|
1
|
Gozzelino R, Jeney V and Soares MP:
Mechanisms of cell protection by heme oxygenase-1. Annu Rev
Pharmacol Toxicol. 50:323–354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wagener FA, Volk HD, Willis D, Abraham NG,
Soares MP, Adema GJ and Figdor CG: Different faces of the heme-heme
oxygenase system in inflammation. Pharmacol Rev. 55:551–571. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kim HP, Ryter SW and Choi AM: CO as a
cellular signaling molecule. Annu Rev Pharmacol Toxicol.
46:411–449. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Calabrese V, Butterfield DA, Scapagnini G,
Stella AG and Maines MD: Redox regulation of heat shock protein
expression by signaling involving nitric oxide and carbon monoxide:
Relevance to brain aging, neurodegenerative disorders, and
longevity. Antioxid Redox Signal. 8:444–477. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Exner M, Minar E, Wagner O and Schillinger
M: The role of heme oxygenase-1 promoter polymorphisms in human
disease. Free Radic Biol Med. 37:1097–1104. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Linnenbaum M, Busker M, Kraehling JR and
Behrends S: Heme oxygenase isoforms differ in their subcellular
trafficking during hypoxia and are differentially modulated by
cytochrome P450 reductase. PLoS One. 7:e354832012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shibahara S: The heme oxygenase dilemma in
cellular homeostasis: New insights for the feedback regulation of
heme catabolism. Tohoku J Exp Med. 200:167–186. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhou J, Terluk MR, Basso L, Mishra UR,
Orchard PJ, Cloyd JC, Schröder H and Kartha RV: N-acetylcysteine
provides cytoprotection in murine oligodendrocytes through heme
oxygenase-1 activity. Biomedicines. 8:2402020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jazwa A and Cuadrado A: Targeting heme
oxygenase-1 for neuroprotection and neuroinflammation in
neurodegenerative diseases. Curr Drug Targets. 11:1517–1531. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Seu L, Burt TD, Witte JS, Martin JN, Deeks
SG and McCune JM: Variations in the heme oxygenase-1 microsatellite
polymorphism are associated with plasma CD14 and viral load in
HIV-infected African-Americans. Genes Immun. 13:258–267. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hirai H, Kubo H, Yamaya M, Nakayama K,
Numasaki M, Kobayashi S, Suzuki S, Shibahara S and Sasaki H:
Microsatellite polymorphism in heme oxygenase-1 gene promoter is
associated with susceptibility to oxidant-induced apoptosis in
lymphoblastoid cell lines. Blood. 102:1619–1621. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rueda B, Oliver J, Robledo G, López-Nevot
MA, Balsa A, Pascual-Salcedo D, González-Gay MA, González-Escribano
MF and Martín J: HO-1 promoter polymorphism associated with
rheumatoid arthritis. Arthritis Rheum. 56:3953–3958. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Brydun A, Watari Y, Yamamoto Y, Okuhara K,
Teragawa H, Kono F, Chayama K, Oshima T and Ozono R: Reduced
expression of heme oxygenase-1 in patients with coronary
atherosclerosis. Hypertens Res. 30:341–348. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz
A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative
stress response and diseases: An evolutionarily conserved
mechanism. Cell Mol Life Sci. 73:3221–3247. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang DD: Mechanistic studies of the
Nrf2-Keap1 signaling pathway. Drug Metab Rev. 38:769–789. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jaramillo MC and Zhang DD: The emerging
role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev.
27:2179–2191. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Motohashi H, Katsuoka F, Engel JD and
Yamamoto M: Small Maf proteins serve as transcriptional cofactors
for keratinocyte differentiation in the Keap1-Nrf2 regulatory
pathway. Proc Natl Acad Sci USA. 101:6379–6384. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Itoh K, Chiba T, Takahashi S, Ishii T,
Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, et
al: An Nrf2/small Maf heterodimer mediates the induction of phase
II detoxifying enzyme genes through antioxidant response elements.
