Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research methods for animal models of atherosclerosis (Review)

  • Authors:
    • Yali Zhang
    • Mahreen Fatima
    • Siyuan Hou
    • Liang Bai
    • Sihai Zhao
    • Enqi Liu
  • View Affiliations / Copyright

    Affiliations: Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China, Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 871
    |
    Published online on: October 27, 2021
       https://doi.org/10.3892/mmr.2021.12511
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Atherosclerosis is a chronic inflammatory disease that threatens human health and lives by causing vascular stenosis and plaque rupture. Various animal models have been employed for elucidating the pathogenesis, drug development and treatment validation studies for atherosclerosis. To the best of our knowledge, the species used for atherosclerosis research include mice, rats, hamsters, rabbits, pigs, dogs, non‑human primates and birds, among which the most commonly used ones are mice and rabbits. Notably, apolipoprotein E knockout (KO) or low‑density lipoprotein receptor KO mice have been the most widely used animal models for atherosclerosis research since the late 20th century. Although the aforementioned animal models can form atherosclerotic lesions, they cannot completely simulate those in humans with respect to lesion location, lesion composition, lipoprotein composition and physiological structure. Hence, an appropriate animal model needs to be selected according to the research purpose. Additionally, it is necessary for atherosclerosis research to include quantitative analysis results of atherosclerotic lesion size and plaque composition. Laboratory animals can provide not only experimental tissues for in vivo studies but also cells needed for in vitro experiments. The present review first summarizes the common animal models and their practical applications, followed by focus on mouse and rabbit models and elucidating the methods to quantify atherosclerotic lesions. Finally, the methods of culturing endothelial cells, macrophages and smooth muscle cells were elucidated in detail and the experiments involved in atherosclerosis research were discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Gimbrone MA Jr and Garcia-Cardena G: Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Sena CM, Leandro A, Azul L, Seica R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI

4 

Chistiakov DA, Orekhov AN and Bobryshev YV: Effects of shear stress on endothelial cells: Go with the flow. Acta Physiol (Oxf). 219:382–408. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV and Orekhov AN: Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 95:1153–1165. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Bennett MR, Sinha S and Owens GK: Vascular smooth muscle cells in atherosclerosis. Circ Res. 118:692–702. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Davignon J and Ganz P: Role of endothelial dysfunction in atherosclerosis. Circulation. 109 (23 Suppl 1):III27–III32. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L and Giorgino F: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 100:1–19. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Hajjar DP and Gotto AM Jr: Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. Am J Pathol. 182:1474–1481. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Rhoads JP and Major AS: How oxidized low-density lipoprotein activates inflammatory responses. Crit Rev Immunol. 38:333–342. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Zhang T, Chen J, Tang X, Luo Q, Xu D and Yu B: Interaction between adipocytes and high-density lipoprotein: New insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 18:2232019. View Article : Google Scholar : PubMed/NCBI

13 

Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, et al: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 38:2459–2472. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Messner B and Bernhard D: Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 34:509–515. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Altman R: Risk factors in coronary atherosclerosis athero-inflammation: The meeting point. Thromb J. 1:42003. View Article : Google Scholar : PubMed/NCBI

16 

Hollander W: Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol. 38:786–800. 1976. View Article : Google Scholar : PubMed/NCBI

17 

Katakami N: Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb. 25:27–39. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Lenfant C and Savage PJ: The early natural history of atherosclerosis and hypertension in the young: National institutes of health perspectives. Am J Med Sci. 310 (Suppl 1):S3–S7. 1995. View Article : Google Scholar : PubMed/NCBI

20 

McNamara JJ, Molot MA, Stremple JF and Cutting RT: Coronary artery disease in combat casualties in Vietnam. JAMA. 216:1185–1187. 1971. View Article : Google Scholar : PubMed/NCBI

21 

Strong JP, Mcgill HC Jr, Tejada C and Holman RL: The natural history of atherosclerosis; comparison of the early aortic lesions in New Orleans, Guatemala, and Costa Rica. Am J Pathol. 34:731–744. 1958.PubMed/NCBI

