Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)

  • Authors:
    • Xingyue Yang
    • Shun Yao
    • Jiaxing An
    • Hai Jin
    • Hui Wang
    • Biguang Tuo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China, Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
  • Article Number: 745
    |
    Published online on: August 26, 2021
       https://doi.org/10.3892/mmr.2021.12385
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Nephrolithiasis is the most common type of urinary system disease in developed countries, with high morbidity and recurrence rates. Nephrolithiasis is a serious health problem, which eventually leads to the loss of renal function and is closely related to hypertension. Modern medicine has adopted minimally invasive surgery for the management of kidney stones, but this does not resolve the root of the problem. Thus, nephrolithiasis remains a major public health issue, the causes of which remain largely unknown. Researchers have attempted to determine the causes and therapeutic targets of kidney stones and calculus‑related hypertension. Solute carrier family 26 member 6 (SLC26A6), a member of the well‑conserved solute carrier family 26, is highly expressed in the kidney and intestines, and it primarily mediates the transport of various anions, including OXa2‑, HCO3‑, Cl‑ and SO42‑, amongst others. Na+‑dependent dicarboxylate‑1 (NADC‑1) is the Na+‑carboxylate co‑transporter of the SLC13 gene family, which primarily mediates the co‑transport of Na+ and tricarboxylic acid cycle intermediates, such as citrate and succinate, amongst others. Studies have shown that Ca2+ oxalate kidney stones are the most prevalent type of kidney stones. Hyperoxaluria and hypocitraturia notably increase the risk of forming Ca2+ oxalate kidney stones, and the increase in succinate in the juxtaglomerular device can stimulate renin secretion and lead to hypertension. Whilst it is known that it is important to maintain the dynamic equilibrium of oxalate and citrate in the kidney, the synergistic molecular mechanisms underlying the transport of oxalate and citrate across kidney epithelial cells have undergone limited investigations. The present review examines the results from early reports studying oxalate transport and citrate transport in the kidney, describing the synergistic molecular mechanisms of SLC26A6 and NADC‑1 in the process of nephrolithiasis formation. A growing body of research has shown that nephrolithiasis is intricately associated with hypertension. Additionally, the recent investigations into the mediation of succinate via regulation of the synergistic molecular mechanism between the SLC26A6 and NADC‑1 transporters is summarized, revealing their functional role and their close association with the inositol triphosphate receptor‑binding protein to regulate blood pressure.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC Jr, Krambeck AE, Philips CL and Coe FL: Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 78:310–317. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Obligado SH and Goldfarb DS: The association of nephrolithiasis with hypertension and obesity: A review. Am J Hypertens. 21:257–264. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Borghi L, Meschi T, Guerra A, Briganti A, Schianchi T, Allegri F and Novarini A: Essential arterial hypertension and stone disease. Kidney Int. 55:2397–2406. 1999. View Article : Google Scholar : PubMed/NCBI

4 

Pak CY: Kidney stones. Lancet. 351:1797–1801. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Lohi H, Kujala M, Kerkelä E, Saarialho-Kere U, Kestilä M and Kere J: Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics. 70:102–112. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Kleta R: A key stone cop regulates oxalate homeostasis. Nat Genet. 38:403–404. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL and Grynpas M: Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest. 111:607–616. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Moe OW and Preisig PA: Dual role of citrate in mammalian urine. Curr Opin Nephrol Hypertens. 15:419–424. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Noori N, Honarkar E, Goldfarb DS, Kalantar-Zadeh K, Taheri M, Shakhssalim N, Parvin M and Basiri A: Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: A randomized controlled trial comparing DASH (Dietary Approaches to Stop Hypertension)-style and low-oxalate diets. Am J Kidney Dis. 63:456–463. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Khan A: Prevalence, pathophysiological mechanisms and factors affecting urolithiasis. Int Urol Nephrol. 50:799–806. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Shimshilashvili L, Aharon S, Moe OW and Ohana E: Novel human polymorphisms define a key role for the SLC26A6-STAS domain in protection from ca2+-oxalate lithogenesis. Front Pharmacol. 11:4052020. View Article : Google Scholar : PubMed/NCBI