Biochem Biophys Res Commun. 236:313–322. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dhakshinamoorthy S, Jain AK, Bloom DA and
Jaiswal AK: Bach1 competes with Nrf2 leading to negative regulation
of the antioxidant response element (ARE)-mediated NAD(P)H: Quinone
oxidoreductase 1 gene expression and induction in response to
antioxidants. J Biol Chem. 280:16891–16900. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Reichard JF, Motz GT and Puga A: Heme
oxygenase-1 induction by NRF2 requires inactivation of the
transcriptional repressor BACH1. Nucleic Acids Res. 35:7074–7086.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Medina MV, Sapochnik D, Garcia Solá M and
Coso O: Regulation of the expression of heme oxygenase-1: Signal
transduction, gene promoter activation, and beyond. Antioxid Redox
Signal. 32:1033–1044. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Alam J and Cook JL: How many transcription
factors does it take to turn on the heme oxygenase-1 gene? Am J
Respir Cell Mol Biol. 36:166–174. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dawn B and Bolli R: HO-1 induction by
HIF-1: A new mechanism for delayed cardioprotection? Am J Physiol
Heart Circ Physiol. 289:H522–H524. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li X, Yu J, Gong L, Zhang Y, Dong S, Shi
J, Li C, Li Y, Zhang Y and Li H: Heme oxygenase-1(HO-1) regulates
Golgi stress and attenuates endotoxin-induced acute lung injury
through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling
pathway. Free Radic Biol Med. 165:243–253. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tong Y, Kai J, Wang S, Yu Y, Xie S, Zheng
H, Wang Y, Liu Y, Zhu K, Guan X, et al: VHL regulates the
sensitivity of clear cell renal cell carcinoma to SIRT4-mediated
metabolic stress via HIF-1α/HO-1 pathway. Cell Death Dis.
12:6212021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
He C, Zhang W, Li S, Ruan W, Xu J and Xiao
F: Edaravone improves septic cardiac function by inducing an
HIF-1α/HO-1 pathway. Oxid Med Cell Longev. 2018:52163832018.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lee PJ, Jiang B-H, Chin BY, Iyer NV, Alam
J, Semenza GL and Choi AK: Hypoxia-inducible factor-1 mediates
transcriptional activation of the heme oxygenase-1 gene in response
to hypoxia. J Biol Chem. 272:5375–5381. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tanos T, Marinissen MJ, Leskow FC,
Hochbaum D, Martinetto H, Gutkind JS and Coso OA: Phosphorylation
of c-Fos by members of the p38 MAPK family. Role in the AP-1
response to UV light. J Biol Chem. 280:18842–18852. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Monje P, Marinissen MJ and Gutkind JS:
Phosphorylation of the carboxyl-terminal transactivation domain of
c-Fos by extracellular signal-regulated kinase mediates the
transcriptional activation of AP-1 and cellular transformation
induced by platelet-derived growth factor. Mol Cell Biol.
23:7030–7043. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
McBride K and Nemer M: The C-terminal
domain of c-fos is required for activation of an AP-1 site specific
for jun-fos heterodimers. Mol Cell Biol. 18:5073–5081. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yeh CH, Chen TP, Wang YC, Lin YM and Lin
PJ: HO-1 activation can attenuate cardiomyocytic apoptosis via
inhibition of NF-kappaB and AP-1 translocation following cardiac
global ischemia and reperfusion. J Surg Res. 155:147–156. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee PJ, Camhi SL, Chin BY, Alam J and Choi
AM: AP-1 and STAT mediate hyperoxia-induced gene transcription of
heme oxygenase-1. Am J Physiol Lung Cell Mol Physiol.
279:L175–L182. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Paine A, Eiz-Vesper B, Blasczyk R and
Immenschuh S: Signaling to heme oxygenase-1 and its
anti-inflammatory therapeutic potential. Biochem Pharmacol.
