Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 25 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF

  • Authors:
    • Chenyue Li
    • Hongxuan Lie
    • Weifeng Sun
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, Changhai Hospital, Naval Medical University, Shanghai 200082, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 61
    |
    Published online on: December 20, 2021
       https://doi.org/10.3892/mmr.2021.12577
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Retinal neovascularization (RNV) is a type of serious vision‑threating disease, commonly induced by hypoxia of ischemic retinopathy, which happens in various ocular diseases including diabetic retinopathy and retinopathy of prematurity. In clinical work, anti‑VEGF therapy is the preferred strategy for treating RNV. However, not all cases are sensitive to anti‑VEGF injection. It is urgent and necessary to develop novel targets for inhibiting neovascularization in ocular diseases. Angiogenin (ANG) and brain‑derived neurotrophic factor (BDNF) are implicated in angiogenesis, although their regulation and effects in RNV remain to be elucidated. microRNA (miRNA) is a type of small non‑coding RNA, which can modulate targets by degrading transcripts or inhibiting protein translation. In the present study, miRNA‑mediated modulation of ANG and BDNF was explored in an oxygen‑induced retinopathy mouse model and human retinal microvascular endothelial cells (HRECs) under hypoxia. The results showed that downregulation of miR‑182‑5p and upregulation of ANG and BDNF were found in vivo and in vitro. Overexpression of miR‑182‑5p suppressed the expression of ANG and BDNF significantly in HRECs under hypoxia. In addition, knockdown of ANG and BDNF by miR‑182‑5p transfection significantly improved hypoxia‑induced HRECs dysfunctions, including enhancing cell viability, reducing cell migration and improved tube integrity. In conclusion, miRNA‑dependent regulation on ANG and BDNF indicates a critical role in hypoxia‑induced retinal microvascular response. miR‑182‑5p‑based therapy can influence the expression of ANG and BDNF, which demonstrates the potential for treating RNV diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Rajappa M, Saxena P and Kaur J: Ocular angiogenesis: Mechanisms and recent advances in therapy. Adv Clin Chem. 50:103–121. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Usui-Ouchi A, Aguilar E, Murinello S, Prins M, Gantner ML, Wright PE, Berlow RB and Friedlander M: An allosteric peptide inhibitor of HIF-1α regulates hypoxia-induced retinal neovascularization. Proc Natl Acad Sci (USA). 117:28297–28306. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Berkowitz BA: Hypoxia and retinal neovascularization. Retinal and Choroidal Angiogenesis Scientific Symposium; Nashville, TN: pp. 151–168. 2005

4 

Siemerink MJ, Augustin AJ and Schlingemann RO: Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol. 46:4–20. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Antonetti DA, Klein R and Gardner TW: Diabetic retinopathy. N Engl J Med. 366:1227–1239. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Pavlov N and Badet J: Angiogenin: Involvement in angiogenesis and tumour growth. Bull Cancer. 88:725–732. 2001.(In French). PubMed/NCBI

7 

Kishimoto K, Liu S, Tsuji T, Olson KA and Hu GF: Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 24:445–456. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Allen SJ and Dawbarn D: Clinical relevance of the neurotrophins and their receptors. Clin sci (Lon). 110:175–191. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Kermani P, Rafii D, Jin DK, Whitlock P, Schaffer W, Chiang A, Vincent L, Friedrich M, Shido K, Hackett NR, et al: Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest. 115:653–663. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Matsuda S, Fujita T, Kajiya M, Takeda K, Shiba H, Kawaguchi H and Kurihara H: Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade. J Cell Physiol. 227:2123–2129. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Salis MB, Graiani G, Desortes E, Caldwell RB, Madeddu P and Emanueli C: Nerve growth factor supplementation reverses the impairment, induced by Type 1 diabetes, of hindlimb post-ischaemic recovery in mice. Diabetologia. 47:1055–1063. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Leung A and Natarajan R: Noncoding RNAs in vascular disease. Curr Opin Cardiol. 29:199–206. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Gong Q and Su G: Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci rep. 37:BSR201711572017. View Article : Google Scholar : PubMed/NCBI

15 

Gong Q, Xie J, Liu Y, Li Y and Su G: Differentially Expressed MicroRNAs in the Development of Early Diabetic Retinopathy. J Diabetes Res. 2017:p1–10. 2017. View Article : Google Scholar

