV and Kumar H: Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol. 4:2482013. View Article : Google Scholar : PubMed/NCBI

107 

Fortier ME, Kent S, Ashdown H, Poole S, Boksa P and Luheshi GN: The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 287:R759–R766. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Sultan M, Coyle KM, Vidovic D, Thomas ML, Gujar S and Marcato P: Hide-and-seek: The interplay between cancer stem cells and the immune system. Carcinogenesis. 38:107–118. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Feng G, Zheng K, Cao T, Zhang J, Lian M, Huang D, Wei C, Gu Z and Feng X: Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology. 70:1023–1035. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Kain M: How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene. 18:6867–6874. 1999. View Article : Google Scholar : PubMed/NCBI

111 

Blasius AL and Beutler B: Intracellular toll-like receptors. Immunity. 32:305–315. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Lester SN and Li K: Toll-like receptors in antiviral innate immunity. J Mol Biol. 426:1246–1264. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Piccinini AM and Midwood KS: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010:6723952010. View Article : Google Scholar : PubMed/NCBI

114 

Chen GY and Nuñez G: Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol. 10:826–837. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G and de Kleijn DP: Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res. 108:582–592. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Oyama J, Blais C Jr, Liu X, Pu M, Kobzik L, Kelly RA and Bourcier T: Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 109:784–789. 2004. View Article : Google Scholar : PubMed/NCBI

117 

DelaRosa O and Lombardo E: Modulation of adult mesenchymal stem cells activity by toll-like receptors: Implications on therapeutic potential. Mediators Inflamm. 2010:8656012010. View Article : Google Scholar : PubMed/NCBI

118 

Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR and Zipori D: Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 109:1422–1432. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Poulain-Godefroy O, Le Bacquer O, Plancq P, Lecoeur C, Pattou F, Frühbeck G and Froguel P: Inflammatory role of Toll-like receptors in human and murine adipose tissue. Mediators Inflamm. 2010:8234862010. View Article : Google Scholar : PubMed/NCBI

120 

S Purohit J, Hu P, Burke SJ, Collier JJ, Chen J and Zhao L: The effects of NOD activation on adipocyte differentiation. Obesity (Silver Spring). 21:737–747. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Chang LY, Lai YL, Yu TH, Chen YT and Hung SL: Effects of areca nut extract on lipopolysaccharides-enhanced adhesion and migration of human mononuclear leukocytes. J Periodontol. 85:859–867. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Tang Y, Zhou X, Gao B, Xu X, Sun J, Cheng L, Zhou X and Zheng L: Modulation of WNT/β-catenin signaling attenuates periapical bone lesions. J Dent Res. 93:175–182. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Wang J, Dai J, Liu B, Gu S, Cheng L and Liang J: Porphyromonas gingivalis lipopolysaccharide activates canonical WNT/β-catenin and p38 MAPK signalling in stem cells from the apical papilla. Inflammation. 36:1393–1402. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Li D, Fu L, Zhang Y, Yu Q, Ma F, Wang Z, Luo Z, Zhou Z, Cooper PR and He W: The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro. J Dent. 42:1327–1334. 2014. View Article : Google Scholar : PubMed/NCBI

125 

He W, Wang Z, Zhou Z, Zhang Y, Zhu Q, Wei K, Lin Y, Cooper PR, Smith AJ and Yu Q: Lipopolysaccharide enhances WNT5a expression through toll-like receptor 4, myeloid differentiating factor 88, phosphatidylinositol 3-OH kinase/Akt and nuclear factor kappa B pathways in human dental pulp stem cells. J Endod. 40:69–75. 2014. View Article : Google Scholar : PubMed/NCBI

126 

He W, Qu T, Yu Q, Wang Z, Wang H, Zhang J and Smith AJ: Lipopolysaccharide enhances decorin expression through the Toll-like receptor 4, myeloid differentiating factor 88, nuclear factor-kappa B, and mitogen-activated protein kinase pathways in odontoblast cells. J Endod. 38:464–469. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Xing Q, Ye Q, Fan M, Zhou Y, Xu Q and Sandham A: Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J Cell Physiol. 225:106–114. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Wlodarska M, Kostic AD and Xavier RJ: An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe. 17:577–591. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Kedia S, Rampal R, Paul J and Ahuja V: Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. J Gastroenterol. 51:660–671. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Sodhi CP, Shi XH, Richardson WM, Grant ZS, Shapiro RA, Prindle T Jr, Branca M, Russo A, Gribar SC, Ma C and Hackam DJ: Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology. 138:185–196. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Liu X, Lu R, Xia Y, Wu S and Sun J: Eukaryotic signaling pathways targeted by Salmonella effector protein AvrA in intestinal infection in vivo. BMC Microbiol. 10:3262010. View Article : Google Scholar : PubMed/NCBI

132 

Suh HN, Kim MJ, Jung YS, Lien EM, Jun S and Park JI: Quiescence Exit of Tert+ stem cells by WNT/β-catenin is indispensable for intestinal regeneration. Cell Rep. 21:2571–2584. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Marchetti B and Pluchino S: WNT your brain be inflamed? Yes, it WNT! Trends Mol Med. 19:144–156. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Jin J, Yu Q, Han C, Hu X, Xu S, Wang Q, Wang J, Li N and Cao X: LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nat Commun. 4:20752013. View Article : Google Scholar : PubMed/NCBI

