|
1
|
Bianco P, Riminucci M, Gronthos S and
Robey PG: Bone marrow stromal stem cells: Nature, biology, and
potential applications. Stem Cells. 19:180–192. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell
JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage
cells from human adipose tissue: Implications for cell-based
therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhao H, Feng J, Ho TV, Grimes W, Urata M
and Chai Y: The suture provides a niche for mesenchymal stem cells
of craniofacial bones. Nat Cell Biol. 17:386–396. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhao H, Feng J, Seidel K, Shi S, Klein O,
Sharpe P and Chai Y: Secretion of shh by a neurovascular bundle
niche supports mesenchymal stem cell homeostasis in the adult mouse
incisor. Cell Stem Cell. 14:160–173. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Seo BM, Miura M, Gronthos S, Bartold PM,
Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S:
Investigation of multipotent postnatal stem cells from human
periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Harvanová D, Tóthová T, Sarišský M,
Amrichová J and Rosocha J: Isolation and characterization of
synovial mesenchymal stem cells. Folia Biol (Praha). 57:119–124.
2011.
|
|
7
|
Patel AN, Park E, Kuzman M, Benetti F,
Silva FJ and Allickson JG: Multipotent menstrual blood stromal stem
cells: Isolation, characterization, and differentiation. Cell
Transplant. 17:303–311. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Agha-Hosseini F, Jahani MA, Jahani M,
Mirzaii-Dizgah I and Ali-Moghaddam K: In vitro isolation of stem
cells derived from human dental pulp. Clin Transplant. 24:E23–E28.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Weiss ML, Medicetty S, Bledsoe AR,
Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G and
Troyer D: Human umbilical cord matrix stem cells: Preliminary
characterization and effect of transplantation in a rodent model of
Parkinson's disease. Stem Cells. 24:781–792. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Divya MS, Roshin GE, Divya TS, Rasheed VA,
Santhoshkumar TR, Elizabeth KE, James J and Pillai RM: Umbilical
cord blood-derived mesenchymal stem cells consist of a unique
population of progenitors co-expressing mesenchymal stem cell and
neuronal markers capable of instantaneous neuronal differentiation.
Stem Cell Res Ther. 3:572012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tavakoli S, Ghaderi Jafarbeigloo HR,
Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA,
Hassanzadeh A, Zamani M, Javidi K and Naimi A: Mesenchymal stromal
cells; a new horizon in regenerative medicine. J Cell Physiol.
235:9185–9210. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hoogduijn MJ and Lombardo E: Mesenchymal
stromal cells anno 2019: dawn of the therapeutic Era? concise
review. Stem Cells Transl Med. 8:1126–1134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Najar M, Bouhtit F, Melki R, Afif H, Hamal
A, Fahmi H, Merimi M and Lagneaux L: Mesenchymal stromal cell-based
therapy: New perspectives and challenges. J Clin Med. 8:6262019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen C and Hou J: Mesenchymal stem
cell-based therapy in kidney transplantation. Stem Cell Res Ther.
7:162016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schofield R: The relationship between the
spleen colony-forming cell and the haemopoietic stem cell. Blood
Cells. 4:7–25. 1978.PubMed/NCBI
|
|
17
|
Martino MM, Briquez PS, Güç E, Tortelli F,
Kilarski WW, Metzger S, Rice JJ, Kuhn GA, Müller R, Swartz MA and
Hubbell JA: Growth factors engineered for super-affinity to the
extracellular matrix enhance tissue healing. Science. 343:885–888.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Adam RC and Fuchs E: The yin and yang of
chromatin dynamics in stem cell fate selection. Trends Genet.
32:89–100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim JH, Liu X, Wang J, Chen X, Zhang H,
Kim SH, Cui J, Li R, Zhang W, Kong Y, et al: Wnt signaling in bone
formation and its therapeutic potential for bone diseases. Ther Adv
Musculoskelet Dis. 5:13–31. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ding L and Morrison SJ: Haematopoietic
stem cells and early lymphoid progenitors occupy distinct bone
marrow niches. Nature. 495:231–235. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bruns I, Lucas D, Pinho S, Ahmed J,
Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A
and Frenette PS: Megakaryocytes regulate hematopoietic stem cell
quiescence through CXCL4 secretion. Nat Med. 20:1315–1320. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhao M, Perry JM, Marshall H, Venkatraman
A, Qian P, He XC, Ahamed J and Li L: Megakaryocytes maintain
homeostatic quiescence and promote post-injury regeneration of
hematopoietic stem cells. Nat Med. 20:1321–1326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rompolas P, Deschene ER, Zito G, Gonzalez
DG, Saotome I, Haberman AM and Greco V: Live imaging of stem cell
and progeny behaviour in physiological hair-follicle regeneration.