12 

Hamm LL: Renal handling of citrate. Kidney Int. 38:728–735. 1990. View Article : Google Scholar : PubMed/NCBI

13 

Pajor AM: Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 270:5779–5785. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Ohana E, Shcheynikov N, Moe OW and Muallem S: SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol. 24:1617–1626. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Prakash S, Cooper G, Singhi S and Saier MH Jr: The ion transporter superfamily. Biochim Biophys Acta. 1618:79–92. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Aguiar CJ, Andrade VL, Gomes ER, Alves MN, Ladeira MS, Pinheiro AC, Gomes DA, Almeida AP, Goes AM, Resende RR, et al: Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 47:37–46. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Vargas SL, Toma I, Kang JJ, Meer EJ and Peti-Peterdi J: Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 20:1002–1011. 2009. View Article : Google Scholar : PubMed/NCBI

18 

He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H and Ling L: Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 429:188–193. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Baumbach L, Leyssac PP and Skinner SL: Studies on renin release from isolated superfused glomeruli: Effects of temperature, urea, ouabain and ethacrynic acid. J Physiol. 258:243–256. 1976. View Article : Google Scholar : PubMed/NCBI

20 

Alper SL and Sharma AK: The SLC26 gene family of anion transporters and channels. Mol Aspects Med. 34:494–515. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Dorwart MR, Shcheynikov N, Yang D and Muallem S: The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda). 23:104–114. 2008.PubMed/NCBI

22 

Price GD and Howitt SM: The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem Cell Biol. 89:178–188. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Wang J, Wang W, Wang H and Tuo B: Physiological and pathological functions of SLC26A6. Front Med (Lausanne). 7:6182562021. View Article : Google Scholar : PubMed/NCBI

24 

Bai X, Chen X, Feng Z, Hou K, Zhang P, Fu B and Shi S: Identification of basolateral membrane targeting signal of human sodium-dependent dicarboxylate transporter 3. J Cell Physiol. 206:821–830. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Waldegger S, Moschen I, Ramirez A, Smith RJ, Ayadi H, Lang F and Kubisch C: Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics. 72:43–50. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J and Dutzler R: Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 22:803–808. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Malakooti J, Saksena S, Gill RK and Dudeja PK: Transcriptional regulation of the intestinal luminal Na+ and Cl− transporters. Biochem J. 435:313–325. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U and Kere J: Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol. 284:C769–C779. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Poole DF and Tyler JE: Oxalic acid-produced surface phenomena on human enamel examined by scanning electron microscopy. Arch Oral Biol. 15:1157–1162. 1970. View Article : Google Scholar : PubMed/NCBI

31 

Sirish P, Ledford HA, Timofeyev V, Thai PN, Ren L, Kim HJ, Park S, Lee JH, Dai G, Moshref M, et al: Action potential shortening and impairment of cardiac function by ablation of Slc26a6. Circ Arrhythm Electrophysiol. 10:e0052672017. View Article : Google Scholar : PubMed/NCBI

32 

Wang Z, Petrovic S, Mann E and Soleimani M: Identification of an apical Cl(−)/HCO3(−) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol. 282:G573–G579. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Freel RW, Hatch M, Green M and Soleimani M: Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol. 290:G719–G728. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci. 74:1–18. 2012.PubMed/NCBI

35 

Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS and Soleimani M: Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol. 288:C957–C965. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Gholami K, Muniandy S and Salleh N: In-vivo functional study on the involvement of CFTR, SLC26A6, NHE-1 and CA isoenzymes II and XII in uterine fluid pH, volume and electrolyte regulation in rats under different sex-steroid influence. Int J Med Sci. 10:1121–1134. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G and Aronson PS: Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci USA. 98:9425–9430. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Chernova MN, Jiang L, Friedman DJ, Darman RB, Lohi H, Kere J, Vandorpe DH and Alper SL: Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: Differences in anion selectivity, regulation, and electrogenicity. J Biol Chem. 280:8564–8580. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Clark JS, Vandorpe DH, Chernova MN, Heneghan JF, Stewart AK and Alper SL: Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J Physiol. 586:1291–1306. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Jiang Z, Grichtchenko II, Boron WF and Aronson PS: Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem. 277:33963–33967. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Xie Q, Welch R, Mercado A, Romero MF and Mount DB: Molecular characterization of the murine Slc26a6 anion exchanger: Functional comparison with Slc26a1. Am J Physiol Renal Physiol. 283:F826–F838. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Aronson PS: Ion exchangers mediating Na+, HCO3− and Cl− transport in the renal proximal tubule. J Nephrol. 19 (Suppl 9):S3–S10. 2006.PubMed/NCBI