22 

Enos WF, Holmes RH and Beyer J: Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc. 152:1090–1093. 1953. View Article : Google Scholar : PubMed/NCBI

23 

Konstantinov IE and Jankovic GM: Alexander I. Ignatowski: A pioneer in the study of atherosclerosis. Tex Heart Inst J. 40:246–249. 2013.PubMed/NCBI

24 

Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP III, Rosenfeld ME, Virmani R, et al: Recommendation on design, execution, and reporting of animal atherosclerosis studies: A scientific statement from the american heart association. Arterioscler Thromb Vasc Biol. 37:e131–e157. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Wu C, Daugherty A and Lu HS: Updates on approaches for studying atherosclerosis. Arterioscler Thromb Vasc Biol. 39:e108–e117. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Fan J, Chen Y, Yan H, Niimi M, Wang Y and Liang J: Principles and applications of rabbit models for atherosclerosis research. J Atheroscler Thromb. 25:213–220. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Vesselinovitch D, Wissler RW and Doull J: Experimental production of atherosclerosis in mice. 1. Effect of various synthetic diets and radiation on survival time, food consumption and body weight in mice. J Atheroscler Res. 8:483–495. 1968. View Article : Google Scholar : PubMed/NCBI

28 

Vesselinovitch D and Wissler RW: Experimental production of atherosclerosis in mice. 2. Effects of atherogenic and high-fat diets on vascular changes in chronically and acutely irradiated mice. J Atheroscler Res. 8:497–523. 1968. View Article : Google Scholar : PubMed/NCBI

29 

Thompson JS: Atheromata in an inbred strain of mice. J Atheroscler Res. 10:113–122. 1969. View Article : Google Scholar : PubMed/NCBI

30 

Paigen B, Morrow A, Brandon C, Mitchell D and Holmes P: Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 57:65–73. 1985. View Article : Google Scholar : PubMed/NCBI

31 

Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE and Herz J: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 92:883–893. 1993. View Article : Google Scholar : PubMed/NCBI

32 

Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM and Breslow JL: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 71:343–353. 1992. View Article : Google Scholar : PubMed/NCBI

33 

Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM and Maeda N: Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA. 89:4471–4475. 1992. View Article : Google Scholar : PubMed/NCBI

34 

Olszanecki R and Korbut R: The effect of montelukast on atherogenesis in apoE/LDLR-double knockout mice. J Physiol Pharmacol. 59:633–639. 2008.PubMed/NCBI

35 

Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chłopicki S and Korbut R: Effect of curcumin on atherosclerosis in apoE-LDLR-double knockout mice. J Physiol Pharmacol. 4:627–635. 2005.PubMed/NCBI

36 

Schilperoort M, van den Berg R, Bosmans LA, van Os BW, Dollé ME, Smits NA, Guichelaar T, van Baarle D, Koemans L, Berbée JF, et al: Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE* 3-leiden. CETP mice. J Pineal Res. 68:e126142020. View Article : Google Scholar : PubMed/NCBI

37 

Berbée JF, Wong MC, Wang Y, van der Hoorn JW, Khedoe PP, van Klinken JB, Mol IM, Hiemstra PS, Tsikas D, Romijn JA, et al: Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE* 3-leiden. CETP mice. J Nutr Biochem. 24:1423–1430. 2013. View Article : Google Scholar : PubMed/NCBI

38 

de Haan W, van der Hoogt CC, Westerterp M, Hoekstra M, Dallinga-Thie GM, Princen HM, Romijn JA, Jukema JW, Havekes LM and Rensen PC: Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE* 3-leiden. CETP mice. Atherosclerosis. 197:57–63. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Stein EA and Raal F: Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9. Annu Rev Med. 65:417–431. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Getz GS and Reardon CA: Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res (50 Suppl). S156–S161. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Sehayek E, Shefer S, Nguyen LB, Ono JG, Merkel M and Breslow JL: Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice. Proc Natl Acad Sci USA. 97:3433–3437. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Plump AS and Breslow JL: Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr. 15:495–518. 1995. View Article : Google Scholar : PubMed/NCBI