Nature. 487:496–499. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Spradling A, Drummond-Barbosa D and Kai T:
Stem cells find their niche. Nature. 414:98–104. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bitgood MJ and McMahon AP: Hedgehog and
Bmp genes are coexpressed at many diverse sites of cell-cell
interaction in the mouse embryo. Dev Biol. 172:126–138. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Petrova R and Joyner AL: Roles for
Hedgehog signaling in adult organ homeostasis and repair.
Development. 141:3445–3457. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ohishi K, Varnum-Finney B, Flowers D,
Anasetti C, Myerson D and Bernstein ID: Monocytes express high
amounts of Notch and undergo cytokine specific apoptosis following
interaction with the Notch ligand, Delta-1. Blood. 95:2847–2854.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Verrecchia F and Mauviel A: Transforming
growth factor-β and fibrosis. World J Gastroenterol. 13:3056–3062.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han J, Menicanin D, Gronthos S and Bartold
PM: Stem cells, tissue engineering and periodontal regeneration.
Aust Dent J. 59 (Suppl 1):S117–S130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Martino MM, Maruyama K, Kuhn GA, Satoh T,
Takeuchi O, Müller R and Akira S: Inhibition of IL-1R1/MyD88
signalling promotes mesenchymal stem cell-driven tissue
regeneration. Nat Commun. 7:110512016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kuljanin M, Bell GI, Sherman SE, Lajoie GA
and Hess DA: Proteomic characterisation reveals active
Wnt-signalling by human multipotent stromal cells as a key
regulator of beta cell survival and proliferation. Diabetologia.
60:1987–1998. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Volleman TNE, Schol J, Morita K, Sakai D
and Watanabe M: Wnt3a and wnt5a as potential chondrogenic
stimulators for nucleus pulposus cell induction: A comprehensive
review. Neurospine. 17:19–35. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sato A, Yamamoto H, Sakane H, Koyama H and
Kikuchi A: Wnt5a regulates distinct signalling pathways by binding
to Frizzled2. EMBO J. 29:41–54. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sharma RP and Chopra VL: Effect of the
Wingless (wg1) mutation on wing and haltere development in
Drosophila melanogaster. Dev Biol. 48:461–465. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cadigan KM and Nusse R: WNT signaling: A
common theme in animal development. Genes Dev. 11:3286–3305. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wodarz A and Nusse R: Mechanisms of WNT
signaling in development. Annu Rev Cell Dev Biol. 14:59–88. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rao TP and Kühl M: An updated overview on
Wnt signaling pathways: A prelude for more. Circ Res.
106:1798–1806. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Heethoff M, Helfen L and Norton RA:
Description of Neoliodes dominicus n.sp. (Acari, Oribatida) from
Dominican amber, aided by synchrotron X-ray microtomography. J
Paleontol. 83:153–159. 2009. View Article : Google Scholar
|
|
39
|
Nelson WJ and Nusse R: Convergence of WNT,
beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Komiya Y and Habas R: Wnt signal
transduction pathways. Organogenesis. 4:68–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
He X, Semenov M, Tamai K and Zeng X: LDL
receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling:
Arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Matsui T, Raya A, Kawakami Y,
Callol-Massot C, Capdevila J, Rodríguez-Esteban C and Izpisúa
Belmonte JC: Noncanonical Wnt signaling regulates midline
convergence of organ primordia during zebrafish development. Genes
Dev. 19:164–175. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kaur P, Jin HJ, Lusk JB and Tolwinski NS:
Modeling the role of wnt signaling in human and drosophila stem
cells. Genes (Basel). 9:1012018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nusse R: Wnt signaling in disease and in
development. Cell Res. 15:28–32. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Baron R and Kneissel M: WNT signaling in
bone homeostasis and disease: From human mutations to treatments.
Nat Med. 19:179–192. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Takada I, Kouzmenko AP and Kato S: WNT and
PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev
Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Visweswaran M, Pohl S, Arfuso F, Newsholme
P, Dilley R, Pervaiz S and Dharmarajan A: Multi-lineage
differentiation of mesenchymal stem cells-To WNT, or not WNT. Int J
Biochem Cell Biol. 68:139–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR,
Yoon SO, Choi H, Prockop DJ and Oh JY: Mesenchymal stem/stromal
cells precondition lung monocytes/macrophages to produce tolerance
against allo- and autoimmunity in the eye. Proc Natl Acad Sci USA.
113:158–163. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huelsken J and Behrens J: The WNT
signalling pathway. J Cell Sci. 115:3977–3978. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Komiya Y and Habas R: WNT signal
transduction pathways. Organogenesis. 4:68–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Murphy LL and Hughes CC: Endothelial cells
stimulate T cell NFAT nuclear translocation in the presence of
cyclosporin A: Involvement of the WNT/glycogen synthase kinase-3
beta pathway. J Immunol. 169:3717–3725. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Veltri A, Lang C and Lien WH: Concise
review: WNT signaling pathways in skin development and epidermal
stem cells. Stem Cells. 36:22–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kim KA, Kakitani M, Zhao J, Oshima T, Tang
T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, et al: Mitogenic
influence of human R-spondin1 on the intestinal epithelium.
