Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 24 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy

  • Authors:
    • Zhengming Zhu
    • Qingsheng Liu
    • Jianshi Sun
    • Ziyang Bao
    • Weiwei Wang
  • View Affiliations / Copyright

    Affiliations: Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China, Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China, Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 765
    |
    Published online on: September 3, 2021
       https://doi.org/10.3892/mmr.2021.12405
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic nephropathy (DN) is a diabetic complication that threatens the health of patients with diabetes. In addition, podocyte injury can lead to the occurrence of DN. The protein 6‑phosphofructo‑2‑kinase/fructose‑2,6-biphosphatase 3 (PFKFB3) may be associated with diabetes; however, the effects of PFKFB3 knockdown by small interfering (si)RNA on the growth of podocytes remains unknown. To investigate the mechanism by which PFKFB3 mediates podocyte injury, MPC5 mouse podocyte cells were treated with high‑glucose (HG), and cell viability and apoptosis were examined by Cell Counting Kit‑8 assay and flow cytometry, respectively. In addition, the expression of autophagy‑related proteins were measured using western blot analysis and immunofluorescence staining. Cell migration was investigated using a Transwell assay and phalloidin staining was performed to observe the cytoskeleton. The results revealed that silencing of PFKFB3 significantly promoted MPC5 cell viability and inhibited apoptosis. In addition, the migration of the MPC5 cells was notably downregulated by siPFKFB3. Moreover, PFKFB3 silencing notably reversed the HG‑induced decrease in oxygen consumption rate, and the HG‑induced increase in extracellular acidification rate was rescued by PFKFB3 siRNA. Furthermore, silencing of PFKFB3 induced autophagy in HG‑treated podocytes through inactivating phosphorylated (p‑)mTOR, p‑AMPKα, LC3 and sirtuin 1, and activating p62. In conclusion, silencing of PFKFB3 may protect podocytes from HG‑induced injury by inducing autophagy. Therefore, PFKFB3 may serve as a potential target for treatment of DN.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Cankurtaran V, Inanc M, Tekin K and Turgut F: Retinal microcirculation in predicting diabetic nephropathy in type 2 diabetic patients without retinopathy. Ophthalmologica. 243:271–279. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Elbassuoni EA, Аziz NM and Habeeb WN: The role of activation of KATP channels on hydrogen sulfide induced renoprotective effect on diabetic nephropathy. J Cell Physiol. 235:5223–5228. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Shao J, Xu H, Wu X and Xu Y: Epigenetic activation of CTGF transcription by high glucose in renal tubular epithelial cells is mediated by myocardin-related transcription factor A. Cell Tissue Res. 379:549–559. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Al Shawaf E, Abu-Farha M, Devarajan S, Alsairafi Z, Al-Khairi I, Cherian P, Ali H, Mathur A, Al-Mulla F, Al Attar A, et al: ANGPTL4: A predictive marker for diabetic nephropathy. J Diabetes Res. 2019:49431912019. View Article : Google Scholar : PubMed/NCBI

5 

Du L, Wang J, Chen Y, Li X, Wang L, Li Y, Jin X, Gu X, Hao M, Zhu X, et al: Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol. 36:243–260. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Liu L, Chen H, Yun J, Song L, Ma X, Luo S and Song Y: miRNA-483-5p targets HDCA4 to regulate renal tubular damage in diabetic nephropathy. Horm Metab Res. 2021.(Epub ahead of print). doi: 10.1055/a-1480-7519. View Article : Google Scholar

7 

Clem BF, O'Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA II, Klarer AC, Redman R, Miller DM, Trent JO, et al: Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 12:1461–1470. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Lu L, Chen Y and Zhu Y: The molecular basis of targeting PFKFB3 as a therapeutic strategy against cancer. Oncotarget. 8:62793–62802. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Sarkar Bhattacharya S, Thirusangu P, Jin L, Roy D, Jung D, Xiao Y, Staub J, Roy B, Molina JR and Shridhar V: PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and ER stress as independent binary adaptive responses. Cell Death Dis. 10:7252019. View Article : Google Scholar : PubMed/NCBI