43 

Nakashima Y, Plump AS, Raines EW, Breslow JL and Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 14:133–140. 1994. View Article : Google Scholar : PubMed/NCBI

44 

Rattazzi M, Bennett BJ, Bea F, Kirk EA, Ricks JL, Speer M, Schwartz SM, Giachelli CM and Rosenfeld ME: Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: Potential role of chondrocyte-like cells. Arterioscler Thromb Vasc Biol. 25:1420–1425. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Meir KS and Leitersdorf E: Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 24:1006–1014. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Oppi S, Luscher TF and Stein S: Mouse models for atherosclerosis research-which is my line? Front Cardiovasc Med. 6:462019. View Article : Google Scholar : PubMed/NCBI

47 

von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H and Lusis AJ: Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 25:248–261. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M and Freeman MW: Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 115:2192–2201. 2005. View Article : Google Scholar : PubMed/NCBI

49 

Go GW and Mani A: Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 85:19–28. 2012.PubMed/NCBI

50 

Ishibashi S, Goldstein JL, Brown MS, Herz J and Burns DK: Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 93:1885–1893. 1994. View Article : Google Scholar : PubMed/NCBI

51 

Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, Pratico D and Rader DJ: Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vasc Biol. 23:1914–1920. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Getz GS and Reardon CA: Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol. 26:242–249. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Boisvert WA, Spangenberg J and Curtiss LK: Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 17:340–347. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Herijgers N, Van Eck M, Groot PH, Hoogerbrugge PM and Van Berkel TJ: Effect of bone marrow transplantation on lipoprotein metabolism and atherosclerosis in LDL receptor-knockout mice. Arterioscler Thromb Vasc Biol. 17:1995–2003. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Linton MF, Atkinson JB and Fazio S: Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science. 267:1034–1037. 1995. View Article : Google Scholar : PubMed/NCBI

56 

Boisvert WA, Spangenberg J and Curtiss LK: Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation. J Clin Invest. 96:1118–1124. 1995. View Article : Google Scholar : PubMed/NCBI

57 

Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B and Bernal JA: Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol. 35:50–59. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Bjorklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG and Bentzon JF: Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res. 114:1684–1689. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Goettsch C, Hutcheson JD, Hagita S, Rogers MA, Creager MD, Pham T, Choi J, Mlynarchik AK, Pieper B, Kjolby M, et al: A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis. 251:109–118. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Veseli BE, Perrotta P, De Meyer GRA, Roth L, der Donckt CV, Martinet W and De Meyer GR: Animal models of atherosclerosis. Eur J Pharmacol. 816:3–13. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH and Krieger M: Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation. 111:3457–3464. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Westerterp M, van der Hoogt CC, de Haan W, Offerman EH, Dallinga-Thie GM, Jukema JW, Havekes LM and Rensen PC: Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-leiden mice. Arterioscler Thromb Vasc Biol. 26:2552–2559. 2006. View Article : Google Scholar : PubMed/NCBI

63 

van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de Bruijn I, van Vlijmen B, van der Boom H, Havekes LM and Frants RR: Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem. 268:10540–10545. 1993. View Article : Google Scholar : PubMed/NCBI

64 

Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 6:63562015. View Article : Google Scholar : PubMed/NCBI

65 

Van der Donckt C, Van Herck JL, Schrijvers DM, Vanhoutte G, Verhoye M, Blockx I, Van Der Linden A, Bauters D, Lijnen HR, Sluimer JC, et al: Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J. 36:1049–1058. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Roth L, Rombouts M, Schrijvers DM, Lemmens K, De Keulenaer GW, Martinet W and De Meyer GR: Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis. 242:288–294. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Steinberg D: In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. J Lipid Res. 54:2946–2949. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Fan J and Watanabe T: Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb. 7:26–32. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E and Chen YE: Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol Ther. 146:104–119. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Niimi M, Yang D, Kitajima S, Ning B, Wang C, Li S, Liu E, Zhang J, Chen YE and Fan J: ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis. 245:187–193. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Matsuhisa F, Kitajima S, Nishijima K, Akiyoshi T, Morimoto M and Fan J: Transgenic rabbit models: Now and the future. Applied Sciences. 10:74162020. View Article : Google Scholar