80:1895–1903. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Campbell NK, Fitzgerald HK and Dunne A:
Regulation of inflammation by the antioxidant haem oxygenase 1. Nat
Rev Immunol. 21:411–425. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Merecz-Sadowska A, Sitarek P, Kucharska E,
Kowalczyk T, Zajdel K, Cegliński T and Zajdel R: Antioxidant
properties of plant-derived phenolic compounds and their effect on
skin fibroblast cells. Antioxidants (Basel). 10:7262021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yarmohammadi F, Hayes AW and Karimi G:
Natural compounds against cytotoxic drug-induced cardiotoxicity: A
review on the involvement of PI3K/Akt signaling pathway. J Biochem
Mol Toxicol. 35:e226832021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J
and Jia G: Recent advances of natural polyphenols activators for
Keap1-Nrf2 signaling pathway. Chem Biodivers. 16:e19004002019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang H, Liu YY, Jiang Q, Li KR, Zhao YX,
Cao C and Yao J: Salvianolic acid A protects RPE cells against
oxidative stress through activation of Nrf2/HO-1 signaling. Free
Radic Biol Med. 69:219–228. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang HF, Wang JH, Wang YL, Gao C, Gu YT,
Huang J, Wang JH and Zhang Z: Salvianolic acid A protects the
kidney against oxidative stress by activating the Akt/GSK-3β/Nrf2
signaling pathway and inhibiting the NF-κB signaling pathway in 5/6
nephrectomized rats. Oxid Med Cell Longev.
2019:28535342019.PubMed/NCBI
|
|
40
|
Gu X, Zheng C, Zheng Q, Chen S, Li W,
Shang Z and Zhang H: Salvianolic acid A attenuates early brain
injury after subarachnoid hemorrhage in rats by regulating
ERK/P38/Nrf2 signaling. Am J Transl Res. 9:5643–5652.
2017.PubMed/NCBI
|
|
41
|
Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu
Z, Hannink M and Simonyi A: Quercetin attenuates inflammatory
responses in BV-2 microglial cells: Role of MAPKs on the Nrf2
pathway and induction of heme oxygenase-1. PLoS One.
10:e01415092015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yao P, Nussler A, Liu L, Hao L, Song F,
Schirmeier A and Nussler N: Quercetin protects human hepatocytes
from ethanol-derived oxidative stress by inducing heme oxygenase-1
via the MAPK/Nrf2 pathways. J Hepatol. 47:253–261. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Campbell NK, Fitzgerald HK, Fletcher JM
and Dunne A: Plant-derived polyphenols modulate human dendritic
cell metabolism and immune function via AMPK-dependent induction of
heme oxygenase-1. Front Immunol. 10:3452019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kosuru R, Kandula V, Rai U, Prakash S, Xia
Z and Singh S: Pterostilbene decreases cardiac oxidative stress and
inflammation via activation of AMPK/Nrf2/HO-1 pathway in
fructose-fed diabetic rats. Cardiovasc Drugs Ther. 32:147–163.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nakasone R, Ashina M, Abe S, Tanimura K,
Van Rostenberghe H and Fujioka K: The role of heme oxygenase-1
promoter polymorphisms in perinatal disease. Int J Environ Res
Public Health. 18:35202021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Öllinger R and Pratschke J: Role of heme
oxygenase-1 in transplantation. Transpl Int. 23:1071–1081. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schulz S, Chisholm KM, Zhao H, Kalish F,
Yang Y, Wong RJ and Stevenson DK: Heme oxygenase-1 confers
protection and alters T-cell populations in a mouse model of
neonatal intestinal inflammation. Pediatr Res. 77:640–648. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gill AJ, Garza R, Ambegaokar SS, Gelman BB
and Kolson DL: Heme oxygenase-1 promoter region (GT)n polymorphism
associates with increased neuroimmune activation and risk for
encephalitis in HIV infection. J Neuroinflammation. 15:702018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kaplan M, Wong RJ and Stevenson DK: Heme
oxygenase-1 promoter polymorphisms: Do they modulate neonatal
hyperbilirubinemia? J Perinatol. 37:901–905. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Garza R, Gill AJ, Bastien BL, Garcia-Mesa
Y, Gruenewald AL, Gelman BB, Tsima B, Gross R, Letendre SL and
Kolson DL: Heme oxygenase-1 promoter (GT)n polymorphism associates
with HIV neurocognitive impairment. Neurol Neuroimmunol
Neuroinflamm. 7:e7102020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen YH, Lin SJ, Lin MW, Tsai HL, Kuo SS,
Chen JW, Charng MJ, Wu TC, Chen LC, Ding YA, et al: Microsatellite
polymorphism in promoter of heme oxygenase-1 gene is associated
with susceptibility to coronary artery disease in type 2 diabetic
patients. Hum Genet. 111:1–8. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yamada N, Yamaya M, Okinaga S, Nakayama K,
Sekizawa K, Shibahara S and Sasaki H: Microsatellite polymorphism
in the heme oxygenase-1 gene promoter is associated with
susceptibility to emphysema. Am J Hum Genet. 66:187–195. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Espinoza JA, González PA and Kalergis AM:
Modulation of antiviral immunity by heme oxygenase-1. Am J Pathol.
