Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2022 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 25 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)

  • Authors:
    • Shuyu Liu
    • Zhenhan Deng
    • Kang Chen
    • Shengsheng Jian
    • Feifei Zhou
    • Yuan Yang
    • Zicai Fu
    • Huanyu Xie
    • Jianyi Xiong
    • Weimin Zhu
  • View Affiliations / Copyright

    Affiliations: Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China, Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 99
    |
    Published online on: January 24, 2022
       https://doi.org/10.3892/mmr.2022.12615
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra‑articular proinflammatory and anti‑inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti‑inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self‑repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti‑­inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL‑1β, TNF‑α, IL‑6, IL‑15, IL‑17 and IL‑18, as well as the key anti‑inflammatory factors reducing OA‑related articular damage, including IL‑4, insulin‑like growth factor and TGF‑β. The predominance of proinflammatory over anti‑inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro‑ and anti‑inflammatory factors.
View Figures

Figure 1

Figure 2

View References

1 

Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Goldring MB and Goldring SR: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann NY Acad Sci. 1192:230–237. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Xia B, Di Chen, Zhang J, Hu S, Jin H and Tong P: Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif Tissue Int. 95:495–505. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X and Wang Y: SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage. 23:2259–2268. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Tortorella MD and Malfait AM: Will the real aggrecanase(s) step up: Evaluating the criteria that define aggrecanase activity in osteoarthritis. Curr Pharm Biotechnol. 9:16–23. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Matsuo M, Nishida K, Yoshida A, Murakami T and Inoue H: Expression of caspase-3 and −9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage. Acta Med Okayama. 55:333–340. 2001.PubMed/NCBI

7 

Abdel-Sayed P and Pioletti DP: Strategies for improving the repair of focal cartilage defects. Nanomedicine (Lond). 10:2893–2905. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Medvedeva EV, Grebenik EA, Gornostaeva SN, Telpuhov VI, Lychagin AV, Timashev PS and Chagin AS: Repair of damaged articular cartilage: Current approaches and future directions. Int J Mol Sci. 19:23662018. View Article : Google Scholar : PubMed/NCBI

9 

Hunter DJ and Bierma-Zeinstra S: Osteoarthritis. Lancet. 393:1745–1759. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Rhee SM, You HJ and Han SK: Injectable tissue-engineered soft tissue for tissue augmentation. J Korean Med Sci. 29 (Suppl 3):S170–S175. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Schott EM, Farnsworth CW, Grier A, Lillis JA, Soniwala S, Dadourian GH, Bell RD, Doolittle ML, Villani DA, Awad H, et al: Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 3:e959972018. View Article : Google Scholar : PubMed/NCBI

12 

Kuo SJ, Yang WH, Liu SC, Tsai CH, Hsu HC and Tang CH: Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis. PLoS One. 12:e01760522017. View Article : Google Scholar : PubMed/NCBI

13 

Wang T and He C: Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44:38–50. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Nguyen L, Sharma A, Chakraborty C, Saibaba B, Ahn ME and Lee SS: Review of prospects of biological fluid biomarkers in osteoarthritis. Int J Mol Sci. 18:6012017. View Article : Google Scholar : PubMed/NCBI

16 

Mabey T, Honsawek S, Tanavalee A, Yuktanandana P, Wilairatana V and Poovorawan Y: Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers. 21:639–644. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Boehme KA and Rolauffs B: Onset and progression of human osteoarthritis-can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM Degradation, and inflammation in articular cartilage? Int J Mol Sci. 19:22822018. View Article : Google Scholar : PubMed/NCBI

18 

Goldring MB and Goldring SR: Osteoarthritis. J Cell Physiol. 213:626–634. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Sirikaew N, Chomdej S, Tangyuenyong S, Tangjitjaroen W, Somgird C, Thitaram C and Ongchai S: Proinflammatory cytokines and lipopolysaccharides up regulate MMP-3 and MMP-13 production in Asian elephant (Elephas maximus) chondrocytes: Attenuation by anti-arthritic agents. BMC Vet Res. 15:4192019. View Article : Google Scholar : PubMed/NCBI

20 

Ho YJ, Lu JW, Ho LJ, Lai JH, Huang HS, Lee CC, Lin TY, Lien SB, Lin LC, Chen LW, et al: Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem Biophys Res Commun. 517:155–163. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Fearing BV and Van Dyke ME: In vitro response of macrophage polarization to a keratin biomaterial. Acta Biomater. 10:3136–3144. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Dinarello CA: Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 25:389–393. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Melchiorri C, Meliconi R, Frizziero L, Silvestri T, Pulsatelli L, Mazzetti I, Borzì RM, Uguccioni M and Facchini A: Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum. 41:2165–2174. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N and Martel-Pelletier J: Can altered production of interleukin-1beta, interleukin-6, transforming growth factor-beta and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage. 10:491–500. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Farahat MN, Yanni G, Poston R and Panayi GS: Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 52:870–875. 1993. View Article : Google Scholar : PubMed/NCBI