Science. 309:1256–1259. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fei D, Zhang Y, Wu J, Zhang H, Liu A, He
X, Wang J, Li B, Wang Q and Jin Y: Cav 1.2 regulates osteogenesis
of bone marrow-derived mesenchymal stem cells via canonical Wnt
pathway in age-related osteoporosis. Aging Cell. 18:e129672019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Maruyama T, Jeong J, Sheu TJ and Hsu W:
Stem cells of the suture mesenchyme in craniofacial bone
development, repair and regeneration. Nat Commun. 7:105262016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jing H, Liao L, An Y, Su X, Liu S, Shuai
Y, Zhang X and Jin Y: Suppression of EZH2 Prevents the Shift of
Osteoporotic MSC Fate to adipocyte and enhances bone formation
during osteoporosis. Mol Ther. 24:217–229. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Niehrs C and Acebron SP: Mitotic and
mitogenic WNT signalling. EMBO J. 31:2705–2713. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li L and Clevers H: Coexistence of
quiescent and active adult stem cells in mammals. Science.
327:542–545. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Park JR, Jung JW, Lee YS and Kang KS: The
roles of WNT antagonists Dkk1 and sFRP4 during adipogenesis of
human adipose tissue-derived mesenchymal stem cells. Cell Prolif.
41:859–874. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ehrlund A, Mejhert N, Lorente-Cebrián S,
Aström G, Dahlman I, Laurencikiene J and Rydén M: Characterization
of the WNT inhibitors secreted frizzled-related proteins (SFRPs) in
human adipose tissue. J Clin Endocrinol Metab. 98:E503–E508. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hoffmann MM, Werner C, Böhm M, Laufs U and
Winkler K: Association of secreted frizzled-related protein 4
(SFRP4) with type 2 diabetes in patients with stable coronary
artery disease. Cardiovasc Diabetol. 13:1552014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mahdi T, Hänzelmann S, Salehi A, Muhammed
SJ, Reinbothe TM, Tang Y, Axelsson AS, Zhou Y, Jing X, Almgren P,
et al: Secreted frizzled-related protein 4 reduces insulin
secretion and is overexpressed in type 2 diabetes. Cell Metab.
16:625–633. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Eizirik DL and Cnop M: Mining genes in
type 2 diabetic islets and finding gold. Cell Metab. 16:555–557.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zaragosi LE, Wdziekonski B, Fontaine C,
Villageois P, Peraldi P and Dani C: Effects of GSK3 inhibitors on
in vitro expansion and differentiation of human adipose-derived
stem cells into adipocytes. BMC Cell Biol. 9:112008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gaur T, Rich L, Lengner CJ, Hussain S,
Trevant B, Ayers D, Stein JL, Bodine PV, Komm BS, Stein GS and Lian
JB: Secreted frizzled related protein 1 regulates WNT signaling for
BMP2 induced chondrocyte differentiation. J Cell Physiol.
208:87–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jin EJ, Park JH, Lee SY, Chun JS, Bang OS
and Kang SS: WNT-5a is involved in TGF-beta3-stimulated
chondrogenic differentiation of chick wing bud mesenchymal cells.
Int J Biochem Cell Biol. 38:183–195. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fischer L, Boland G and Tuan RS: WNT
signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J
Cell Biochem. 84:816–831. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Luo S, Shi Q, Zha Z, Yao P, Lin H, Liu N,
Wu H and Sun S: Inactivation of WNT/β-catenin signaling in human
adipose-derived stem cells is necessary for chondrogenic
differentiation and maintenance. Biomed Pharmacother. 67:819–824.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Im GI and Quan Z: The effects of WNT
inhibitors on the chondrogenesis of human mesenchymal stem cells.
Tissue Eng Part A. 16:2405–2413. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Im GI, Lee JM and Kim HJ: WNT inhibitors
enhance chondrogenesis of human mesenchymal stem cells in a
long-term pellet culture. Biotechnol Lett. 33:1061–1068. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu G, Vijayakumar S, Grumolato L,
Arroyave R, Qiao H, Akiri G and Aaronson SA: Canonical WNTs
function as potent regulators of osteogenesis by human mesenchymal
stem cells. J Cell Biol. 185:67–75. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen
B, Stenberg W, Chai Y, Ge WP, Feng JQ and Zhao H: Gli1+
periodontium stem cells are regulated by osteocytes and occlusal
force. Dev Cell. 54:639–654.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gong Y, Slee RB, Fukai N, Rawadi G,
Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, et
al: LDL receptor-related protein 5 (LRP5) affects bone accrual and
eye development. Cell. 107:513–523. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kato M, Patel MS, Levasseur R, Lobov I,
Chang BH, Glass DA II, Hartmann C, Li L, Hwang TH, Brayton CF, et
al: Cbfa1-independent decrease in osteoblast proliferation,
osteopenia, and persistent embryonic eye vascularization in mice
deficient in Lrp5, a WNT coreceptor. J Cell Biol. 157:303–314.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Boyden LM, Mao J, Belsky J, Mitzner L,
Farhi A, Mitnick MA, Wu D, Insogna K and Lifton RP: High bone
density due to a mutation in LDL-receptor-related protein 5. N Engl
J Med. 346:1513–1521. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bennett CN, Longo KA, Wright WS, Suva LJ,
Lane TF, Hankenson KD and MacDougald OA: Regulation of
osteoblastogenesis and bone mass by WNT10b. Proc Natl Acad Sci USA.
