|
1
|
Gibbons A: HUMAN EVOLUTION. Why humans are
the high-energy apes. Science. 352:6392016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Roth J, Szulc AL and Danoff A: Energy,
evolution, and human diseases: An overview. Am J Clin Nutr.
93:875S–883S. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Evans PL, McMillin SL, Weyrauch LA and
Witczak CA: Regulation of skeletal muscle glucose transport and
glucose metabolism by exercise training. Nutrients. 11:24322019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Seo JA, Kang MC, Yang WM, Hwang WM, Kim
SS, Hong SH, Heo JI, Vijyakumar A, Pereira de ML, Uner A, et al:
Apolipoprotein J is a hepatokine regulating muscle glucose
metabolism and insulin sensitivity. Nat Commun. 11:20242020.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Severinsen MCK and Pedersen BK:
Muscle-organ crosstalk: The emerging roles of myokines. Endocr Rev.
41:594–609. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mukund K and Subramaniam S: Skeletal
muscle: A review of molecular structure and function, in health and
disease. Wiley Interdiscip Rev Syst Biol Med. 12:e14622020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jackson AS, Janssen I, Sui X, Church TS
and Blair SN: Longitudinal changes in body composition associated
with healthy ageing: Men, aged 20–96 years. Br J Nutr.
107:1085–1091. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schosserer M, Grillari J, Wolfrum C and
Scheideler M: Age-induced changes in white, brite, and brown
adipose depots: A mini-review. Gerontology. 64:229–236. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wu H and Ballantyne CM: Skeletal muscle
inflammation and insulin resistance in obesity. J Clin Invest.
127:43–54. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kawada T: Basal metabolic rate parameters,
sarcopenia, and frailty in older males. J Am Med Dir Assoc.
20:9192019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zampino M, Semba RD, Adelnia F, Spencer
RG, Fishbein KW, Schrack JA, Simonsick EM and Ferrucci L: Greater
skeletal muscle oxidative capacity is associated with higher
resting metabolic rate: Results from the baltimore longitudinal
study of aging. J Gerontol A Biol Sci Med Sci. 75:2262–2268. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Saltiel AR: Insulin signaling in health
and disease. J Clin Invest. 131:e1422412021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kadowaki T, Ueki K, Yamauchi T and Kubota
N: SnapShot: Insulin signaling pathways. Cell. 148:624–624.e1.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Burke LM, Kiens B and Ivy JL:
Carbohydrates and fat for training and recovery. J Sports Sci.
22:15–30. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Volek JS, Noakes T and Phinney SD:
Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci.
15:13–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sato T, Ito Y and Nagasawa T: Regulation
of skeletal muscle protein degradation and synthesis by oral
administration of lysine in rats. J Nutr Sci Vitaminol (Tokyo).
59:412–419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sato T, Ito Y and Nagasawa T: L-Lysine
suppresses myofibrillar protein degradation and autophagy in
skeletal muscles of senescence-accelerated mouse prone 8.
