Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article

Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer

  • Authors:
    • Wubin Weng
    • Changming Liu
    • Guomin Li
    • Qiongfang Ruan
    • Huizhang Li
    • Ningfeng Lin
    • Guangbing Chen
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China, Department of Respiratory Medicine, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian 355000, P.R. China
  • Article Number: 843
    |
    Published online on: October 11, 2021
       https://doi.org/10.3892/mmr.2021.12483
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long non‑coding RNAs (lncRNAs) are involved in the pathogenesis of prostate cancer (PCa) as competitive endogenous RNA. The present study aimed to investigate the molecular mech­­anisms of lncRNA small nucleolar RNA host gene 16 (SNHG16) in the proliferation and metastasis of PCa cells. Cancer tissues and adjacent normal tissues were collected from 80 patients with PCa who did not receive any treatment. Reverse transcription‑quantitative PCR analysis was performed to detect the expression levels of SNHG16, hsa‑microRNA (miRNA/miR)‑373‑3p and transforming growth factor‑β receptor type 2 (TGF‑β‑R2), and Spearman's correlation coefficient analysis was performed to assess the correlations between these molecules. Furthermore, the effects of SNHG16 knockdown and overexpression on the biological functions of DU‑145 PCa cells and TGF‑β‑R2/SMAD signaling were analyzed. The dual‑luciferase reporter assay was performed to assess the associations between SNHG16 and miR‑373‑3p, and TGF‑β‑R2 and miR‑373‑3p, the effects of which were verified via rescue experiments. The results demonstrated that the expression levels of SNHG16 and TGF‑β‑R2 were significantly upregulated in PCa tissues, whereas miR‑373‑3p expression was significantly downregulated (P<0.001). In addition, negative correlations were observed between SNHG16 and miR‑373‑3p (rho, ‑0.631) and miR‑373‑3p and TGF‑β‑R2 (rho, ‑0.516). Overexpression of SNHG16 significantly promoted the proliferation, migration and invasion of PCa cells (P<0.05), and significantly increased the protein expression levels of TGF‑β‑R2, phosphorylated (p)‑SMAD2, p‑SMAD3, c‑Myc and E2F4 (P<0.001). Notably, the results revealed that miR‑373‑3p is a target of SNHG16, and miR‑373‑3p knockdown rescued short hairpin (sh)‑SNHG16‑suppressed cellular functions by promoting TGF‑β‑R2/SMAD signaling. The results also revealed that miR‑373‑3p targets TGF‑β‑R2. Notably, transfection with miR‑373‑3p inhibitor rescued sh‑TGF‑β‑R2‑suppressed cell proliferation and migration. Taken together, the results of the present study suggest that SNHG16 promotes the proliferation and migration of PCa cells by targeting the miR‑373‑3p/TGF‑β‑R2/SMAD axis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Pishgar F, Ebrahimi H, Saeedi Moghaddam S, Fitzmaurice C and Amini E: Global, regional and national burden of prostate cancer, 1990 to 2015: Results from the global burden of Disease Study 2015. J Urol. 199:1224–1232. 2018. View Article : Google Scholar

2 

Litwin MS and Tan HJ: The diagnosis and treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017. View Article : Google Scholar

3 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar

5 

Arora K and Barbieri CE: Molecular subtypes of prostate cancer. Curr Oncol Rep. 20:582018. View Article : Google Scholar

6 

Hua JT, Chen S and He HH: Landscape of noncoding RNA in prostate cancer. Trends Genet. 35:840–851. 2019. View Article : Google Scholar

7 

Dragomir MP, Kopetz S, Ajani JA and Calin GA: Non-coding RNAs in GI cancers: From cancer hallmarks to clinical utility. Gut. 69:748–763. 2020. View Article : Google Scholar

8 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar

9 

Lingadahalli S, Jadhao S, Sung YY, Chen M, Hu L, Chen X and Cheung E: Novel lncRNA LINC00844 regulates prostate cancer cell migration and invasion through AR signaling. Mol Cancer Res. 16:1865–1878. 2018. View Article : Google Scholar