102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jiang M, Zheng C, Shou P, Li N, Cao G,
Chen Q, Xu C, Du L, Yang Q, Cao J, et al: SHP1 regulates bone mass
by directing mesenchymal stem cell differentiation. Cell Rep.
16:769–780. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yamada A, Iwata T, Yamato M, Okano T and
Izumi Y: Diverse functions of secreted frizzled-related proteins in
the osteoblastogenesis of human multipotent mesenchymal stromal
cells. Biomaterials. 34:3270–3278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yao W, Cheng Z, Shahnazari M, Dai W,
Johnson ML and Lane NE: Overexpression of secreted frizzled-related
protein 1 inhibits bone formation and attenuates parathyroid
hormone bone anabolic effects. J Bone Miner Res. 25:190–199. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Nakanishi R, Akiyama H, Kimura H, Otsuki
B, Shimizu M, Tsuboyama T and Nakamura T: Osteoblast-targeted
expression of Sfrp4 in mice results in low bone mass. J Bone Miner
Res. 23:271–277. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bodine PV, Billiard J, Moran RA,
Ponce-de-Leon H, McLarney S, Mangine A, Scrimo MJ, Bhat RA,
Stauffer B, Green J, et al: The WNT antagonist secreted
frizzled-related protein-1 controls osteoblast and osteocyte
apoptosis. J Cell Biochem. 96:1212–1230. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gaur T, Wixted JJ, Hussain S, O'Connell
SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS and Lian JB:
Secreted frizzled related protein 1 is a target to improve fracture
healing. J Cell Physiol. 220:174–181. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Trevant B, Gaur T, Hussain S, Symons J,
Komm BS, Bodine PV, Stein GS and Lian JB: Expression of secreted
frizzled related protein 1, a WNT antagonist, in brain, kidney, and
skeleton is dispensable for normal embryonic development. J Cell
Physiol. 217:113–126. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rashedi I, Gómez-Aristizábal A, Wang XH,
Viswanathan S and Keating A: TLR3 or TLR4 activation enhances
mesenchymal stromal cell-mediated treg induction via notch
signaling. Stem Cells. 35:265–275. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Di Meglio P, Perera GK and Nestle FO: The
multitasking organ: Recent insights into skin immune function.
Immunity. 35:857–869. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Gurtner GC, Werner S, Barrandon Y and
Longaker MT: Wound repair and regeneration. Nature. 453:314–321.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Aurora AB and Olson EN: Immune modulation
of stem cells and regeneration. Cell Stem Cell. 15:14–25. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Forbes SJ and Rosenthal N: Preparing the
ground for tissue regeneration: From mechanism to therapy. Nat Med.
20:857–869. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Takemura N, Kawasaki T, Kunisawa J, Sato
S, Lamichhane A, Kobiyama K, Aoshi T, Ito J, Mizuguchi K,
Karuppuchamy T, et al: Blockade of TLR3 protects mice from lethal
radiation-induced gastrointestinal syndrome. Nat Commun.
5:34922014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Burzyn D, Kuswanto W, Kolodin D, Shadrach
JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ and Mathis D: A
special population of regulatory T cells potentiates muscle repair.
Cell. 155:1282–1295. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu Y, Wang L, Kikuiri T, Akiyama K, Chen
C, Xu X, Yang R, Chen W, Wang S and Shi S: Mesenchymal stem
cell-based tissue regeneration is governed by recipient T
lymphocytes via IFN-γ and TNF-α. Nat Med. 17:1594–1601. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li X, Wang S, Zhu R, Li H, Han Q and Zhao
RC: Lung tumor exosomes induce a pro-inflammatory phenotype in
mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol
Oncol. 9:422016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Mejia-Ramirez E and Florian MC:
Understanding intrinsic hematopoietic stem cell aging.