43 

Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ and Aronson PS: Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet. 38:474–478. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Markovich D and Murer H: The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch. 447:594–602. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Markovich D, Forgo J, Stange G, Biber J and Murer H: Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci USA. 90:8073–8077. 1993. View Article : Google Scholar : PubMed/NCBI

46 

Bai L and Pajor AM: Expression cloning of NaDC-2, an intestinal Na(+)- or Li(+)-dependent dicarboxylate transporter. Am J Physiol. 273((2 Pt 1)): G267–G274. 1997.PubMed/NCBI

47 

Steffgen J, Burckhardt BC, Langenberg C, Kühne L, Müller GA, Burckhardt G and Wolff NA: Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem. 274:20191–20196. 1999. View Article : Google Scholar : PubMed/NCBI

48 

Pajor AM: Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol. 270((4 Pt 2)): F642–F648. 1996.PubMed/NCBI

49 

Pajor AM and Sun NN: Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Physiol. 279:F482–F490. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Khatri IA, Kovacs SV and Forstner JF: Cloning of the cDNA for a rat intestinal Na+/dicarboxylate cotransporter reveals partial sequence homology with a rat intestinal mucin. Biochim Biophys Acta. 1309:58–62. 1996. View Article : Google Scholar : PubMed/NCBI

51 

Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T and Endou H: Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol. 275:F298–F305. 1998.PubMed/NCBI

52 

Chen XZ, Shayakul C, Berger UV, Tian W and Hediger MA: Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem. 273:20972–20981. 1998. View Article : Google Scholar : PubMed/NCBI

53 

Mann SS, Hart T, Pettenati MJ, von Kap-herr C and Holmes RP: Assignment of the sodium-dependent dicarboxylate transporter gene (SLC13A2 alias NaDC-1) to human chromosome region 17p11.1->q11.1 by radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet. 84:89–90. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Pajor AM: Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol. 175:1–8. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Pajor AM: Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol. 61:663–682. 1999. View Article : Google Scholar : PubMed/NCBI

56 

Hamm LL: Renal handling of citrate. Kidney Int. 38:728–735. 1990. View Article : Google Scholar : PubMed/NCBI

57 

Aronson PS: Essential roles of CFEX-mediated Cl(−)-oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int. 70:1207–1213. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Brennan TS, Klahr S and Hamm LL: Citrate transport in rabbit nephron. Am J Physiol. 251((4 Pt 2)): F683–F689. 1986.PubMed/NCBI

59 

Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ and Muallem S: Coupling modes and stoichiometry of Cl-/HCO3− exchange by slc26a3 and slc26a6. J Gen Physiol. 127:511–524. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H, Shimshilashvili L, Aharon S, Aizenshtein E, Shlomi T, Noguchi A, Springer D, et al: Systemic succinate homeostasis and local succinate signaling affect blood pressure and modify risks for calcium oxalate lithogenesis. J Am Soc Nephrol. 30:381–392. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Mancusso R, Gregorio GG, Liu Q and Wang DN: Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature. 491:622–626. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J, Deen PM and Milligan G: Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 76:1258–1267. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Sundstrom L, Greasley PJ, Engberg S, Wallander M and Ryberg E: Succinate receptor GPR91, a Gaα(i) coupled receptor that increases intracellular calcium concentrations through PLCβ. FEBS Lett. 587:2399–2404. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Ando H, Mizutani A, Matsu-ura T and Mikoshiba K: IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem. 278:10602–10612. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Park S, Shcheynikov N, Hong JH, Zheng C, Suh SH, Kawaai K, Ando H, Mizutani A, Abe T, Kiyonari H, et al: Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice. Gastroenterology. 145:232–241. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Lungkaphin A, Lewchalermwongse B and Chatsudthipong V: Relative contribution of OAT1 and OAT3 transport activities in isolated perfused rabbit renal proximal tubules. Biochim Biophys Acta. 1758:789–795. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Okamoto N, Aruga S, Tomita K, Takeuchi T and Kitamura T: Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol. 14:60–66. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Monico CG, Weinstein A, Jiang Z, Jiang Z, Rohlinger AL, Cogal AG, Bjornson BB, Olson JB, Bergstralh EJ, Milliner DS and Aronson PS: Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis. 52:1096–1103. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Jiang H, Pokhrel G, Chen Y, Wang T, Yin C, Liu J, Wang S and Liu Z: High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ. 6:e51922018. View Article : Google Scholar : PubMed/NCBI