135 

Zolezzi JM and Inestrosa NC: WNT/TLR dialog in neuroinflammation, relevance in Alzheimer's disease. Front Immunol. 8:1872017. View Article : Google Scholar : PubMed/NCBI

136 

Kanneganti TD, Lamkanfi M and Núñez G: Intracellular NOD-like receptors in host defense and disease. Immunity. 27:549–559. 2007. View Article : Google Scholar : PubMed/NCBI

137 

Inohara C, Chamaillard, McDonald C and Nuñez G: NOD-LRR proteins: Role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 74:355–383. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Franchi L, Warner N, Viani K and Nuñez G: Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 227:106–128. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Shaw MH, Reimer T, Kim YG and Nuñez G: NOD-like receptors (NLRs): Bona fide intracellular microbial sensors. Curr Opin Immunol. 20:377–382. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Jorgensen I and Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Franchi L, Muñoz-Planillo R and Núñez G: Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 13:325–332. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Naji A, Muzembo BA, Yagyu K, Baba N, Deschaseaux F, Sensebé L and Suganuma N: Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci Rep. 6:261622016. View Article : Google Scholar : PubMed/NCBI

144 

Kim HS, Shin TH, Yang SR, Seo MS, Kim DJ, Kang SK, Park JH and Kang KS: Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS One. 5:e153692010. View Article : Google Scholar : PubMed/NCBI

145 

Wang L, Chen K, Wan X, Wang F, Guo Z and Mo Z: NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation. Biochem Biophys Res Commun. 484:871–877. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Wu XM, Chen WQ, Hu YW, Cao L, Nie P and Chang MX: RIP2 Is a critical regulator for NLRs signaling and MHC antigen presentation but not for MAPK and PI3K/Akt pathways. Front Immunol. 9:7262018. View Article : Google Scholar : PubMed/NCBI

147 

Bist P, Dikshit N, Koh TH, Mortellaro A, Tan TT and Sukumaran B: The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun. 82:1112–1122. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Souza JA, Medeiros MC, Rocha FR, de Aquino SG, Ávila-Campos MJ, Spolidorio LC, Zamboni DS, Graves DT and Rossa C: Role of NOD2 and RIP2 in host-microbe interactions with Gram-negative bacteria: Insights from the periodontal disease model. Innate Immun. 22:598–611. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Singh V, Holla S, Ramachandra SG and Balaji KN: WNT-inflammasome signaling mediates NOD2-induced development of acute arthritis in mice. J Immunol. 194:3351–3360. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V and Balaji KN: Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem. 290:26576–26586. 2015. View Article : Google Scholar : PubMed/NCBI

151 

McGonagle D, Savic S and McDermott MF: The NLR network and the immunological disease continuum of adaptive and innate immune-mediated inflammation against self. Semin Immunopathol. 29:303–313. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Zhou L, Dörfer CE, Chen L and Fawzy El-Sayed KM: Porphyromonas gingivalis lipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not WNT/β-catenin, pathway. J Clin Periodontol. 44:1112–1122. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Chen S, Shen D, Popp NA, Ogilvy AJ, Tuo J, Abu-Asab M, Xie T and Chan CC: Responses of multipotent retinal stem cells to IL-1β, IL-18, or IL-17. J Ophthalmol. 2015:3693122015. View Article : Google Scholar : PubMed/NCBI

154 

Huang J and Chen L: IL-1β inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/microRNA-496 to repress WNT signaling. Genesis. 552017.doi: 10.1002/dvg.23040.

155 

Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, Weitzmann MN and Pacifici R: IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 117:122–132. 2007. View Article : Google Scholar : PubMed/NCBI

156 

Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, et al: Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol. 5:224–230. 2003. View Article : Google Scholar : PubMed/NCBI

157 

Gaspersic R, Stiblar-Martincic D, Osredkar J and Skaleric U: In vivo administration of recombinant TNF-alpha promotes bone resorption in mice. J Periodontal Res. 38:446–448. 2003. View Article : Google Scholar : PubMed/NCBI

158 

Wang L, Zhao Y and Shi S: Interplay between mesenchymal stem cells and lymphocytes: Implications for immunotherapy and tissue regeneration. J Dent Res. 91:1003–1010. 2012. View Article : Google Scholar : PubMed/NCBI

159 

Yang SR, Park JR and Kang KS: Reactive oxygen species in mesenchymal stem cell aging: Implication to lung diseases. Oxid Med Cell Longev. 2015:4862632015. View Article : Google Scholar : PubMed/NCBI

160 

Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Atashi F, Modarressi A and Pepper MS: The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem Cells Dev. 24:1150–1163. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Brown GC and Borutaite V: There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 12:1–4. 2012. View Article : Google Scholar : PubMed/NCBI