Haematologica. 105:22–37. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Oh J, Lee YD and Wagers AJ: Stem cell
aging: Mechanisms, regulators and therapeutic opportunities. Nat
Med. 20:870–880. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Liu L and Rando TA: Manifestations and
mechanisms of stem cell aging. J Cell Biol. 193:257–266. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Keyes BE and Fuchs E: Stem cells: Aging
and transcriptional fingerprints. J Cell Biol. 217:79–92. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Janeway CA Jr: Approaching the asymptote?
Evolution and revolution in immunology. Cold Spring Harb Symp Quant
Biol. 54:1–13. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kubelkova K and Macela A: Innate immune
recognition: An issue more complex than expected. Front Cell Infect
Microbiol. 9:2412019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Unterholzner L, Keating SE, Baran M, Horan
KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, et al:
IFI16 is an innate immune sensor for intracellular DNA. Nat
Immunol. 11:997–1004. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Schroder K and Tschopp J: The
inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Martinon F, Mayor A and Tschopp J: The
inflammasomes: Guardians of the body. Annu Rev Immunol. 27:229–265.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Davis BK, Wen H and Ting JP: The
inflammasome NLRs in immunity, inflammation, and associated
diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Mahla RS, Reddy MC, Prasad DV and Kumar H:
Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and
vaccine biology. Front Immunol. 4:2482013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fortier ME, Kent S, Ashdown H, Poole S,
Boksa P and Luheshi GN: The viral mimic, polyinosinic:polycytidylic
acid, induces fever in rats via an interleukin-1-dependent
mechanism. Am J Physiol Regul Integr Comp Physiol. 287:R759–R766.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sultan M, Coyle KM, Vidovic D, Thomas ML,
Gujar S and Marcato P: Hide-and-seek: The interplay between cancer
stem cells and the immune system. Carcinogenesis. 38:107–118. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Feng G, Zheng K, Cao T, Zhang J, Lian M,
Huang D, Wei C, Gu Z and Feng X: Repeated stimulation by LPS
promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21
signaling. Cytotechnology. 70:1023–1035. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kain M: How NF-kappaB is activated: The
role of the IkappaB kinase (IKK) complex. Oncogene. 18:6867–6874.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Blasius AL and Beutler B: Intracellular
toll-like receptors. Immunity. 32:305–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lester SN and Li K: Toll-like receptors in
antiviral innate immunity. J Mol Biol. 426:1246–1264. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Piccinini AM and Midwood KS: DAMPening
inflammation by modulating TLR signalling. Mediators Inflamm.
2010:6723952010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen GY and Nuñez G: Sterile inflammation:
Sensing and reacting to damage. Nat Rev Immunol. 10:826–837. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Arslan F, Smeets MB, Riem Vis PW, Karper
JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA,
Pasterkamp G and de Kleijn DP: Lack of fibronectin-EDA promotes
survival and prevents adverse remodeling and heart function
deterioration after myocardial infarction. Circ Res. 108:582–592.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Oyama J, Blais C Jr, Liu X, Pu M, Kobzik
L, Kelly RA and Bourcier T: Reduced myocardial ischemia-reperfusion
injury in toll-like receptor 4-deficient mice. Circulation.
109:784–789. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
DelaRosa O and Lombardo E: Modulation of
adult mesenchymal stem cells activity by toll-like receptors:
Implications on therapeutic potential. Mediators Inflamm.
2010:8656012010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Pevsner-Fischer M, Morad V, Cohen-Sfady M,
Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR and Zipori D:
Toll-like receptors and their ligands control mesenchymal stem cell
functions. Blood. 109:1422–1432. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Poulain-Godefroy O, Le Bacquer O, Plancq
P, Lecoeur C, Pattou F, Frühbeck G and Froguel P: Inflammatory role
of Toll-like receptors in human and murine adipose tissue.
Mediators Inflamm. 2010:8234862010. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
S Purohit J, Hu P, Burke SJ, Collier JJ,
Chen J and Zhao L: The effects of NOD activation on adipocyte
differentiation. Obesity (Silver Spring). 21:737–747. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chang LY, Lai YL, Yu TH, Chen YT and Hung
SL: Effects of areca nut extract on lipopolysaccharides-enhanced
adhesion and migration of human mononuclear leukocytes. J
Periodontol. 85:859–867. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Tang Y, Zhou X, Gao B, Xu X, Sun J, Cheng
L, Zhou X and Zheng L: Modulation of WNT/β-catenin signaling
attenuates periapical bone lesions. J Dent Res. 93:175–182. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang J, Dai J, Liu B, Gu S, Cheng L and
Liang J: Porphyromonas gingivalis lipopolysaccharide activates
canonical WNT/β-catenin and p38 MAPK signalling in stem cells from
the apical papilla. Inflammation. 36:1393–1402. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Li D, Fu L, Zhang Y, Yu Q, Ma F, Wang Z,
Luo Z, Zhou Z, Cooper PR and He W: The effects of LPS on adhesion
and migration of human dental pulp stem cells in vitro. J Dent.