10 

Gu P, Chen X, Xie R, Han J, Xie W, Wang B, Dong W, Chen C, Yang M, Jiang J, et al: lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol Ther. 25:1959–1973. 2017. View Article : Google Scholar

11 

Salameh A, Lee AK, Cardó-Vila M, Nunes DN, Efstathiou E, Staquicini FI, Dobroff AS, Marchiò S, Navone NM, Hosoya H, et al: PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci USA. 112:8403–8408. 2015. View Article : Google Scholar

12 

Liao W and Zhang Y: MicroRNA-381 facilitates autophagy and apoptosis in prostate cancer cells via inhibiting the RELN-mediated PI3K/AKT/mTOR signaling pathway. Life Sci. 254:1176722020. View Article : Google Scholar

13 

Bhatia V, Yadav A, Tiwari R, Nigam S, Goel S, Carskadon S, Gupta N, Goel A, Palanisamy N and Ateeq B: Epigenetic silencing of miRNA-338-5p and miRNA-421 drives SPINK1-positive prostate cancer. Clin Cancer Res. 25:2755–2768. 2019.

14 

Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar

15 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar

16 

He JH, Han ZP, Zou MX, Wang L, Lv YB, Zhou JB, Cao MR and Li YG: Analyzing the LncRNA, miRNA, and mRNA regulatory network in prostate cancer with bioinformatics software. J Comput Biol. 25:146–157. 2018. View Article : Google Scholar

17 

Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, et al: SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 10:1266–1282. 2016. View Article : Google Scholar

18 

Zhu H, Zeng Y, Zhou CC and Ye W: SNHG16/miR-216-5p/ZEB1 signal pathway contributes to the tumorigenesis of cervical cancer cells. Arch Biochem Biophys. 637:1–8. 2018. View Article : Google Scholar

19 

Zhong JH, Xiang X, Wang YY, Liu X, Qi LN, Luo CP, Wei WE, You XM, Ma L, Xiang BD, et al: The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J Cell Physiol. 235:1090–1102. 2020. View Article : Google Scholar

20 

Zhou XY, Liu H, Ding ZB, Xi HP and Wang GW: lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 112:1021–1029. 2020. View Article : Google Scholar

21 

Shao M, Yu Z and Zou J: LncRNA-SNHG16 silencing inhibits prostate carcinoma cell growth, downregulate GLUT1 expression and reduce glucose uptake. Cancer Manag Res. 12:1751–1757. 2020. View Article : Google Scholar

22 

Tang Z, Xu Z, Zhu X and Zhang J: New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun (Lond). 41:16–36. 2021. View Article : Google Scholar

23 

Yang M and Wei W: SNHG16: A novel long-non coding RNA in human cancers. OncoTargets Ther. 12:11679–11690. 2019. View Article : Google Scholar

24 

Zhao W, Fu H, Zhang S, Sun S and Liu Y: LncRNA SNHG16 drives proliferation, migration, and invasion of hemangioma endothelial cell through modulation of miR-520d-3p/STAT3 axis. Cancer Med. 7:3311–3320. 2018. View Article : Google Scholar

25 

Albini A, Bruno A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol. 9:5272018. View Article : Google Scholar

26 

Qiu X, Zhu J, Sun Y, Fan K, Yang DR, Li G, Yang G and Chang C: TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals. Oncotarget. 6:15397–15409. 2015. View Article : Google Scholar

27 

Pang J, Dai L, Zhang C and Zhang Q: MiR-373 inhibits the epithelial-mesenchymal transition of prostatic cancer via targeting runt-related transcription factor 2. J Healthc Eng. 2021:69742252021. View Article : Google Scholar

28 

Lu Y, Li X, Zuo Y, Xu Q, Liu L, Wu H, Chen L, Zhang Y, Liu Y and Li Y: miR-373-3p inhibits epithelial-mesenchymal transition via regulation of TGFβR2 in choriocarcinoma. J Obstet Gynaecol Res. 47:2417–2432. 2021. View Article : Google Scholar

29 

Wei F, Cao C, Xu X and Wang J: Diverse functions of miR-373 in cancer. J Transl Med. 13:1622015. View Article : Google Scholar