10 

Tao L, Yu H, Liang R, Jia R, Wang J, Jiang K and Wang Z: Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis. 8:572019. View Article : Google Scholar : PubMed/NCBI

11 

Wade SM, Ohnesorge N, McLoughlin H, Biniecka M, Carter SP, Trenkman M, Cunningham CC, McGarry T, Canavan M, Kennedy BN, et al: Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis. EBioMedicine. 47:402–413. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI

13 

Ravanan P, Srikumar IF and Talwar P: Autophagy: The spotlight for cellular stress responses. Life Sci. 188:53–67. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Zhang L: Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 26:860–869. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Lin X, Chen Y, Zhang P, Chen G, Zhou Y and Yu X: The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol. 130:1107912020. View Article : Google Scholar : PubMed/NCBI

16 

Son YO: Molecular mechanisms of nickel-induced carcinogenesis. Endocr Metab Immune Disord Drug Targets. 20:1015–1023. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Tang Q, Chen Z, Zhao L and Xu H: Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging (Albany NY). 11:9982–9999. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Wang Q, Li R, Xiao Z and Hou C: Lycopene attenuates high glucose-mediated apoptosis in MPC5 podocytes by promoting autophagy via the PI3K/AKT signaling pathway. Exp Ther Med. 20:2870–2878. 2020.PubMed/NCBI

19 

Sawada N and Arany Z: Metabolic regulation of angiogenesis in diabetes and aging. Physiology (Bethesda). 32:290–307. 2017.PubMed/NCBI

20 

Mizukami H, Osonoi S, Takaku S, Yamagishi SI, Ogasawara S, Sango K, Chung S and Yagihashi S: Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway. Brain Commun. 2:fcaa1682020. View Article : Google Scholar : PubMed/NCBI

21 

Liu B, He X, Li S, Xu B, Birnbaumer L and Liao Y: Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway. Am J Transl Res. 9:5619–5630. 2017.PubMed/NCBI

22 

Chen JN, Li T, Cheng L, Qin TS, Sun YX, Chen CT, He YZ, Liu G, Yao D, Wei Y, et al: Synthesis and in vitro anti-bladder cancer activity evaluation of quinazolinyl-arylurea derivatives. Eur J Med Chem. 205:1126612020. View Article : Google Scholar : PubMed/NCBI

23 

Shen Y, Tong ZW, Zhou Y, Sun Y, Xie Y, Li R and Liu H: Inhibition of lncRNA-PAX8-AS1-N directly associated with VEGF/TGF-β1/8-OhdG enhances podocyte apoptosis in diabetic nephropathy. Eur Rev Med Pharmacol Sci. 24:6864–6872. 2020.PubMed/NCBI

24 

He J, Gao HX, Yang N, Zhu XD, Sun RB, Xie Y, Zeng CH, Zhang JW, Wang JK, Ding F, et al: The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin. 40:86–97. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Albers JW and Pop-Busui R: Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep. 14:4732014. View Article : Google Scholar : PubMed/NCBI

26 

Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, Jiang Z, Feng L, Wang X, Zhou J and Jin H: Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer. Oncotarget. 8:47691–47708. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Almacellas E, Pelletier J, Manzano A, Gentilella A, Ambrosio S, Mauvezin C and Tauler A: Phosphofructokinases axis controls glucose-dependent mTORC1 activation driven by E2F1. iScience. 20:434–448. 2019. View Article : Google Scholar : PubMed/NCBI

28 

ElGamal H and Munusamy S: Aldose reductase as a drug target for treatment of diabetic nephropathy: Promises and challenges. Protein Pept Lett. 24:71–77. 2017.PubMed/NCBI