187:487–493. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou Y, Wang SN, Li H, Zha W, Peng Q, Li
S, Chen Y and Jin L: Quantitative trait analysis of polymorphisms
in two bilirubin metabolism enzymes to physiologic bilirubin levels
in Chinese newborns. J Pediatr. 165:1154–1160.e1. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wenzel P, Rossmann H, Müller C, Kossmann
S, Oelze M, Schulz A, Arnold N, Simsek C, Lagrange J, Klemz R, et
al: Heme oxygenase-1 suppresses a pro-inflammatory phenotype in
monocytes and determines endothelial function and arterial
hypertension in mice and humans. Eur Heart J. 36:3437–3446. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pechlaner R, Willeit P, Summerer M, Santer
P, Egger G, Kronenberg F, Demetz E, Weiss G, Tsimikas S, Witztum
JL, et al: Heme oxygenase-1 gene promoter microsatellite
polymorphism is associated with progressive atherosclerosis and
incident cardiovascular disease. Arterioscler Thromb Vasc Biol.
35:229–236. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Leaf DE, Body SC, Muehlschlegel JD,
McMahon GM, Lichtner P, Collard CD, Shernan SK, Fox AA and Waikar
SS: Length polymorphisms in heme oxygenase-1 and AKI after cardiac
surgery. J Am Soc Nephrol. 27:3291–3297. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang MM, Zheng YY, Gao Y, Zhang JZ, Liu
F, Yang YN, Li XM, Ma YT and Xie X: Heme oxygenase-1 gene promoter
polymorphisms are associated with coronary heart disease and
restenosis after percutaneous coronary intervention: A
meta-analysis. Oncotarget. 7:83437–83450. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ono K, Mannami T and Iwai N: Association
of a promoter variant of the haeme oxygenase-1 gene with
hypertension in women. J Hypertens. 21:1497–1503. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ellakany WI, Mahmoud MoheyEldin K,
Invernizzi P, Mahmoud ElKady A, Eldin Fathy Abou Elkheir H, Abdel
Haleem Abo Elwafa R and Ellakany A: Study of the influence of heme
oxygenase 1 gene single nucleotide polymorphism (rs2071746) on
esophageal varices among patients with cirrhosis. Eur J
Gastroenterol Hepatol. 30:888–892. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ono K, Goto Y, Takagi S, Baba S, Tago N,
Nonogi H and Iwai N: A promoter variant of the heme oxygenase-1
gene may reduce the incidence of ischemic heart disease in
Japanese. Atherosclerosis. 173:313–319. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Buis CI, van der Steege G, Visser DS,
Nolte IM, Hepkema BG, Nijsten M, Slooff MJ and Porte RJ: Heme
oxygenase-1 genotype of the donor is associated with graft survival
after liver transplantation. Am J Transplant. 8:377–385. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rich A, Nordheim A and Wang AH: The
chemistry and biology of left-handed Z-DNA. Annu Rev Biochem.