42:1327–1334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
He W, Wang Z, Zhou Z, Zhang Y, Zhu Q, Wei
K, Lin Y, Cooper PR, Smith AJ and Yu Q: Lipopolysaccharide enhances
WNT5a expression through toll-like receptor 4, myeloid
differentiating factor 88, phosphatidylinositol 3-OH kinase/Akt and
nuclear factor kappa B pathways in human dental pulp stem cells. J
Endod. 40:69–75. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
He W, Qu T, Yu Q, Wang Z, Wang H, Zhang J
and Smith AJ: Lipopolysaccharide enhances decorin expression
through the Toll-like receptor 4, myeloid differentiating factor
88, nuclear factor-kappa B, and mitogen-activated protein kinase
pathways in odontoblast cells. J Endod. 38:464–469. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Xing Q, Ye Q, Fan M, Zhou Y, Xu Q and
Sandham A: Porphyromonas gingivalis lipopolysaccharide inhibits the
osteoblastic differentiation of preosteoblasts by activating Notch1
signaling. J Cell Physiol. 225:106–114. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wlodarska M, Kostic AD and Xavier RJ: An
integrative view of microbiome-host interactions in inflammatory
bowel diseases. Cell Host Microbe. 17:577–591. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kedia S, Rampal R, Paul J and Ahuja V: Gut
microbiome diversity in acute infective and chronic inflammatory
gastrointestinal diseases in North India. J Gastroenterol.
51:660–671. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sodhi CP, Shi XH, Richardson WM, Grant ZS,
Shapiro RA, Prindle T Jr, Branca M, Russo A, Gribar SC, Ma C and
Hackam DJ: Toll-like receptor-4 inhibits enterocyte proliferation
via impaired beta-catenin signaling in necrotizing enterocolitis.
Gastroenterology. 138:185–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Liu X, Lu R, Xia Y, Wu S and Sun J:
Eukaryotic signaling pathways targeted by Salmonella effector
protein AvrA in intestinal infection in vivo. BMC Microbiol.
10:3262010. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Suh HN, Kim MJ, Jung YS, Lien EM, Jun S
and Park JI: Quiescence Exit of Tert+ stem cells by WNT/β-catenin
is indispensable for intestinal regeneration. Cell Rep.
21:2571–2584. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Marchetti B and Pluchino S: WNT your brain
be inflamed? Yes, it WNT! Trends Mol Med. 19:144–156. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Jin J, Yu Q, Han C, Hu X, Xu S, Wang Q,
Wang J, Li N and Cao X: LRRFIP2 negatively regulates NLRP3
inflammasome activation in macrophages by promoting
Flightless-I-mediated caspase-1 inhibition. Nat Commun. 4:20752013.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zolezzi JM and Inestrosa NC: WNT/TLR
dialog in neuroinflammation, relevance in Alzheimer's disease.
Front Immunol. 8:1872017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Kanneganti TD, Lamkanfi M and Núñez G:
Intracellular NOD-like receptors in host defense and disease.
Immunity. 27:549–559. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Inohara C, Chamaillard, McDonald C and
Nuñez G: NOD-LRR proteins: Role in host-microbial interactions and
inflammatory disease. Annu Rev Biochem. 74:355–383. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Franchi L, Warner N, Viani K and Nuñez G:
Function of Nod-like receptors in microbial recognition and host
defense. Immunol Rev. 227:106–128. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Shaw MH, Reimer T, Kim YG and Nuñez G:
NOD-like receptors (NLRs): Bona fide intracellular microbial
sensors. Curr Opin Immunol. 20:377–382. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Jorgensen I and Miao EA: Pyroptotic cell
death defends against intracellular pathogens. Immunol Rev.
265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Franchi L, Muñoz-Planillo R and Núñez G:
Sensing and reacting to microbes through the inflammasomes. Nat
Immunol. 13:325–332. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the nomenclature committee on cell death 2018. Cell Death Differ.