29 

Liu YW, Cheng YQ, Liu XL, Hao YC, Li Y, Zhu X, Zhang F and Yin XX: Mangiferin upregulates glyoxalase 1 through activation of Nrf2/ARE signaling in central neurons cultured with high glucose. Mol Neurobiol. 54:4060–4070. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Wong SHM, Fang CM, Chuah LH, Leong CO and Ngai SC: E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 121:11–22. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Saitoh M: Involvement of partial EMT in cancer progression. J Biochem. 164:257–264. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Gao C, Chen J, Fan F, Long Y, Tang S, Jiang C, Wang J and Xu Y and Xu Y: RIPK2-mediated autophagy and negatively regulated ROS-NLRP3 inflammasome signaling in GMCs stimulated with high glucose. Mediators Inflamm. 2019:62075632019. View Article : Google Scholar : PubMed/NCBI

33 

Gong J, Zhan H, Li Y, Zhang W, Jin J and He Q: Kruppel-like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep. 20:3240–3248. 2019.PubMed/NCBI

34 

Sankrityayan H, Oza MJ, Kulkarni YA, Mulay SR and Gaikwad AB: ER stress response mediates diabetic microvascular complications. Drug Discov Today. 24:2247–2257. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Tu Q, Li Y, Jin J, Jiang X, Ren Y and He Q: Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm Biol. 57:778–786. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Hou Y, Lin S, Qiu J, Sun W, Dong M, Xiang Y, Wang L and Du P: NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun. 521:791–798. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Syed AA, Reza MI, Garg R, Goand UK and Gayen JR: Cissus quadrangularis extract attenuates diabetic nephropathy by altering SIRT1/DNMT1 axis. J Pharm Pharmacol. Jun 15–2021.(Epub ahead of print). doi: 10.1093/jpp/rgab078. View Article : Google Scholar : PubMed/NCBI

38 

Guo L, Tan K, Luo Q and Bai X: Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy. Bosn J Basic Med Sci. 20:372–380. 2020.PubMed/NCBI

39 

Bu J, Shi S, Wang HQ, Niu XS, Zhao ZF, Wu WD, Zhang XL, Ma Z, Zhang YJ, Zhang H and Zhu Y: Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway. Neural Regen Res. 14:605–612. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Zhuang L, Jin G, Hu X, Yang Q and Shi Z: The inhibition of SGK1 suppresses epithelial-mesenchymal transition and promotes renal tubular epithelial cell autophagy in diabetic nephropathy. Am J Transl Res. 11:4946–4956. 2019.PubMed/NCBI

41 

Wang Y, Zhang X, Wang P, Shen Y, Yuan K, Li M, Liang W and Que H: Sirt3 overexpression alleviates hyperglycemia-induced vascular inflammation through regulating redox balance, cell survival, and AMPK-mediated mitochondrial homeostasis. J Recept Signal Transduct Res. 39:341–349. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Woo CY, Kc R, Kim M, Kim HS, Baek JY and Koh EH: Autophagic flux defect in diabetic kidney disease results in megamitochondria formation in podocytes. Biochem Biophys Res Commun. 521:660–667. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Yang Z and Klionsky DJ: Eaten alive: A history of macroautophagy. Nat Cell Biol. 12:814–822. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Dasgupta S: Mitochondrion: I am more than a fuel server. Ann Transl Med. 7:5942019. View Article : Google Scholar : PubMed/NCBI

45 

Wu Q, Tian AL, Li B, Leduc M, Forveille S, Hamley P, Galloway W, Xie W, Liu P, Zhao L, et al: IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 9:e0027222021. View Article : Google Scholar : PubMed/NCBI

46 

Kommalapati VK, Kumar D and Tangutur AD: Quisinostat mediated autophagy is associated with differentiation in neuroblastoma SK-N-SH cells. Mol Biol Rep. 48:4973–4979. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Xu J, Liu LQ, Xu LL, Xing Y and Ye S: Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin Exp Pharmacol Physiol. 47:599–608. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Ye X, Zhou XJ and Zhang H: Autophagy in immune-related renal disease. J Immunol Res. 2019:50716872019. View Article : Google Scholar : PubMed/NCBI