30 

Weng J, Zhang H, Wang C, Liang J, Chen G, Li W, Tang H and Hou J: miR-373-3p targets DKK1 to promote EMT-induced metastasis via the Wnt/β-catenin pathway in tongue squamous cell carcinoma. BioMed Res Int. 2017:60109262017. View Article : Google Scholar

31 

Seol HS, Akiyama Y, Shimada S, Lee HJ, Kim TI, Chun SM, Singh SR and Jang SJ: Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett. 353:232–241. 2014. View Article : Google Scholar

32 

Zhu B and Kyprianou N: Transforming growth factor beta and prostate cancer. Cancer Treat Res. 126:157–173. 2005. View Article : Google Scholar

33 

Zhao W, Zhu Q, Tan P, Ajibade A, Long T, Long W, Li Q, Liu P, Ning B, Wang HY, et al: Tgfbr2 inactivation facilitates cellular plasticity and development of Pten-null prostate cancer. J Mol Cell Biol. 10:316–330. 2018. View Article : Google Scholar

34 

Ma G, Tang M, Wu Y, Xu X, Pan F and Xu R: LncRNAs and miRNAs: Potential biomarkers and therapeutic targets for prostate cancer. Am J Transl Res. 8:5141–5150. 2016.

35 

Moris L, Cumberbatch MG, Van den Broeck T, Gandaglia G, Fossati N, Kelly B, Pal R, Briers E, Cornford P, De Santis M, et al: Benefits and risks of primary treatments for high-risk localized and locally advanced prostate cancer: An international multidisciplinary systematic review. Eur Urol. 77:614–627. 2020. View Article : Google Scholar

36 

Maruyama T, Nishihara K, Umikawa M, Arasaki A, Nakasone T, Nimura F, Matayoshi A, Takei K, Nakachi S, Kariya KI, et al: MicroRNA-196a-5p is a potential prognostic marker of delayed lymph node metastasis in early-stage tongue squamous cell carcinoma. Oncol Lett. 15:2349–2363. 2018.

37 

Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, et al: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet. 45:1392–1398. 2013. View Article : Google Scholar

38 

Yu M, Ohira M, Li Y, Niizuma H, Oo ML, Zhu Y, Ozaki T, Isogai E, Nakamura Y, Koda T, et al: High expression of ncRAN, a novel non-coding RNA mapped to chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol. 34:931–938. 2009.

39 

Lian D, Amin B, Du D and Yan W: Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomark. 21:151–160. 2017. View Article : Google Scholar

40 

Yang XS, Wang GX and Luo L: Long non-coding RNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur Rev Med Pharmacol Sci. 22:616–622. 2018.

41 

Xiao Y, Xiao T, Ou W, Wu Z, Wu J, Tang J, Tian B, Zhou Y, Su M and Wang W: LncRNA SNHG16 as a potential biomarker and therapeutic target in human cancers. Biomark Res. 8:412020. View Article : Google Scholar

42 

Qi P, Xu MD, Ni SJ, Shen XH, Wei P, Huang D, Tan C, Sheng WQ, Zhou XY and Du X: Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol Carcinog. 54:742–750. 2015. View Article : Google Scholar

43 

Xu F, Zha G, Wu Y, Cai W and Ao J: Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. OncoTargets Ther. 11:8855–8863. 2018. View Article : Google Scholar

44 

Qi JC, Yang Z, Zhang YP, Lu BS, Yin YW, Liu KL, Xue WY, Qu CB and Li W: miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to participate in epithelial to mesenchymal transition in prostate cancer. Front Oncol. 9:15352020. View Article : Google Scholar

45 

Liu JJ, Zhang X and Wu XH: miR-93 promotes the growth and invasion of prostate cancer by upregulating its target genes TGFBR2, ITGB8, and LATS2. Mol Ther Oncolytics. 11:14–19. 2018. View Article : Google Scholar

46 

Xu W, Zeng F, Li S, Li G, Lai X, Wang QJ and Deng F: Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Cell Mol Life Sci. 75:4583–4598. 2018. View Article : Google Scholar

47 

Yang F, Strand DW and Rowley DR: Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Oncogene. 27:450–459. 2008. View Article : Google Scholar

48 

Yang J, Song K, Krebs TL, Jackson MW and Danielpour D: Rb/E2F4 and Smad2/3 link survivin to TGF-beta-induced apoptosis and tumor progression. Oncogene. 27:5326–5338. 2008. View Article : Google Scholar

49 

Waghray A, Schober M, Feroze F, Yao F, Virgin J and Chen YQ: Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res. 61:4283–4286. 2001.