70 

Khan SR, Khan A and Byer KJ: Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplant. 26:1778–1785. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Jiang H, Gao X, Gong J, Yang Q, Lan R, Wang T, Liu J, Yin C, Wang S and Liu Z: Downregulated expression of solute carrier family 26 member 6 in NRK-52E cells attenuates oxalate-induced intracellular oxidative stress. Oxid Med Cell Longev. 2018:17246482018. View Article : Google Scholar : PubMed/NCBI

72 

Lu X, Sun D, Xu B, Pan J, Wei Y, Mao X, Yu D, Liu H and Gao B: In silico screening and molecular dynamic study of nonsynonymous single nucleotide polymorphisms associated with kidney stones in the SLC26A6 gene. J Urol. 196:118–123. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Corbetta S, Eller-Vainicher C, Frigerio M, Valaperta R, Costa E, Vicentini L, Baccarelli A, Beck-Peccoz P and Spada A: Analysis of the 206M polymorphic variant of the SLC26A6 gene encoding a Cl− oxalate transporter in patients with primary hyperparathyroidism. Eur J Endocrinol. 160:283–288. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Udomsilp P, Saepoo S, Ittiwut R, Shotelersuk V, Dissayabutra T, Boonla C and Tosukhowong P: rs11567842 SNP in SLC13A2 gene associates with hypocitraturia in Thai patients with nephrolithiasis. Genes Genomics. 40:965–972. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Bosch B and De Boeck K: Searching for a cure for cystic fibrosis. A 25-year quest in a nutshell. Eur J Pediatr. 175:1–8. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Bissig M, Hagenbuch B, Stieger B, Koller T and Meier PJ: Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem. 269:3017–21. 1994. View Article : Google Scholar : PubMed/NCBI

77 

Regeer RR and Markovich D: A dileucine motif targets the sulfate anion transporter sat-1 to the basolateral membrane in renal cell lines. Am. J. Physiol. 287((2)): C365–C372. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, et al: The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 78((6)): 1073–1087. 1994. View Article : Google Scholar : PubMed/NCBI

79 

Heneghan JF, Akhavein A, Salas MJ, Shmukler BE, Karniski LP, Vandorpe DH and Alper SL: Regulated transport of sulfate and oxalate by SLC26A2/DTDST. Am J Physiol Cell Physiol. 298((6)): C1363-75. doi: 10.1152/ajpcell.00004.2010. Epub 2010 Mar 10. Erratum in: Am J Physiol Cell Physiol. 2011 Feb; 300(2): C383. PMID: 20219950; PMCID: PMC2889644. PubMed/NCBI

80 

Haila S, Hästbacka J, Böhling T, Karjalainen-Lindsberg ML, Kere J and Saarialho-Kere U: SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J Histochem. Cytochem. 49((8)): 973–982. 2001. View Article : Google Scholar : PubMed/NCBI

81 

Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A and Kere J: Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet. 14:316–319. 1996. View Article : Google Scholar : PubMed/NCBI

82 

Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK and Alper SL: Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol. 549((Pt 1)): 3–19. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O and Glaser B: Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet. 12:424–426. 1996. View Article : Google Scholar : PubMed/NCBI