Biogerontology. 18:85–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kamei Y, Hatazawa Y, Uchitomi R, Yoshimura
R and Miura S: Regulation of skeletal muscle function by amino
acids. Nutrients. 12:2612020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kitamura A, Seino S, Abe T, Nofuji Y,
Yokoyama Y, Amano H, Nishi M, Taniguchi Y, Narita M, Fujiwara Y and
Shinkai S: Sarcopenia: prevalence, associated factors, and the risk
of mortality and disability in Japanese older adults. J Cachexia
Sarcopenia Muscle. 12:30–38. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nishikawa H, Fukunishi S, Asai A,
Nishiguchi S and Higuchi K: Sarcopenia and frailty in liver
Cirrhosis. Life (Basel). 11:3992021.PubMed/NCBI
|
|
21
|
Cruz-Jentoft AJ, Baeyens JP, Bauer JM,
Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y,
Schneider SM, et al: Sarcopenia: European consensus on definition
and diagnosis: Report of the European working group on sarcopenia
in older people. Age Ageing. 39:412–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen LK, Liu LK, Woo J, Assantachai P,
Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, et al:
Sarcopenia in Asia: Consensus report of the Asian working group for
sarcopenia. J Am Med Dir Assoc. 15:95–101. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nishikawa H, Shiraki M, Hiramatsu A,
Moriya K, Hino K and Nishiguchi S: Japan society of hepatology
guidelines for sarcopenia in liver disease (1st edition):
Recommendation from the working group for creation of sarcopenia
assessment criteria. Hepatol Res. 46:951–963. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie
Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA,
et al: Sarcopenia: Revised European consensus on definition and
diagnosis. Age Ageing. 48:16–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen LK, Woo J, Assantachai P, Auyeung TW,
Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, et al: Asian
working group for sarcopenia: 2019 consensus update on sarcopenia
diagnosis and treatment. J Am Med Dir Assoc. 21:300–307.e2. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sampaio RAC, Sewo Sampaio PY, Uchida MC
and Arai H: Management of dynapenia, sarcopenia, and frailty: The
role of physical exercise. J Aging Res. 2020:81867692020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Satake S and Arai H: Implications of
frailty screening in clinical practice. Curr Opin Clin Nutr Metab
Care. 20:4–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sugimoto K, Rakugi H, Kojima T, Ishii S,
Akishita M, Tamura Y, Araki A, Kozaki K, Senda K, Fukuoka H, et al:
Chapter 4 Frailty and specific diseases. Geriatr Gerontol Int. 20
(Suppl 1):S25–S37. 2020. View Article : Google Scholar
|
|
29
|
Mesinovic J, Zengin A, De Courten B,
Ebeling PR and Scott D: Sarcopenia and type 2 diabetes mellitus: A
bidirectional relationship. Diabetes Metab Syndr Obes.
12:1057–1072. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
DeFronzo RA: Lilly lecture 1987. The
triumvirate: Beta-cell, muscle, liver. A collusion responsible for
NIDDM. Diabetes. 37:667–687. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bu L, Cao X, Zhang Z, Wu H, Guo R and Ma
M: Decreased secretion of tumor necrosis factor-α attenuates
macrophages-induced insulin resistance in skeletal muscle. Life
Sci. 244:1173042020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Love KM, Liu J, Regensteiner JG, Reusch
JEB and Liu Z: GLP-1 and insulin regulation of skeletal and cardiac
muscle microvascular perfusion in type 2 diabetes. J Diabetes.
12:488–498. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nishikawa H and Osaki Y: Clinical
significance of therapy using branched-chain amino acid granules in
patients with liver cirrhosis and hepatocellular carcinoma. Hepatol
Res. 44:149–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nishikawa H, Enomoto H, Ishii A, Iwata Y,
Miyamoto Y, Ishii N, Yuri Y, Takata R, Hasegawa K, Nakano C, et al:
Development of a simple predictive model for decreased skeletal
muscle mass in patients with compensated chronic liver disease.
Hepatol Res. 47:1223–1234. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Nishikawa H, Yoh K, Enomoto H, Iwata Y,
Sakai Y, Kishino K, Shimono Y, Ikeda N, Takashima T, Aizawa N, et
al: Sarcopenia and frailty in chronic liver damage: Common and
different points. In Vivo. 34:2549–2559. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Richter EA and Hargreaves M: Exercise,
GLUT4, and skeletal muscle glucose uptake. Physiol Rev.
93:993–1017. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Flores-Opazo M, McGee SL and Hargreaves M:
Exercise and GLUT4. Exerc Sport Sci Rev. 48:110–118. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hood DA, Memme JM, Oliveira AN and Triolo
M: Maintenance of skeletal muscle mitochondria in health, exercise,
and aging. Annu Rev Physiol. 81:19–41. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Memme JM, Erlich AT, Phukan G and Hood DA:
Exercise and mitochondrial health. J Physiol. 599:803–817. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hatazawa Y, Tadaishi M, Nagaike Y, Morita
A, Ogawa Y, Ezaki O, Takai-Igarashi T, Kitaura Y, Shimomura Y,
Kamei Y and Miura S: PGC-1α-mediated branched-chain amino acid
metabolism in the skeletal muscle. PLoS One. 9:e910062014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schnyder S and Handschin C: Skeletal
muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone.