49 

Alvarez-Cilleros D, Lopez-Oliva ME, Martin MA and Ramos S: Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food Funct. 10:7926–7939. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chen L, Zhao L, Samanta A, Mahmoudi SM, Buehler T, Cantilena A, Vincent RJ, Girgis M, Breeden J, Asante S, et al: STAT3 balances myocyte hypertrophy vis-a-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis. PLoS One. 12:e01798352017. View Article : Google Scholar : PubMed/NCBI

51 

Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J and Ma X: TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Rep. 7:31582017. View Article : Google Scholar : PubMed/NCBI

52 

La Belle Flynn A, Calhoun BC, Sharma A, Chang JC, Almasan A and Schiemann WP: Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat Commun. 10:36682019. View Article : Google Scholar : PubMed/NCBI

53 

Chu CW, Ko HJ, Chou CH, Cheng TS, Cheng HW, Liang YH, Lai YL, Lin CY, Wang C, Loh JK, et al: Thioridazine enhances P62-Mediated autophagy and apoptosis through Wnt/β-catenin signaling pathway in glioma cells. Int J Mol Sci. 20:4732019. View Article : Google Scholar : PubMed/NCBI

54 

Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY, Kang CM, Lu JB, Xu BM, Xu YJ, et al: The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 26:1670–1687. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Guo H, Ding H, Yan Y, Chen Q, Zhang J, Chen B and Cao J: Intermittent hypoxia-induced autophagy via AMPK/mTOR signaling pathway attenuates endothelial apoptosis and dysfunction in vitro. Sleep Breath. 2021.(Epub ahead of print). View Article : Google Scholar

56 

Chen J, Wang L, Liu WH, Shi J, Zhong Y, Liu SJ and Liu SM: Aspirin protects human coronary artery endothelial cells by inducing autophagy. Physiol Int. 107:294–305. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, Shi T, He W, Wang L, Guo T, et al: Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 11:2358–2369. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Hale AN, Ledbetter DJ, Gawriluk TR and Rucker EB III: Autophagy: Regulation and role in development. Autophagy. 9:951–972. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Corral-Ramos C, Barrios R, Ayté J and Hidalgo E: TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast. Autophagy. Jun 23–2021.(Epub ahead of print). doi: 10.1080/15548627.2021.1935522. View Article : Google Scholar : PubMed/NCBI

60 

Gray JP, Uddin MN, Chaudhari R, Sutton MN, Yang H, Rask P, Locke H, Engel BJ, Batistatou N, Wang J, et al: Directed evolution of cyclic peptides for inhibition of autophagy. Chem Sci. 12:3526–3543. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Z, Liu Q, Sun J, Bao Z and Wang W: Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Mol Med Rep 24: 765, 2021.
APA
Zhu, Z., Liu, Q., Sun, J., Bao, Z., & Wang, W. (2021). Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Molecular Medicine Reports, 24, 765. https://doi.org/10.3892/mmr.2021.12405
MLA
Zhu, Z., Liu, Q., Sun, J., Bao, Z., Wang, W."Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy". Molecular Medicine Reports 24.5 (2021): 765.
Chicago
Zhu, Z., Liu, Q., Sun, J., Bao, Z., Wang, W."Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy". Molecular Medicine Reports 24, no. 5 (2021): 765. https://doi.org/10.3892/mmr.2021.12405
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Z, Liu Q, Sun J, Bao Z and Wang W: Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Mol Med Rep 24: 765, 2021.
APA
Zhu, Z., Liu, Q., Sun, J., Bao, Z., & Wang, W. (2021). Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Molecular Medicine Reports, 24, 765. https://doi.org/10.3892/mmr.2021.12405
MLA
Zhu, Z., Liu, Q., Sun, J., Bao, Z., Wang, W."Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy". Molecular Medicine Reports 24.5 (2021): 765.
Chicago
Zhu, Z., Liu, Q., Sun, J., Bao, Z., Wang, W."Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy". Molecular Medicine Reports 24, no. 5 (2021): 765. https://doi.org/10.3892/mmr.2021.12405
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team