84 

Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM and Muallem S: The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3− exchanger: Role of Slc26a4 and Slc26a6 in I- and HCO3− secretion and in regulation of CFTR in the parotid duct. J Physiol. 586:3813–3824. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, Du LL, Welch KO, Petit C, Smith RJ, et al: Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet. 12:1155–1162. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Alvarez BV, Kieller DM, Quon AL, Markovich D and Casey JR: Slc26a6: A cardiac chloride-hydroxyl exchanger and predominant chloride-bicarbonate exchanger of the mouse heart. J Physiol. 561((Pt 3)): 721–734. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Petrovic S, Amlal H, Sun X, Karet F, Barone S and Soleimani M: Vasopressin induces expression of the Cl-/HCO3− exchanger SLC26A7 in kidney medullary collecting ducts of Brattleboro rats. Am J Physiol Renal Physiol. 290:F1194–F1201. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Dudas PL, Mentone S, Greineder CF, Biemesderfer D and Aronson PS: Immunolocalization of anion transporter Slc26a7 in mouse kidney. Am J Physiol Renal Physiol. 290:F937–F945. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Toure A, Morin L, Pineau C, Becq F, Dorseuil O and Gacon G: Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J Biol Chem. 276:20309–20315. 2001. View Article : Google Scholar : PubMed/NCBI

90 

Lohi H, Kujala M, Makela S, Lehtonen E, Kestila M, Saarialho-Kere U, Markovich D and Kere J: Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J Biol Chem. 277:14246–14254. 2002. View Article : Google Scholar : PubMed/NCBI

91 

Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F and Ehrenfeld J: Characterization of SLC26A9, facilitation of Cl (−) transport by bicarbonate. Cell Physiol Biochem. 22:15–30. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Wang J, Chen X, Liu B and Zhu Z: Suppression of PTP1B in gastric cancer cells in vitro induces a change in the genome-wide expression profile and inhibits gastric cancer cell growth. Cell Biol Int. 34:747–753. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Stewart AK, Shmukler BE, Vandorpe DH, Reimold F, Heneghan JF, Nakakuki M, Akhavein A, Ko S, Ishiguro H and Alper SL: SLC26 anion exchangers of guinea pig pancreatic duct: Molecular cloning and functional characterization. Am J Physiol Cell Physiol. 301:C289–C303. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Ouesleti S, Brunel V, Ben Turkia H, Dranguet H, Miled A, Miladi N, Ben Dridi MF, Lavoinne A, Saugier-Veber P and Bekri S: Molecular characterization of MPS IIIA, MPS IIIB and MPS IIIC in Tunisian patients. Clin Chim Acta. 412:2326–2331. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang X, Yao S, An J, Jin H, Wang H and Tuo B: SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review). Mol Med Rep 24: 745, 2021.
APA
Yang, X., Yao, S., An, J., Jin, H., Wang, H., & Tuo, B. (2021). SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review). Molecular Medicine Reports, 24, 745. https://doi.org/10.3892/mmr.2021.12385
MLA
Yang, X., Yao, S., An, J., Jin, H., Wang, H., Tuo, B."SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)". Molecular Medicine Reports 24.5 (2021): 745.
Chicago
Yang, X., Yao, S., An, J., Jin, H., Wang, H., Tuo, B."SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)". Molecular Medicine Reports 24, no. 5 (2021): 745. https://doi.org/10.3892/mmr.2021.12385
Copy and paste a formatted citation
x
Spandidos Publications style
Yang X, Yao S, An J, Jin H, Wang H and Tuo B: SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review). Mol Med Rep 24: 745, 2021.
APA
Yang, X., Yao, S., An, J., Jin, H., Wang, H., & Tuo, B. (2021). SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review). Molecular Medicine Reports, 24, 745. https://doi.org/10.3892/mmr.2021.12385
MLA
Yang, X., Yao, S., An, J., Jin, H., Wang, H., Tuo, B."SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)". Molecular Medicine Reports 24.5 (2021): 745.
Chicago
Yang, X., Yao, S., An, J., Jin, H., Wang, H., Tuo, B."SLC26A6 and NADC‑1: Future direction of nephrolithiasis and calculus‑related hypertension research (Review)". Molecular Medicine Reports 24, no. 5 (2021): 745. https://doi.org/10.3892/mmr.2021.12385
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team