26 

Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP and Robinson WH: Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 14:R72012. View Article : Google Scholar : PubMed/NCBI

27 

Wojdasiewicz P, Poniatowski ŁA and Szukiewicz D: The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014:5614592014. View Article : Google Scholar : PubMed/NCBI

28 

Burrage PS, Mix KS and Brinckerhoff CE: Matrix metalloproteinases: Role in arthritis. Front Biosci. 11:529–543. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Verma P and Dalal K: ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J Cell Biochem. 112:3507–3514. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Koshy PJ, Lundy CJ, Rowan AD, Porter S, Edwards DR, Hogan A, Clark IM and Cawston TE: The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: A time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum. 46:961–967. 2002. View Article : Google Scholar : PubMed/NCBI

31 

El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N and Fahmi H: Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 63:168–179. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Gilman SC, Chang J, Zeigler PR, Uhl J and Mochan E: Interleukin-1 activates phospholipase A2 in human synovial cells. Arthritis Rheum. 31:126–130. 1988. View Article : Google Scholar : PubMed/NCBI

33 

Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A and Tripp CS: Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 46:1789–1803. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Lotz M: The role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am. 25:269–282. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Haynes MK, Hume EL and Smith JB: Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol. 105:315–325. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Afonso V, Champy R, Mitrovic D, Collin P and Lomri A: Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine. 74:324–329. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Bodmer JL, Schneider P and Tschopp J: The molecular architecture of the TNF superfamily. Trends Biochem Sci. 27:19–26. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H and Mehrzadi S: Ap MMR-21332-279469 optosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 61:411–425. 2016. View Article : Google Scholar : PubMed/NCBI

39 

MacEwan DJ: TNF receptor subtype signalling: Differences and cellular consequences. Cell Signal. 14:477–492. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K and Scheurich P: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 83:793–802. 1995. View Article : Google Scholar : PubMed/NCBI

41 

Hsu H, Xiong J and Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappaB activation. Cell. 81:495–504. 1995. View Article : Google Scholar : PubMed/NCBI

42 

Hsu H, Huang J, Shu HB, Baichwal V and Goeddel DV: TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 4:387–396. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ and Vucic D: c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem. 283:24295–24299. 2008. View Article : Google Scholar : PubMed/NCBI

44 

O'Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC and Ting AT: Ubiquitination of RIP1 Regulates an NF-kappaB-Independent cell-death switch in TNF signaling. Curr Biol. 17:418–424. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Ea CK, Deng L, Xia ZP, Pineda G and Chen ZJ: Activation of IKK by TNF alpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 22:245–257. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Bunning RA and Russell RG: The effect of tumor necrosis factor alpha and gamma-interferon on the resorption of human articular cartilage and on the production of prostaglandin E and of caseinase activity by human articular chondrocytes. Arthritis Rheum. 32:780–784. 1989. View Article : Google Scholar : PubMed/NCBI

47 

Campbell IK, Piccoli DS, Roberts MJ, Muirden KD and Hamilton JA: Effects of tumor necrosis factor and on resorption of human articular cartilage and production of plasminogen activator by human articular chondrocytes. Arthritis Rheum. 33:542–552. 1990. View Article : Google Scholar : PubMed/NCBI

48 

Lefebvre V, Peeters-Joris C and Vaes G: Modulation by interleukin 1 and tumor necrosis factor of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta. 1052:366–378. 1990. View Article : Google Scholar : PubMed/NCBI

49 

Meyer FA, Yaron I and Yaron M: Synergistic, additive, and antagonistic effects of interleukin-1 beta, tumor necrosis factor alpha, and gamma-interferon on prostaglandin E, hyaluronic acid, and collagenase production by cultured synovial fibroblasts. Arthritis Rheum. 33:1518–1525. 1990. View Article : Google Scholar : PubMed/NCBI

50 

Saklatvala J: Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 322:547–549. 1986. View Article : Google Scholar : PubMed/NCBI

51 

van den Berg WB: Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res. 3:18–26. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Brennan FM, Chantry D, Jackson AM, Maini RN and Feldmann M: Cytokine production in culture by cells isolated from the synovial membrane. J Autoimmun. 2 (Suppl 1):S177–S186. 1989. View Article : Google Scholar

53 

O'Byrne E, Blancuzzi V, Wilson DE, Wong M and Jeng AY: Elevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arthritis Rheum. 33:1023–1028. 1990. View Article : Google Scholar : PubMed/NCBI

54 

Pettipher ER, Higgs GA and Henderson B: Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci USA. 83:8749–8753. 1986. View Article : Google Scholar : PubMed/NCBI

55 

van Beuningen HM, Arntz OJ and van den Berg WB: In vivo effects of interleukin-1 on articular cartilage. Prolongation of proteoglycan metabolic disturbances in old mice. Arthritis Rheum. 34:606–615. 1991. View Article : Google Scholar : PubMed/NCBI