53:791–846. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Naylor LH and Clark EM: d(TG)n.d(CA)n
sequences upstream of the rat prolactin gene form Z-DNA and inhibit
gene transcription. Nucleic Acids Res. 18:1595–1601. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kramer M, Sponholz C, Slaba M, Wissuwa B,
Claus RA, Menzel U, Huse K, Platzer M and Bauer M: Alternative 5′
untranslated regions are involved in expression regulation of human
heme oxygenase-1. PLoS One. 8:e772242013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Doberer D, Haschemi A, Andreas M, Zapf TC,
Clive B, Jeitler M, Heinzl H, Wagner O, Wolzt M and Bilban M: Haem
arginate infusion stimulates haem oxygenase-1 expression in healthy
subjects. Br J Pharmacol. 161:1751–1762. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hong CC, Ambrosone CB, Ahn J, Choi JY,
McCullough ML, Stevens VL, Rodriguez C, Thun MJ and Calle EE:
Genetic variability in iron-related oxidative stress pathways
(Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of
postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev.
16:1784–1794. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Abraham NG and Kappas A: Pharmacological
and clinical aspects of heme oxygenase. Pharmacol Rev. 60:79–127.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liang KW, Lee WJ, Lee WL, Wu JP, Lee IT,
Wang JS and Sheu WH: Subjects with coronary artery disease and
reduced ejection fraction have longer (GT)n repeats in the
heme-oxygenase 1 gene promoter. Heart Vessels. 36:615–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wu MM, Chiou HY, Chen CL, Hsu LI, Lien LM,
Wang CH, Hsieh YC, Wang YH, Hsueh YM, Lee TC, et al: Association of
heme oxygenase-1 GT-repeat polymorphism with blood pressure
phenotypes and its relevance to future cardiovascular mortality
risk: An observation based on arsenic-exposed individuals.
Atherosclerosis. 219:704–708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ross R: Atherosclerosis-an inflammatory
disease. N Engl J Med. 340:115–126. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Duckers HJ, Boehm M, True AL, Yet SF, San
H, Park JL, Clinton Webb R, Lee ME, Nabel GJ and Nabel EG: Heme
oxygenase-1 protects against vascular constriction and
proliferation. Nat Med. 7:693–698. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ishikawa K, Sugawara D, Wang XP, Suzuki K,
Itabe H, Maruyama Y and Lusis AJ: Heme oxygenase-1 inhibits
atherosclerotic lesion formation in ldl-receptor knockout mice.
Circ Res. 88:506–512. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tulis DA, Durante W, Peyton KJ, Evans AJ
and Schafer AI: Heme oxygenase-1 attenuates vascular remodeling
following balloon injury in rat carotid arteries. Atherosclerosis.
155:113–122. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lindenblatt N, Bordel R, Schareck W,
Menger MD and Vollmar B: Vascular heme oxygenase-1 induction
suppresses microvascular thrombus formation in vivo. Arterioscler
Thromb Vasc Biol. 24:601–606. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liang KW, Lee WJ, Lee IT, Lee WL, Wang JS,
Wu JP and Sheu WHH: Subjects with microvascular angina have longer
GT repeats polymorphism in the haem oxygenase-1 gene promoter.
Biomarkers. 25:144–148. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Raval CM and Lee PJ: Heme oxygenase-1 in
lung disease. Curr Drug Targets. 11:1532–1540. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Du Y, Zhang H, Xu Y, Ding Y, Chen X, Mei
Z, Ding H and Jie Z: Association among genetic polymorphisms of
GSTP1, HO-1, and SOD-3 and chronic obstructive pulmonary disease
susceptibility. Int J Chron Obstruct Pulmon Dis. 14:2081–2088.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou H, Ying X, Liu Y, Ye S, Yan J and Li
Y: Genetic polymorphism of heme oxygenase 1 promoter in the
occurrence and severity of chronic obstructive pulmonary disease: A
meta-analysis. J Cell Mol Med. 21:894–903. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fischer BM, Pavlisko E and Voynow JA:
Pathogenic triad in COPD: Oxidative stress, protease-antiprotease
imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis.
6:413–421. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang JQ, Zhang JQ, Fang LZ, Liu L, Fu WP
and Dai LM: Effect of oral N-acetylcysteine on COPD patients with
microsatellite polymorphism in the heme oxygenase-1 gene promoter.