80:115–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Norheim F, Langleite TM, Hjorth M, Holen
T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J and
Drevon CA: The effects of acute and chronic exercise on PGC-1α,
irisin and browning of subcutaneous adipose tissue in humans. FEBS
J. 281:739–749. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Booth FW, Ruegsegger GN, Toedebusch RG and
Yan Z: Endurance exercise and the regulation of skeletal muscle
metabolism. Prog Mol Biol Transl Sci. 135:129–151. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Islam H, Hood DA and Gurd BJ: Looking
beyond PGC-1α: Emerging regulators of exercise-induced skeletal
muscle mitochondrial biogenesis and their activation by dietary
compounds. Appl Physiol Nutr Metab. 45:11–23. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jang C, Oh SF, Wada S, Rowe GC, Liu L,
Chan MC, Rhee J, Hoshino A, Kim B, Ibrahim A, et al: A
branched-chain amino acid metabolite drives vascular fatty acid
transport and causes insulin resistance. Nat Med. 22:421–426. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Arany Z, He H, Lin J, Hoyer K, Handschin
C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, et al: Transcriptional
coactivator PGC-1 alpha controls the energy state and contractile
function of cardiac muscle. Cell Metab. 1:259–271. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cretoiu D, Pavelescu L, Duica F, Radu M,
Suciu N and Cretoiu SM: Myofibers. Adv Exp Med Biol. 1088:23–46.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Drake JC and Yan Z: Precision remodeling:
How exercise improves mitochondrial quality in myofibers. Curr Opin
Physiol. 10:96–101. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hickey MS, Carey JO, Azevedo JL, Houmard
JA, Pories WJ, Israel RG and Dohm GL: Skeletal muscle fiber
composition is related to adiposity and in vitro glucose transport
rate in humans. Am J Physiol. 268((3 Pt 1)): E453–E457.
1995.PubMed/NCBI
|
|
50
|
Märin P, Krotkiewski M, Andersson B and
Björntorp P: Muscle fiber composition and capillary density in
women and men with NIDDM. Diabetes Care. 17:382–386. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kaji A, Hashimoto Y, Kobayashi Y, Sakai R,
Okamura T, Miki A, Hamaguchi M, Kuwahata M, Yamazaki M and Fukui M:
Sarcopenia is associated with tongue pressure in older patients
with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM
cohort study. Geriatr Gerontol Int. 19:153–158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sazlina SG, Lee PY, Chan YM, A Hamid MS
and Tan NC: The prevalence and factors associated with sarcopenia
among community living elderly with type 2 diabetes mellitus in
primary care clinics in Malaysia. PLoS One. 15:e02332992020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bouchi R, Fukuda T, Takeuchi T, Minami I,
Yoshimoto T and Ogawa Y: Sarcopenia is associated with incident
albuminuria in patients with type 2 diabetes: A retrospective
observational study. J Diabetes Investig. 8:783–787. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hashimoto Y, Kaji A, Sakai R, Hamaguchi M,
Okada H, Ushigome E, Asano M, Yamazaki M and Fukui M: Sarcopenia is
associated with blood pressure variability in older patients with
type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort
study. Geriatr Gerontol Int. 18:1345–1349. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Okamura T, Mik A, Hashimoto Y, Kaji A,
Sakai R, Osaka T, Hamaguchi M, Yamazaki M and Fukui M: Deficiency
of energy intake rather than protein is associated with sarcopenia
in early patients with type 2 diabetes: A cross-sectional study of
the KAMOGAWA-DM cohort. J Diabetes. 11:477–483. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Okamura T, Hashimoto Y, Miki A, Kaji A,
Sakai R, Iwai K, Osaka T, Kitagawa N, Ushigome E, Hamaguchi M, et
al: High brain natriuretic peptide is associated with sarcopenia in
patients with type 2 diabetes: A cross-sectional study of
KAMOGAWA-DM cohort study. Endocr J. 66:369–377. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bouchi R, Fukuda T, Takeuchi T, Nakano Y,