72 

Yu QQ, Cheng DX, Xu LR, Li YK, Zheng XY, Liu Y, Li YF, Liu HL, Bai L, Wang R, et al: Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits. Acta Pharmacol Sin. 41:546–553. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, et al: Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med. 24:4261–4274. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Gao S, Wang X, Cheng D, Li J, Li L, Ran L, Zhao S, Fan J and Liu E: Overexpression of cholesteryl ester transfer protein increases macrophage-derived foam cell accumulation in atherosclerotic lesions of transgenic rabbits. Mediators Inflamm. 2017:38242762017. View Article : Google Scholar : PubMed/NCBI

75 

Ding Y, Wang Y, Zhu H, Fan J, Yu L, Liu G and Liu E: Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res. 20:867–875. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Koike T, Kitajima S, Yu Y, Li Y, Nishijima K, Liu E, Sun H, Waqar AB, Shibata N, Inoue T, et al: Expression of human apoAII in transgenic rabbits leads to dyslipidemia: A new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 29:2047–2053. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Wang C, Nishijima K, Kitajima S, Niimi M, Yan H, Chen Y, Ning B, Matsuhisa F, Liu E, Zhang J, et al: Increased hepatic expression of endothelial lipase inhibits cholesterol diet-induced hypercholesterolemia and atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol. 37:1282–1289. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Watanabe Y: Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis. 36:261–268. 1980. View Article : Google Scholar : PubMed/NCBI

79 

Shiomi M and Ito T: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis. 207:1–7. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Masashi S and Takashi I: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis. 207:1–7. 2009. View Article : Google Scholar

81 

Ning B, Wang X, Yu Y, Waqar AB, Yu Q, Koike T, Shiomi M, Liu E, Wang Y and Fan J: High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Nutr Metab (Lond). 12:302015. View Article : Google Scholar : PubMed/NCBI

82 

Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P and Cybulsky MI: Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol. 19:1938–1944. 1999. View Article : Google Scholar : PubMed/NCBI

83 

Reardon CA, Blachowicz L, Lukens J, Nissenbaum M and Getz GS: Genetic background selectively influences innominate artery atherosclerosis: Immune system deficiency as a probe. Arterioscler Thromb Vasc Biol. 23:1449–1454. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Lin Y, Bai L, Chen Y, Zhu N, Bai Y, Li Q, Zhao S, Fan J and Liu E: Practical assessment of the quantification of atherosclerotic lesions in apoE(−)/(−) mice. Mol Med Rep. 12:5298–5306. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Centa M, Ketelhuth DFJ, Malin S and Gisterå A: Quantification of atherosclerosis in mice. J Vis Exp. 12:doi: 10.3791/59828. 2019.PubMed/NCBI

86 

Bai L, Li Z, Li Q, Guan H, Zhao S, Liu R, Wang R, Zhang J, Jia Y, Fan J, et al: Mediator 1 is atherosclerosis protective by regulating macrophage polarization. Arterioscler Thromb Vasc Biol. 37:1470–1481. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Wang R, Zhang Y, Xu L, Lin Y, Yang X, Bai L, Chen Y, Zhao S, Fan J, Cheng X and Liu E: Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced cell responses during atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 6:367902016. View Article : Google Scholar : PubMed/NCBI

88 

Guan H, Lin Y, Bai L, An Y, Shang J, Wang Z, Zhao S, Fan J and Liu E: Dietary cocoa powder improves hyperlipidemia and reduces atherosclerosis in apoE deficient mice through the inhibition of hepatic endoplasmic reticulum stress. Mediators Inflamm. 2016:19375722016. View Article : Google Scholar : PubMed/NCBI