Drug Des Devel Ther. 9:6379–6387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang ZY, Guan J, Li H, Zhou ZQ and Zhou
GW: Heme oxygenase-1 promoter polymorphism protects liver
allograft. Indian J Surg. 78:14–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Soares M, Lin Y, Anrather J, Csizmadia E,
Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD and Bach
FH: Expression of heme oxygenase-1 can determine cardiac xenograft
survival. Nat Med. 4:1073–1077. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
84
|
Katori M, Buelow R, Ke B, Ma J, Coito AJ,
Iyer S, Southard D, Busuttil RW and Kupiec-Weglinski JW: Heme
oxygenase-1 overexpression protects rat hearts from cold
ischemia/reperfusion injury via an antiapoptotic pathway.
Transplantation. 73:287–292. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ozaki KS, Marques GM, Nogueira E, Feitoza
RQ, Cenedeze MA, Franco MF, Mazzali M, Soares MP, Pacheco-Silva A
and Câmara NO: Improved renal function after kidney transplantation
is associated with heme oxygenase-1 polymorphism. Clin Transplant.
22:609–616. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nisula S, Kaukonen KM, Vaara ST, Korhonen
AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I,
Suojaranta-Ylinen R, et al: Incidence, risk factors and 90-day
mortality of patients with acute kidney injury in Finnish intensive
care units: The FINNAKI study. Intensive Care Med. 39:420–428.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Vilander LM, Vaara ST, Donner KM, Lakkisto
P, Kaunisto MA and Pettilä V; FINNAKI Study Group, : Heme
oxygenase-1 repeat polymorphism in septic acute kidney injury. PLoS
One. 14:e02172912019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Vashist YK, Uzungolu G, Kutup A, Gebauer
F, Koenig A, Deutsch L, Zehler O, Busch P, Kalinin V, Izbicki JR
and Yekebas EF: Heme oxygenase-1 germ line GTn promoter
polymorphism is an independent prognosticator of tumor recurrence
and survival in pancreatic cancer. J Surg Oncol. 104:305–311. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Okamoto I, Krögler J, Endler G, Kaufmann
S, Mustafa S, Exner M, Mannhalter C, Wagner O and Pehamberger H: A
microsatellite polymorphism in the heme oxygenase-1 gene promoter
is associated with risk for melanoma. Int J Cancer. 119:1312–1315.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Berberat PO, Dambrauskas Z, Gulbinas A,
Giese T, Giese N, Künzli B, Autschbach F, Meuer S, Büchler MW and
Friess H: Inhibition of heme oxygenase-1 increases responsiveness
of pancreatic cancer cells to anticancer treatment. Clin Cancer
Res. 11:3790–3798. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sunamura M, Duda DG, Ghattas MH, Lozonschi
L, Motoi F, Yamauchi J, Matsuno S, Shibahara S and Abraham NG: Heme
oxygenase-1 accelerates tumor angiogenesis of human pancreatic
cancer. Angiogenesis. 6:15–24. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bukowska-Strakova K, Włodek J, Pitera E,
Kozakowska M, Konturek-Cieśla A, Cieśla M, Gońka M, Nowak W,
Wieczorek A, Pawińska-Wąsikowska K, et al: Role of HMOX1 promoter
genetic variants in chemoresistance and chemotherapy induced
neutropenia in children with acute lymphoblastic leukemia. Int J
Mol Sci. 22:9882021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tang D, Tang WJ, Shi XL, Li WP, Zhou H, Lu
LM and Tao L: Association of the microsatellite (GT)n repeat
polymorphisms of the HO-1 gene promoter and corresponding serum
levels with the risk of laryngeal squamous cell carcinoma. Acta
Otolaryngol. 136:806–811. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang L, Song FF, Huang YB, Zheng H, Song
FJ and Chen KX: Association between the (GT)n polymorphism of the
HO-1 gene promoter region and cancer risk: A meta-analysis. Asian
Pac J Cancer Prev. 15:4617–4622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hu JL, Li ZY, Liu W, Zhang RG, Li GL, Wang
T, Ren JH and Wu G: Polymorphism in heme oxygenase-1 (HO-1)
promoter and alcohol are related to the risk of esophageal squamous