Murakami M, Minami I, Izumiyama H, Hashimoto K, Yoshimoto T and
Ogawa Y: Insulin treatment attenuates decline of muscle mass in
Japanese patients with type 2 diabetes. Calcif Tissue Int. 101:1–8.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cui M, Gang X and Wang G, Xiao X, Li Z,
Jiang Z and Wang G: A cross-sectional study: Associations between
sarcopenia and clinical characteristics of patients with type 2
diabetes. Medicine (Baltimore). 99:e187082020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sugimoto K, Tabara Y, Ikegami H, Takata Y,
Kamide K, Ikezoe T, Kiyoshige E, Makutani Y, Onuma H, Gondo Y, et
al: Hyperglycemia in non-obese patients with type 2 diabetes is
associated with low muscle mass: The multicenter study for
clarifying evidence for sarcopenia in patients with diabetes
mellitus. J Diabetes Investig. 10:1471–1479. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fung FY, Koh YLE, Malhotra R, Ostbye T,
Lee PY, Shariff Ghazali S and Tan NC: Prevalence of and factors
associated with sarcopenia among multi-ethnic ambulatory older
Asians with type 2 diabetes mellitus in a primary care setting. BMC
Geriatr. 19:1222019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mori H, Kuroda A, Ishizu M, Ohishi M,
Takashi Y, Otsuka Y, Taniguchi S, Tamaki M, Kurahashi K, Yoshida S,
et al: Association of accumulated advanced glycation end-products
with a high prevalence of sarcopenia and dynapenia in patients with
type 2 diabetes. J Diabetes Investig. 10:1332–1340. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ida S, Murata K, Nakadachi D, Ishihara Y,
Imataka K, Uchida A, Monguchi K, Kaneko R, Fujiwara R and Takahashi
H: Association between dynapenia and decline in higher-level
functional capacity in older men with diabetes. Geriatr Gerontol
Int. 18:1393–1397. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Murai J, Nishizawa H, Otsuka A, Fukuda S,
Tanaka Y, Nagao H, Sakai Y, Suzuki M, Yokota S, Tada H, et al: Low
muscle quality in Japanese type 2 diabetic patients with visceral
fat accumulation. Cardiovasc Diabetol. 17:1122018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Osaka T, Hamaguchi M, Hashimoto Y,
Ushigome E, Tanaka M, Yamazaki M and Fukui M: Decreased the
creatinine to cystatin C ratio is a surrogate marker of sarcopenia
in patients with type 2 diabetes. Diabetes Res Clin Pract.
139:52–58. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fukuda T, Bouchi R, Takeuchi T, Tsujimoto
K, Minami I, Yoshimoto T and Ogawa Y: Sarcopenic obesity assessed
using dual energy X-ray absorptiometry (DXA) can predict
cardiovascular disease in patients with type 2 diabetes: A
retrospective observational study. Cardiovasc Diabetol. 17:552018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fukuoka Y, Narita T, Fujita H, Morii T,
Sato T, Sassa MH and Yamada Y: Importance of physical evaluation
using skeletal muscle mass index and body fat percentage to prevent
sarcopenia in elderly Japanese diabetes patients. J Diabetes
Investig. 10:322–330. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Murata Y, Kadoya Y, Yamada S and Sank T:
Sarcopenia in elderly patients with type 2 diabetes mellitus:
Prevalence and related clinical factors. Diabetol Int. 9:136–142.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Park SW, Goodpaster BH, Lee JS, Kuller LH,
Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA,
Nevitt M, et al: Excessive loss of skeletal muscle mass in older
adults with type 2 diabetes. Diabetes Care. 32:1993–1997. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Anbalagan VP, Venkataraman V, Pradeepa R,
Deepa M, Anjana RM and Mohan V: The prevalence of presarcopenia in
Asian Indian individuals with and without type 2 diabetes. Diabetes
Technol Ther. 15:768–775. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Leenders M, Verdijk LB, van der Hoeven L,
Adam JJ, van Kranenbur J, Nilwik R and van Loon LJ: Patients with
type 2 diabetes show a greater decline in muscle mass, muscle
strength, and functional capacity with aging. J Am Med Dir Assoc.