25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Naji A, Muzembo BA, Yagyu K, Baba N,
Deschaseaux F, Sensebé L and Suganuma N: Endocytosis of
indium-tin-oxide nanoparticles by macrophages provokes pyroptosis
requiring NLRP3-ASC-Caspase1 axis that can be prevented by
mesenchymal stem cells. Sci Rep. 6:261622016. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Kim HS, Shin TH, Yang SR, Seo MS, Kim DJ,
Kang SK, Park JH and Kang KS: Implication of NOD1 and NOD2 for the
differentiation of multipotent mesenchymal stem cells derived from
human umbilical cord blood. PLoS One. 5:e153692010. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Wang L, Chen K, Wan X, Wang F, Guo Z and
Mo Z: NLRP3 inflammasome activation in mesenchymal stem cells
inhibits osteogenic differentiation and enhances adipogenic
differentiation. Biochem Biophys Res Commun. 484:871–877. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Wu XM, Chen WQ, Hu YW, Cao L, Nie P and
Chang MX: RIP2 Is a critical regulator for NLRs signaling and MHC
antigen presentation but not for MAPK and PI3K/Akt pathways. Front
Immunol. 9:7262018. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Bist P, Dikshit N, Koh TH, Mortellaro A,
Tan TT and Sukumaran B: The Nod1, Nod2, and Rip2 axis contributes
to host immune defense against intracellular Acinetobacter
baumannii infection. Infect Immun. 82:1112–1122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Souza JA, Medeiros MC, Rocha FR, de Aquino
SG, Ávila-Campos MJ, Spolidorio LC, Zamboni DS, Graves DT and Rossa
C: Role of NOD2 and RIP2 in host-microbe interactions with
Gram-negative bacteria: Insights from the periodontal disease
model. Innate Immun. 22:598–611. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Singh V, Holla S, Ramachandra SG and
Balaji KN: WNT-inflammasome signaling mediates NOD2-induced
development of acute arthritis in mice. J Immunol. 194:3351–3360.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Prakhar P, Holla S, Ghorpade DS, Gilleron
M, Puzo G, Udupa V and Balaji KN: Ac2PIM-responsive miR-150 and
miR-143 target receptor-interacting protein kinase 2 and
transforming growth factor beta-activated kinase 1 to suppress
NOD2-induced immunomodulators. J Biol Chem. 290:26576–26586. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
151
|
McGonagle D, Savic S and McDermott MF: The
NLR network and the immunological disease continuum of adaptive and
innate immune-mediated inflammation against self. Semin
Immunopathol. 29:303–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Zhou L, Dörfer CE, Chen L and Fawzy
El-Sayed KM: Porphyromonas gingivalis lipopolysaccharides affect
gingival stem/progenitor cells attributes through NF-κB, but not
WNT/β-catenin, pathway. J Clin Periodontol. 44:1112–1122. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Chen S, Shen D, Popp NA, Ogilvy AJ, Tuo J,
Abu-Asab M, Xie T and Chan CC: Responses of multipotent retinal
stem cells to IL-1β, IL-18, or IL-17. J Ophthalmol.
2015:3693122015. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Huang J and Chen L: IL-1β inhibits
osteogenesis of human bone marrow-derived mesenchymal stem cells by
activating FoxD3/microRNA-496 to repress WNT signaling. Genesis.
552017.doi: 10.1002/dvg.23040.
|
|
155
|
Gao Y, Grassi F, Ryan MR, Terauchi M, Page
K, Yang X, Weitzmann MN and Pacifici R: IFN-gamma stimulates
osteoclast formation and bone loss in vivo via antigen-driven T
cell activation. J Clin Invest. 117:122–132. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Suzawa M, Takada I, Yanagisawa J, Ohtake
F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y,
et al: Cytokines suppress adipogenesis and PPAR-gamma function
through the TAK1/TAB1/NIK cascade. Nat Cell Biol. 5:224–230. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Gaspersic R, Stiblar-Martincic D, Osredkar
J and Skaleric U: In vivo administration of recombinant TNF-alpha
promotes bone resorption in mice. J Periodontal Res. 38:446–448.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Wang L, Zhao Y and Shi S: Interplay
between mesenchymal stem cells and lymphocytes: Implications for
immunotherapy and tissue regeneration. J Dent Res. 91:1003–1010.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Yang SR, Park JR and Kang KS: Reactive
oxygen species in mesenchymal stem cell aging: Implication to lung
diseases. Oxid Med Cell Longev. 2015:4862632015. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Kawai T and Akira S: Toll-like receptors
and their crosstalk with other innate receptors in infection and
immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Atashi F, Modarressi A and Pepper MS: The
role of reactive oxygen species in mesenchymal stem cell adipogenic
and osteogenic differentiation: A review. Stem Cells Dev.
24:1150–1163. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Brown GC and Borutaite V: There is no
evidence that mitochondria are the main source of reactive oxygen
species in mammalian cells. Mitochondrion. 12:1–4. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
McNally JS, Davis ME, Giddens DP, Saha A,
Hwang J, Dikalov S, Jo H and Harrison DG: Role of xanthine
oxidoreductase and NAD (P)H oxidase in endothelial superoxide
production in response to oscillatory shear stress. Am J Physiol
Heart Circ Physiol. 285:H2290–H2297. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
O'Donnell VB and Azzi A: High rates of
extracellular superoxide generation by cultured human fibroblasts:
Involvement of a lipid-metabolizing enzyme. Biochem J. 318:805–812.
1996. View Article : Google Scholar
|
|
165
|
Starkov AA: The role of mitochondria in
reactive oxygen species metabolism and signaling. Ann N Y Acad Sci.