cell carcinoma on Chinese males. Neoplasma. 57:86–92. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lo SS, Lin SC, Wu CW, Chen JH, Yeh WI,
Chung MY and Lui WY: Heme oxygenase-1 gene promoter polymorphism is
associated with risk of gastric adenocarcinoma and lymphovascular
tumor invasion. Ann Surg Oncol. 14:2250–2256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sawa T, Mounawar M, Tatemichi M, Gilibert
I, Katoh T and Ohshima H: Increased risk of gastric cancer in
Japanese subjects is associated with microsatellite polymorphisms
in the heme oxygenase-1 and the inducible nitric oxide synthase
gene promoters. Cancer Lett. 269:78–84. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kikuchi A, Yamaya M, Suzuki S, Yasuda H,
Kubo H, Nakayama K, Handa M, Sasaki T, Shibahara S, Sekizawa K and
Sasaki H: Association of susceptibility to the development of lung
adenocarcinoma with the heme oxygenase-1 gene promoter
polymorphism. Hum Genet. 116:354–360. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Jirásková A, Novotný J, Novotný L, Vodicka
P, Pardini B, Naccarati A, Schwertner HA, Hubácek JA, Puncochárová
L, Šmerhovský Z and Vítek L: Association of serum bilirubin and
promoter variations in HMOX1 and UGT1A1 genes with sporadic
colorectal cancer. Int J Cancer. 131:1549–1555. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Podkalicka P, Mucha O, Józkowicz A, Dulak
J and Łoboda A: Heme oxygenase inhibition in cancers: Possible
tools and targets. Contemp Oncol (Pozn). 22:32–23. 2018.PubMed/NCBI
|
|
101
|
Kah J, Volz T, Lütgehetmann M, Groth A,
Lohse AW, Tiegs G, Sass G and Dandri M: Haem oxygenase-1
polymorphisms can affect HCV replication and treatment responses
with different efficacy in humanized mice. Liver Int. 37:1128–1137.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Singh D, Wasan H and Reeta KH: Heme
oxygenase-1 modulation: A potential therapeutic target for COVID-19
and associated complications. Free Radic Biol Med. 161:263–271.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhou JF, Luo JY, Zhu WB, Yang CY, Zeng YL
and Qiu XL: Association between genetic polymorphism of heme
oxygenase 1 promoter and neonatal hyperbilirubinemia: A
meta-analysis. J Matern Fetal Neonatal Med. 34:12–23. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wagener FA, Toonen EJ, Wigman L, Fransen
J, Creemers MC, Radstake TR, Coenen MJ, Barrera P, van Riel PL and
Russel FG: HMOX1 promoter polymorphism modulates the relationship
between disease activity and joint damage in rheumatoid arthritis.
Arthritis Rheum. 58:3388–3393. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gulla A, Gulbinas A, Dambrauskas Z and
Strupas K: Heme oxygenase-1 polymorphism is associated with the
development of necrotic acute pancreatitis via vascular cell
adhesion molecule-1 and the E-selectin expression regulation
pathway. Pancreas. 48:787–791. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lee EY, Lee YH, Kim SH, Chung KS, Kwon O,
Kim BS, Nam CM, Park CS, Lee BW, Kang ES, et al: Association
between heme oxygenase-1 promoter polymorphisms and the development
of albuminuria in type 2 diabetes: A case-control study. Medicine
(Baltimore). 94:e18252015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Holweg CT, Balk AH, Uitterlinden AG,
Niesters HG, Maat LP, Weimar W and Baan CC: Functional heme
oxygenase-1 promoter polymorphism in relation to heart failure and
cardiac transplantation. J Heart Lung Transplant. 24:493–497. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Foresti R, Bains SK, Pitchumony TS, de
Castro Brás LE, Drago F, Dubois-Randé JL, Bucolo C and Motterlini
R: Small molecule activators of the Nrf2-HO-1 antioxidant axis
modulate heme metabolism and inflammation in BV2 microglia cells.
Pharmacol Res. 76:132–148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Funes SC, Rios M, Fernández-Fierro A,
Covián C, Bueno SM, Riedel CA, Mackern-Oberti JP and Kalergis AM:
Naturally derived heme-oxygenase 1 inducers and their therapeutic
application to immune-mediated diseases. Front Immunol.
11:14672020. View Article : Google Scholar : PubMed/NCBI
|