14:585–592. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Srikanthan P, Hevener AL and Karlamangla
AS: Sarcopenia exacerbates obesity-associated insulin resistance
and dysglycemia: Findings from the National health and nutrition
examination survey III. PLoS One. 5:e108052010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sanada K, Miyachi M, Tanimoto M, Yamamoto
K, Murakami H, Okumura S, Gando Y, Suzuki K, Tabata I and Higuchi
M: A cross-sectional study of sarcopenia in Japanese men and women:
Reference values and association with cardiovascular risk factors.
Eur J Appl Physiol. 110:57–65. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE,
Cawthon PM, Hoffman AR, Everson-Rose SA, Barrett-Connor E and
Orwoll ES; Osteoporotic Fractures in Men Study Research Group, :
Association between insulin resistance and lean mass loss and fat
mass gain in older men without diabetes mellitus. J Am Geriatr Soc.
59:1217–1224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Araki A and Ito H: Diabetes mellitus and
geriatric syndromes. Geriatr Gerontol Int. 9:105–114. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ,
Song W, Seo JA, Kim SG, Kim NH, Baik SH, et al: Prevalence and
determinant factors of sarcopenia in patients with type 2 diabetes:
The Korean sarcopenic obesity study (KSOS). Diabetes Care.
33:1497–1499. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hirata Y, Nomura K, Senga Y, Okada Y,
Kobayashi K, Okamoto S, Minokoshi Y, Imamura M, Takeda S, Hosooka T
and Ogawa W: Hyperglycemia induces skeletal muscle atrophy via a
WWP1/KLF15 axis. JCI Insight. 4:e1249522019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Varshavsky A: The ubiquitin system,
autophagy, and regulated protein degradation. Annu Rev Biochem.
86:123–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sasaki T: Sarcopenia, frailty circle and
treatment with sodium-glucose cotransporter 2 inhibitors. J
Diabetes Investig. 10:193–195. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sasaki T, Sugawara M and Fukuda M:
Sodium-glucose cotransporter 2 inhibitor-induced changes in body
composition and simultaneous changes in metabolic profile: 52-week
prospective LIGHT (Luseogliflozin: The components of weight loss in
Japanese patients with type 2 diabetes mellitus) study. J Diabetes
Investig. 10:108–117. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen F, Xu S, Wang Y, Chen F, Cao L, Liu
T, Huang T, Wei Q, Ma G, Zhao Y and Wang D: Risk factors for
sarcopenia in the elderly with type 2 diabetes mellitus and the
effect of metformin. J Diabetes Res. 2020:39504042020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Laksmi PW, Setiati S, Tamin TZ, Soewondo
P, Rochmah W, Nafrialdi N and Prihartono J: Effect of metformin on
handgrip strength, gait speed, myostatin serum level, and
health-related quality of life: A double blind randomized
controlled trial among non-diabetic pre-frail elderly patients.
Acta Med Indones. 49:118–127. 2017.PubMed/NCBI
|
|
82
|
Yang Y, Liao Z and Xiao Q: Metformin
ameliorates skeletal muscle atrophy in Grx1 KO mice by regulating
intramuscular lipid accumulation and glucose utilization. Biochem
Biophys Res Commun. 533:1226–1232. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pirkmajer S, Petrič M and Chibalin AV: The
role of AMPK in regulation of Na+, K+-ATPase
in skeletal muscle: Does the gauge always plug the sink? J Muscle
Res Cell Motil. 42:77–97. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
McGee SL and Hargreaves M: Exercise
adaptations: Molecular mechanisms and potential targets for
therapeutic benefit. Nat Rev Endocrinol. 16:495–505. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
LaMoia TE and Shulman GI: Cellular and
molecular mechanisms of metformin action. Endocr Rev. 42:77–96.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lee CG, Boyko EJ, Barrett-Connor E,
Miljkovic I, Hoffman AR, Everson-Rose SA, Lewis CE, Cawthon PM,
Strotmeyer ES and Orwoll ES; Osteoporotic Fractures in Men (MrOS)
Study Research Group, : Insulin sensitizers may attenuate lean mass
loss in older men with diabetes. Diabetes Care. 34:2381–2386. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Clegg A, Young J, Iliffe S, Rikkert MO and