89 

Li S, Wang YN, Niimi M, Ning B, Chen Y, Kang D, Wang Z, Yu Q, Waqar AB, Liu E, et al: Angiotensin II destabilizes coronary plaques in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 36:810–816. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Yan H, Niimi M, Matsuhisa F, Zhou H, Kitajima S, Chen Y, Wang C, Yang X, Yao J, Yang D, et al: Apolipoprotein CIII deficiency protects against atherosclerosis in knockout rabbits. Arterioscler Thromb Vasc Biol. 40:2095–2107. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Dweck MR, Aikawa E, Newby DE, Tarkin JM, Rudd JH, Narula J and Fayad ZA: Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res. 119:330–340. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Chen Q, Yu J, Lukashova L, Latoche JD, Zhu J, Lavery L, Verdelis K, Anderson CJ and Kim K: validation of ultrasound super-resolution imaging of vasa vasorum in rabbit atherosclerotic plaques. IEEE Trans Ultrason Ferroelectr Freq Control. 67:1725–1729. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Zhang X, Ha S, Wei W, Duan S, Shi Y and Yang Y: Noninvasive imaging of aortic atherosclerosis by ultrasound biomicroscopy in a mouse model. J Ultrasound Med. 34:111–116. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Punjabi M, Xu L, Ochoa-Espinosa A, Kosareva A, Wolff T, Murtaja A, Broisat A, Devoogdt N and Kaufmann BA: Ultrasound molecular imaging of atherosclerosis with nanobodies: Translatable microbubble targeting murine and human VCAM (Vascular Cell Adhesion Molecule) 1. Arterioscler Thromb Vasc Biol. 39:2520–2530. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Borland SJ, Behnsen J, Ashton N, Francis SE, Brennan K, Sherratt MJ, Withers PJ and Canfield AE: X-ray micro-computed tomography: An emerging technology to analyze vascular calcification in animal models. Int J Mol Sci. 21:45382020. View Article : Google Scholar : PubMed/NCBI

96 

Magnoni M, Ammirati E and Camici PG: Non-invasive molecular imaging of vulnerable atherosclerotic plaques. J Cardiol. 65:261–269. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Choudhury RP, Fuster V, Badimon JJ, Fisher EA and Fayad ZA: MRI and characterization of atherosclerotic plaque: Emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol. 22:1065–1074. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Evans NR, Tarkin JM, Chowdhury MM, Warburton EA and Rudd JH: PET imaging of atherosclerotic disease: Advancing plaque assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 18:302016. View Article : Google Scholar : PubMed/NCBI

99 

Calcagno C, Lairez O, Hawkins J, Kerr SW, Dugas MS, Simpson T, Epskamp J, Robson PM, Eldib M, Bander I, et al: Combined PET/DCE-MRI in a rabbit model of atherosclerosis: Integrated quantification of plaque inflammation, permeability, and burden during treatment with a leukotriene A4 hydrolase inhibitor. JACC Cardiovasc Imaging. 11:291–301. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Calcagno C, Perez-Medina C, Mulder WJM and Fayad ZA: Whole-Body atherosclerosis imaging by positron emission tomography/magnetic resonance imaging: From mice to nonhuman primates. Arterioscler Thromb Vasc Biol. 40:1123–1134. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ and Liu Y: PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 57:1124–1129. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Cheng D, Li X, Zhang C, Tan H, Wang C, Pang L and Shi H: Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces. 7:2847–2855. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL and Silverstein RL: A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 4:211–221. 2006. View Article : Google Scholar : PubMed/NCBI

104 

Versari D, Daghini E, Virdis A, Ghiadoni L and Taddei S: Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 32 (Suppl 2):S314–S321. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT and Jacobo-Albavera L: Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: A review. Applied Sciences. 10:9382020. View Article : Google Scholar

106 

Yang Q, Xu J, Ma Q, Liu Z, Sudhahar V, Cao Y, Wang L, Zeng X, Zhou Y, Zhang M, et al: PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun. 9:46672018. View Article : Google Scholar : PubMed/NCBI

107 

Chen Y, Liu R, Zhang G, Yu Q, Jia M, Zheng C, Wang Y, Xu C, Zhang Y and Liu E: Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation. Biomed Pharmacother. 70:253–259. 2015. View Article : Google Scholar : PubMed/NCBI