16 

Giza DE, Vasilescu C and Calin GA: MicroRNAs and ceRNAs: Therapeutic implications of RNA networks. Expert Opin Biol Ther. 14:1285–1293. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Nitzan M, Steiman-Shimony A, Altuvia Y, Biham O and Margalit H: Interactions between distant ceRNAs in regulatory networks. Biophys J. 106:2254–2266. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Kim CB, D'Amore PA and Connor KM: Revisiting the mouse model of oxygen-induced retinopathy. Eye Brain. 8:67–79. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T (−Delta Delta C)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Selvam S, Kumar T and Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res. 63:1–19. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Campochiaro PA: Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res. 49:67–81. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Lutty GA and McLeod DS: Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res. 62:58–76. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Rattner A, Williams J and Nathans J: Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 129:3807–3820. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Wallsh JO and Gallemore RP: Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options. Cells. 10:10492021. View Article : Google Scholar : PubMed/NCBI

25 

Seah I, Zhao X, Lin Q, Liu Z, Su SZZ, Yuen YS, Hunziker W, Lingam G, Loh XJ and Su X: Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye (Lond). 34:1341–1356. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Michl M, Fabianska M, Seeböck P, Sadeghipour A, Haj Najeeb B, Bogunovic H, Schmidt-Erfurth UM and Gerendas BS: Automated quantification of macular fluid in retinal diseases and their response to anti-VEGF therapy. Br J Ophthalmol. 0:1–8. 2020.

27 

Viallard C and Larrivée B: Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Gao X and Xu Z: Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 40:619–624. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Yao X, Li D, Xiong DM, Li L, Jiang R and Chen JX: A novel role of ribonuclease inhibitor in regulation of epithelial-to-mesenchymal transition and ILK signaling pathway in bladder cancer cells. Cell Tissue Res. 353:409–423. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H and Hashido K: MicroRNA function and neurotrophin BDNF. Neurochem Int. 59:551–558. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Pearse RN, Swendeman SL, Li Y, Rafii D and Hempstead BL: A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 105:4429–4436. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Garrido MP, Torres I, Vega M and Romero C: Angiogenesis in Gynecological Cancers: Role of Neurotrophins. Front Oncol. 9:9132019. View Article : Google Scholar : PubMed/NCBI

33 

Gong Q, Li F, Xie J and Su G: Upregulated VEGF and Robo4 correlate with the reduction of miR-15a in the development of diabetic retinopathy. Endocrine. 65:35–45. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Gong Q, Xie J, Li Y, Liu Y and Su G: Enhanced ROBO4 is mediated by up-regulation of HIF-1α/SP1 or reduction in miR-125b-5p/miR-146a-5p in diabetic retinopathy. J Cell Mol Med. 23:4723–4737. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Liu CH, Huang S, Britton WR and Chen J: MicroRNAs in Vascular Eye Diseases. Int J of Mol Sci. 21:649 View Article : Google Scholar

36 

Yan S, Wang H, Chen X, Liang C, Shang W, Wang L, Li J and Xu D: MiR-182-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-C. Cancer Lett. 488:18–26. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li C, Lie H and Sun W: Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF. Mol Med Rep 25: 61, 2022.
APA
Li, C., Lie, H., & Sun, W. (2022). Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF. Molecular Medicine Reports, 25, 61. https://doi.org/10.3892/mmr.2021.12577
MLA
Li, C., Lie, H., Sun, W."Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF". Molecular Medicine Reports 25.2 (2022): 61.
Chicago
Li, C., Lie, H., Sun, W."Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF". Molecular Medicine Reports 25, no. 2 (2022): 61. https://doi.org/10.3892/mmr.2021.12577
Copy and paste a formatted citation
x
Spandidos Publications style
Li C, Lie H and Sun W: Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF. Mol Med Rep 25: 61, 2022.
APA
Li, C., Lie, H., & Sun, W. (2022). Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF. Molecular Medicine Reports, 25, 61. https://doi.org/10.3892/mmr.2021.12577
MLA
Li, C., Lie, H., Sun, W."Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF". Molecular Medicine Reports 25.2 (2022): 61.
Chicago
Li, C., Lie, H., Sun, W."Inhibitory effect of miR‑182‑5p on retinal neovascularization by targeting angiogenin and BDNF". Molecular Medicine Reports 25, no. 2 (2022): 61. https://doi.org/10.3892/mmr.2021.12577
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team