163 

McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H and Harrison DG: Role of xanthine oxidoreductase and NAD (P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 285:H2290–H2297. 2003. View Article : Google Scholar : PubMed/NCBI

164 

O'Donnell VB and Azzi A: High rates of extracellular superoxide generation by cultured human fibroblasts: Involvement of a lipid-metabolizing enzyme. Biochem J. 318:805–812. 1996. View Article : Google Scholar

165 

Starkov AA: The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 1147:37–52. 2008. View Article : Google Scholar : PubMed/NCBI

166 

Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C and Fass D: Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA. 103:299–304. 2006. View Article : Google Scholar : PubMed/NCBI

167 

Roy P, Roy SK, Mitra A and Kulkarni AP: Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta. 1214:171–179. 1994. View Article : Google Scholar : PubMed/NCBI

168 

Schröder K, Wandzioch K, Helmcke I and Brandes RP: Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol. 29:239–245. 2009. View Article : Google Scholar

169 

Pittenger MF and Martin BJ: Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 95:9–20. 2004. View Article : Google Scholar : PubMed/NCBI

170 

Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ, Li H and Shyu WC: Nonsenescent Hsp27-upregulated MSCs implantation promotes neuroplasticity in stroke model. Cell Transplant. 19:1261–1279. 2010. View Article : Google Scholar : PubMed/NCBI

171 

Kobayashi CI and Suda T: Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 227:421–430. 2012. View Article : Google Scholar : PubMed/NCBI

172 

D'Autréaux B and Toledano MB: ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar

173 

Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S and Yoshimura K: The fate of adipocytes after nonvascularized fat grafting: Evidence of early death and replacement of adipocytes. Plast Reconstr Surg. 129:1081–1092. 2012. View Article : Google Scholar : PubMed/NCBI

174 

Rodrigues M, Turner O, Stolz D, Griffith LG and Wells A: Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplant. 21:2171–2187. 2012. View Article : Google Scholar : PubMed/NCBI

175 

Zou X, Li H, Chen L, Baatrup A, Bünger C and Lind M: Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2. Biomaterials. 25:5375–5385. 2004. View Article : Google Scholar : PubMed/NCBI

176 

Denu RA and Hematti P: Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cell Longev. 2016:29890762016. View Article : Google Scholar : PubMed/NCBI

177 

Valle-Prieto A and Conget PA: Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 19:1885–1893. 2010. View Article : Google Scholar : PubMed/NCBI

178 

Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F and Di Primio R: Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: Different mechanisms of protection and cell selection. Free Radic Biol Med. 49:830–838. 2010. View Article : Google Scholar : PubMed/NCBI

179 

Ko E, Lee KY and Hwang DS: Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev. 21:1877–1886. 2012. View Article : Google Scholar : PubMed/NCBI

180 

Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K, Hao C, Meng Y, Yu FH, Liu XQ, et al: Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 4:e8442013. View Article : Google Scholar : PubMed/NCBI

181 

Kanda Y, Hinata T, Kang SW and Watanabe Y: Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 89:250–258. 2011. View Article : Google Scholar : PubMed/NCBI

182 

Zhang Y, Marsboom G, Toth PT and Rehman J: Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One. 8:e770772013. View Article : Google Scholar : PubMed/NCBI

183 

Ren J, Stroncek DF, Zhao Y, Jin P, Castiello L, Civini S, Wang H, Feng J, Tran K, Kuznetsov SA, et al: Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: Molecular changes associated with BMSC senescence. Stem Cell Res (Amst). 11:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI

184 

Sallman DA, Cluzeau T, Basiorka AA and List A: Unraveling the pathogenesis of MDS: The NLRP3 inflammasome and pyroptosis drive the mds phenotype. Front Oncol. 6:1512016. View Article : Google Scholar : PubMed/NCBI

185 

Kajla S, Mondol AS, Nagasawa A, Zhang Y, Kato M, Matsuno K, Yabe-Nishimura C and Kamata T: A crucial role for Nox 1 in redox-dependent regulation of WNT-β-catenin signaling. FASEB J. 26:2049–2059. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Q, Yu J, Chen Q, Yan H, Du H and Luo W: Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 24: 648, 2021.
APA
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., & Luo, W. (2021). Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Molecular Medicine Reports, 24, 648. https://doi.org/10.3892/mmr.2021.12287
MLA
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., Luo, W."Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review)". Molecular Medicine Reports 24.3 (2021): 648.
Chicago
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., Luo, W."Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review)". Molecular Medicine Reports 24, no. 3 (2021): 648. https://doi.org/10.3892/mmr.2021.12287
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Q, Yu J, Chen Q, Yan H, Du H and Luo W: Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 24: 648, 2021.
APA
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., & Luo, W. (2021). Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Molecular Medicine Reports, 24, 648. https://doi.org/10.3892/mmr.2021.12287
MLA
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., Luo, W."Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review)". Molecular Medicine Reports 24.3 (2021): 648.
Chicago
Zhang, Q., Yu, J., Chen, Q., Yan, H., Du, H., Luo, W."Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review)". Molecular Medicine Reports 24, no. 3 (2021): 648. https://doi.org/10.3892/mmr.2021.12287
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team