108 

O'Donnell J, Mille-Baker B and Laffan M: Human umbilical vein endothelial cells differ from other endothelial cells in failing to express ABO blood group antigens. J Vasc Res. 37:540–547. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Addis R, Campesi I, Fois M, Capobianco G, Dessole S, Fenu G, Montella A, Cattaneo MG, Vicentini LM and Franconi F: Human umbilical endothelial cells (HUVECs) have a sex: Characterisation of the phenotype of male and female cells. Biol Sex Differ. 5:182014. View Article : Google Scholar : PubMed/NCBI

110 

Crampton SP, Davis J and Hughes CC: Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 183:doi: 10.3791/183. 2007.PubMed/NCBI

111 

Jaffe EA, Nachman RL, Becker CG and Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 52:2745–2756. 1973. View Article : Google Scholar : PubMed/NCBI

112 

Baudin B, Bruneel A, Bosselut N and Vaubourdolle M: A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2:481–485. 2007. View Article : Google Scholar : PubMed/NCBI

113 

Liu L and Shi GP: CD31: Beyond a marker for endothelial cells. Cardiovasc Res. 94:3–5. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Li AC and Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med. 8:1235–1242. 2002. View Article : Google Scholar : PubMed/NCBI

116 

Zimmerman MA, Selzman CH, Reznikov LL, Miller SA, Raeburn CD, Emmick J, Meng X and Harken AH: Lack of TNF-alpha attenuates intimal hyperplasia after mouse carotid artery injury. Am J Physiol Regul Integr Comp Physiol. 283:R505–R512. 2002. View Article : Google Scholar : PubMed/NCBI

117 

Zhang X, Goncalves R and Mosser DM: The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter. 14:Unit 14 11. 2008.PubMed/NCBI

118 

Austyn JM and Gordon S: F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 11:805–815. 1981. View Article : Google Scholar : PubMed/NCBI

119 

Bennett MR and Boyle JJ: Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis. 138:3–9. 1998. View Article : Google Scholar : PubMed/NCBI

120 

Gao S, Xu L, Zhang Y, Yu Q, Li J, Guan H, Wang X, Cheng D, Liu Y, Bai L, et al: Salusin-alpha inhibits proliferation and migration of vascular smooth muscle cell via Akt/mTOR signaling. Cell Physiol Biochem. 50:1740–1753. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Feng C, Wang X, Shi H, Yan Q, Zheng M, Li J, Zhang Q, Qin Y, Zhong Y, Mi J and Lai L: Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer. J Genet Genomics. 45:47–50. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, et al: Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech. 11:dmm0366322018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Y, Fatima M, Hou S, Bai L, Zhao S and Liu E: Research methods for animal models of atherosclerosis (Review). Mol Med Rep 24: 871, 2021.
APA
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., & Liu, E. (2021). Research methods for animal models of atherosclerosis (Review). Molecular Medicine Reports, 24, 871. https://doi.org/10.3892/mmr.2021.12511
MLA
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., Liu, E."Research methods for animal models of atherosclerosis (Review)". Molecular Medicine Reports 24.6 (2021): 871.
Chicago
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., Liu, E."Research methods for animal models of atherosclerosis (Review)". Molecular Medicine Reports 24, no. 6 (2021): 871. https://doi.org/10.3892/mmr.2021.12511
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Y, Fatima M, Hou S, Bai L, Zhao S and Liu E: Research methods for animal models of atherosclerosis (Review). Mol Med Rep 24: 871, 2021.
APA
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., & Liu, E. (2021). Research methods for animal models of atherosclerosis (Review). Molecular Medicine Reports, 24, 871. https://doi.org/10.3892/mmr.2021.12511
MLA
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., Liu, E."Research methods for animal models of atherosclerosis (Review)". Molecular Medicine Reports 24.6 (2021): 871.
Chicago
Zhang, Y., Fatima, M., Hou, S., Bai, L., Zhao, S., Liu, E."Research methods for animal models of atherosclerosis (Review)". Molecular Medicine Reports 24, no. 6 (2021): 871. https://doi.org/10.3892/mmr.2021.12511
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team