Rockwood K: Frailty in elderly people. Lancet. 381:752–762. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Morley JE, Malmstrom TK, Rodriguez-Mañas L
and Sinclair AJ: Frailty, Sarcopenia and diabetes. J Am Med Dir
Assoc. 15:853–859. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
García-Esquinas E, Graciani A,
Guallar-Castillón P, López-García E, Rodríguez-Mañas L and
Rodríguez-Artalejo F: Diabetes and risk of frailty and its
potential mechanisms: A prospective cohort study of older adults. J
Am Med Dir Assoc. 16:748–754. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Espinoza SE, Jung I and Hazuda H: Frailty
transitions in the San Antonio longitudinal study of aging. J Am
Geriatr Soc. 60:652–660. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Barzilay JI, Blaum C, Moore T, Xue QL,
Hirsch CH, Walston JD and Fried LP: Insulin resistance and
inflammation as precursors of frailty: The cardiovascular health
study. Arch Intern Med. 167:635–641. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pérez-Tasigchana RF, León-Muñoz LM,
Lopez-Garcia E, Gutierrez-Fisac JL, Laclaustra M,
Rodríguez-Artalejo F and Guallar-Castillón P: Metabolic syndrome
and insulin resistance are associated with frailty in older adults:
A prospective cohort study. Age Ageing. 46:807–812. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Walston J, McBurnie MA, Newman A, Tracy
RP, Kop WJ, Hirsch CH, Gottdiener J and Fried LP; Cardiovascular
Health Study, : Frailty and activation of the inflammation and
coagulation systems with and without clinical comorbidities:
Results from the cardiovascular health study. Arch Intern Med.
162:2333–2341. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kalyani RR, Varadhan R, Weiss CO, Fried LP
and Cappola AR: Frailty status and altered glucose-insulin
dynamics. J Gerontol A Biol Sci Med Sci. 67:1300–1306. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Veronese N, Stubbs B, Fontana L, Trevisan
C, Bolzetta F, De Rui M, Sartori L, Musacchio E, Zambon S, Maggi S,
et al: Frailty is associated with an increased risk of incident
type 2 diabetes in the elderly. J Am Med Dir Assoc. 17:902–907.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li G, Prior JC, Leslie WD, Thabane L,
Papaioannou A, Josse RG, Kaiser SM, Kovacs CS, Anastassiades T,
Towheed T, et al: Frailty and risk of fractures in patients with
Type 2 Diabetes. Diabetes Care. 42:507–513. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tamura H, Miyamoto T, Tamaki A, Nawa G and
Konya H: Osteoporosis complication is a risk factor for frailty in
females with type 2 diabetes mellitus. J Phys Ther Sci. 31:621–624.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chao CT, Wang J and Chien KL; COhort of
GEriatric Nephrology in NTUH (COGENT) study group, : Both
pre-frailty and frailty increase healthcare utilization and adverse
health outcomes in patients with type 2 diabetes mellitus.
Cardiovasc Diabetol. 17:1302018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Blaum CS, Xue QL, Tian J, Semba RD, Fried
LP and Walston J: Is hyperglycemia associated with frailty status
in older women? J Am Geriatr Soc. 57:840–847. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kalyani RR, Tian J, Xue QL, Walston J,
Cappola AR, Fried LP, Brancati FL and Blaum CS: Hyperglycemia and
incidence of frailty and lower extremity mobility limitations in
older women. J Am Geriatr Soc. 60:1701–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zaslavsky O, Walker RL, Crane PK, Gray SL
and Larson EB: glucose levels and risk of frailty. J Gerontol A
Biol Sci Med Sci. 71:1223–1229. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Yanagita I, Fujihara Y, Eda T, Tajima M,
Yonemura K, Kawajiri T, Yamaguchi N, Asakawa H, Nei Y, Kayashima Y,
et al: Low glycated hemoglobin level is associated with severity of
frailty in Japanese elderly diabetes patients. J Diabetes Investig.
9:419–425. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yau CK, Eng C, Cenzer IS, Boscardin WJ,
Rice-Trumble K and Lee SJ: Glycosylated hemoglobin and functional
decline in community-dwelling nursing home-eligible elderly adults
with diabetes mellitus. J Am Geriatr Soc. 60:1215–1221. 2012.
View Article : Google Scholar : PubMed/NCBI
|