1147:37–52. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Gross E, Sevier CS, Heldman N, Vitu E,
Bentzur M, Kaiser CA, Thorpe C and Fass D: Generating disulfides
enzymatically: Reaction products and electron acceptors of the
endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA.
103:299–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Roy P, Roy SK, Mitra A and Kulkarni AP:
Superoxide generation by lipoxygenase in the presence of NADH and
NADPH. Biochim Biophys Acta. 1214:171–179. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Schröder K, Wandzioch K, Helmcke I and
Brandes RP: Nox4 acts as a switch between differentiation and
proliferation in preadipocytes. Arterioscler Thromb Vasc Biol.
29:239–245. 2009. View Article : Google Scholar
|
|
169
|
Pittenger MF and Martin BJ: Mesenchymal
stem cells and their potential as cardiac therapeutics. Circ Res.
95:9–20. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ,
Li H and Shyu WC: Nonsenescent Hsp27-upregulated MSCs implantation
promotes neuroplasticity in stroke model. Cell Transplant.
19:1261–1279. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Kobayashi CI and Suda T: Regulation of
reactive oxygen species in stem cells and cancer stem cells. J Cell
Physiol. 227:421–430. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
172
|
D'Autréaux B and Toledano MB: ROS as
signalling molecules: Mechanisms that generate specificity in ROS
homeostasis. Nat Rev Mol Cell Biol. 8:813–824. 2007. View Article : Google Scholar
|
|
173
|
Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno
S and Yoshimura K: The fate of adipocytes after nonvascularized fat
grafting: Evidence of early death and replacement of adipocytes.
Plast Reconstr Surg. 129:1081–1092. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Rodrigues M, Turner O, Stolz D, Griffith
LG and Wells A: Production of reactive oxygen species by
multipotent stromal cells/mesenchymal stem cells upon exposure to
fas ligand. Cell Transplant. 21:2171–2187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Zou X, Li H, Chen L, Baatrup A, Bünger C
and Lind M: Stimulation of porcine bone marrow stromal cells by
hyaluronan, dexamethasone and rhBMP-2. Biomaterials. 25:5375–5385.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Denu RA and Hematti P: Effects of
oxidative stress on mesenchymal stem cell biology. Oxid Med Cell
Longev. 2016:29890762016. View Article : Google Scholar : PubMed/NCBI
|
|
177
|
Valle-Prieto A and Conget PA: Human
mesenchymal stem cells efficiently manage oxidative stress. Stem
Cells Dev. 19:1885–1893. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
178
|
Orciani M, Gorbi S, Benedetti M, Di
Benedetto G, Mattioli-Belmonte M, Regoli F and Di Primio R:
Oxidative stress defense in human-skin-derived mesenchymal stem
cells versus human keratinocytes: Different mechanisms of
protection and cell selection. Free Radic Biol Med. 49:830–838.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
179
|
Ko E, Lee KY and Hwang DS: Human umbilical
cord blood-derived mesenchymal stem cells undergo cellular
senescence in response to oxidative stress. Stem Cells Dev.
21:1877–1886. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
180
|
Hou J, Han ZP, Jing YY, Yang X, Zhang SS,
Sun K, Hao C, Meng Y, Yu FH, Liu XQ, et al: Autophagy prevents
irradiation injury and maintains stemness through decreasing ROS
generation in mesenchymal stem cells. Cell Death Dis. 4:e8442013.
View Article : Google Scholar : PubMed/NCBI
|
|
181
|
Kanda Y, Hinata T, Kang SW and Watanabe Y:
Reactive oxygen species mediate adipocyte differentiation in
mesenchymal stem cells. Life Sci. 89:250–258. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
182
|
Zhang Y, Marsboom G, Toth PT and Rehman J:
Mitochondrial respiration regulates adipogenic differentiation of
human mesenchymal stem cells. PLoS One. 8:e770772013. View Article : Google Scholar : PubMed/NCBI
|
|
183
|
Ren J, Stroncek DF, Zhao Y, Jin P,
Castiello L, Civini S, Wang H, Feng J, Tran K, Kuznetsov SA, et al:
Intra-subject variability in human bone marrow stromal cell (BMSC)
replicative senescence: Molecular changes associated with BMSC
senescence. Stem Cell Res (Amst). 11:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
184
|
Sallman DA, Cluzeau T, Basiorka AA and
List A: Unraveling the pathogenesis of MDS: The NLRP3 inflammasome
and pyroptosis drive the mds phenotype. Front Oncol. 6:1512016.
View Article : Google Scholar : PubMed/NCBI
|
|
185
|
Kajla S, Mondol AS, Nagasawa A, Zhang Y,
Kato M, Matsuno K, Yabe-Nishimura C and Kamata T: A crucial role
for Nox 1 in redox-dependent regulation of WNT-β-catenin signaling.
FASEB J. 26:2049–2059. 2012. View Article : Google Scholar : PubMed/NCBI
|