50 

DuPree EL, Mazumder S and Almasan A: Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res. 64:4390–4393. 2004. View Article : Google Scholar

51 

Littler S, Sloss O, Geary B, Pierce A, Whetton AD and Taylor SS: Oncogenic MYC amplifies mitotic perturbations. Open Biol. 9:1901362019. View Article : Google Scholar

52 

Zhang R, Li P, Lv H, Li N, Ren S and Xu W: Exosomal SNHG16 secreted by CSCs promotes glioma development via TLR7. Stem Cell Res Ther. 12:3492021. View Article : Google Scholar

53 

Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, Ungerleider N, Baddoo M, Zhang W, Corey E, et al: A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene. 38:4977–4989. 2019. View Article : Google Scholar

54 

Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A, et al: MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene. 31:4150–4163. 2012. View Article : Google Scholar

55 

Nakata K, Ohuchida K, Mizumoto K, Aishima S, Oda Y, Nagai E and Tanaka M: Micro RNA-373 is down-regulated in pancreatic cancer and inhibits cancer cell invasion. Ann Surg Oncol. 21 (Suppl 4):S564–S574. 2014. View Article : Google Scholar

56 

Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, et al: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 124:1169–1181. 2006. View Article : Google Scholar

57 

Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar

58 

Nadauld LD, Garcia S, Natsoulis G, Bell JM, Miotke L, Hopmans ES, Xu H, Pai RK, Palm C, Regan JF, et al: Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol. 15:4282014. View Article : Google Scholar

59 

Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF and Ro SW: Transforming growth factor-β promotes liver tumorigenesis in mice via up-regulation of snail. Gastroenterology. 153:1378–1391.e6. 2017. View Article : Google Scholar

60 

Ayub SG, Kaul D and Ayub T: An androgen-regulated miR-2909 modulates TGFβ signalling through AR/miR-2909 axis in prostate cancer. Gene. 631:1–9. 2017. View Article : Google Scholar

61 

Pollard BS, Suckow MA, Wolter WR, Starr JM, Eidelman O, Dalgard CL, Kumar P, Battacharyya S, Srivastava M, Biswas R, et al: Digitoxin inhibits epithelial-to-mesenchymal-transition in hereditary castration resistant prostate cancer. Front Oncol. 9:6302019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Weng W, Liu C, Li G, Ruan Q, Li H, Lin N and Chen G: Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Mol Med Rep 24: 843, 2021.
APA
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., & Chen, G. (2021). Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Molecular Medicine Reports, 24, 843. https://doi.org/10.3892/mmr.2021.12483
MLA
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., Chen, G."Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer". Molecular Medicine Reports 24.6 (2021): 843.
Chicago
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., Chen, G."Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer". Molecular Medicine Reports 24, no. 6 (2021): 843. https://doi.org/10.3892/mmr.2021.12483
Copy and paste a formatted citation
x
Spandidos Publications style
Weng W, Liu C, Li G, Ruan Q, Li H, Lin N and Chen G: Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Mol Med Rep 24: 843, 2021.
APA
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., & Chen, G. (2021). Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Molecular Medicine Reports, 24, 843. https://doi.org/10.3892/mmr.2021.12483
MLA
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., Chen, G."Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer". Molecular Medicine Reports 24.6 (2021): 843.
Chicago
Weng, W., Liu, C., Li, G., Ruan, Q., Li, H., Lin, N., Chen, G."Long non­‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer". Molecular Medicine Reports 24, no. 6 (2021): 843. https://doi.org/10.3892/mmr.2021.12483
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team