56 

Ding X, Zhang Y, Huang Y, Liu S, Lu H and Sun T: Cadherin-11 involves in synovitis and increases the migratory and invasive capacity of fibroblast-like synoviocytes of osteoarthritis. Int Immunopharmacol. 26:153–161. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Liu S, Cao C, Zhang Y, Liu G, Ren W, Ye Y and Sun T: PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res. 14:4252019. View Article : Google Scholar : PubMed/NCBI

58 

Porée B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Malléin-Gerin F, et al: Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in Articular chondrocytes requires a decrease of Sp1·Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem. 283:4850–4865. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Rowan AD, Koshy PJ, Shingleton WD, Degnan BA, Heath JK, Vernallis AB, Spaull JR, Life PF, Hudson K and Cawston TE: Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthritis Rheum. 44:1620–1632. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Cawston TE, Curry VA, Summers CA, Clark IM, Riley GP, Life PF, Spaull JR, Goldring MB, Koshy PJ, Rowan AD and Shingleton WD: The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis Rheum. 41:1760–1771. 1998. View Article : Google Scholar : PubMed/NCBI

61 

Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E, Potter HG, Mandl L, Marx R, Rodeo S, et al: Local cytokine profiles in knee osteoarthritis: Elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage. 17:1040–1048. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Honsawek S, Deepaisarnsakul B, Tanavalee A, Yuktanandana P, Bumrungpanichthaworn P, Malila S and Saetan N: Association of the IL-6-174G/C gene polymorphism with knee osteoarthritis in a Thai population. Genet Mol Res. 10:1674–1680. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Attur MG, Patel RN, Abramson SB and Amin AR: Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum. 40:1050–1053. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Ryu JH, Yang S, Shin Y, Rhee J, Chun CH and Chun JS: Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63:2732–2743. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Kwan Tat S, Padrines M, Théoleyre S, Heymann D and Fortun Y: IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15:49–60. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Chenoufi HL, Diamant M, Rieneck K, Lund B, Stein GS and Lian JB: Increased mRNA expression and protein secretion of interleukin-6 in primary human osteoblasts differentiated in vitro from rheumatoid and osteoarthritic bone. J Cell Biochem. 81:666–678. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Sakao K, Takahashi KA, Arai Y, Saito M, Honjo K, Hiraoka N, Asada H, Shin-Ya M, Imanishi J, Mazda O and Kubo T: Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab. 27:412–423. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Ding X, Cao Y, Xing Y, Ge S, Lin M and Li J: TIMP-1 mediates inflammatory and immune response to IL-6 in adult orbital xanthogranulomatous disease. Ocul Immunol Inflamm. 28:288–297. 2020. View Article : Google Scholar : PubMed/NCBI

69 

De Hooge ASK, van de Loo FAJ, Bennink MB, Bennink MB, Arntz OJ, de Hooge P and van den Berg WB: Male IL-6 gene Knock Out mice developed more advanced osteoarthritis upon aging. Osteoarthritis Cartilage. 13:66–73. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Steel JC, Waldmann TA and Morris JC: Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. 33:35–41. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Perera LP: Interleukin 15: Its role in inflammation and immunity. Arch Immunol Ther Exp (Warsz). 48:457–464. 2000.PubMed/NCBI

72 

Waldmann TA and Tagaya Y: The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol. 17:19–49. 1999. View Article : Google Scholar : PubMed/NCBI

73 

Baslund B, Tvede N, Danneskiold-Samsoe B, Larsson P, Panayi G, Petersen J, Petersen LJ, Beurskens FJ, Schuurman J, van de Winkel JG, et al: Targeting interleukin-15 in patients with rheumatoid arthritis: A proof-of-concept study. Arthritis Rheum. 52:2686–2692. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Mcinnes IB, al-Mughales J, Field M, Leung BP, Huang FP, Dixon R, Sturrock RD, Wilkinson PC and Liew FY: The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med. 2:175–182. 1996. View Article : Google Scholar : PubMed/NCBI

75 

Tao Y, Qiu X, Xu C, Sun B and Shi C: Expression and correlation of matrix metalloproteinase-7 and interleukin-15 in human osteoarthritis. Int J Clin Exp Pathol. 8:9112–9118. 2015.PubMed/NCBI

76 

Santos Savio A, Machado Diaz AC, Chico Capote A, Miranda Navarro J, Rodríguez Alvarez Y, Bringas Pérez R, Estévez del Toro M and Guillen Nieto GE: Differential expression of pro-inflammatory cytokines IL-15Ralpha, IL-15, IL-6 and TNFalpha in synovial fluid from rheumatoid arthritis patients. BMC Musculoskelet Disord. 16:512015. View Article : Google Scholar : PubMed/NCBI

77 

Badolato R, Ponzi AN, Millesimo M, Notarangelo LD and Musso T: Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood. 90:2804–2809. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Sun JM, Sun LZ, Liu J, Su BH and Shi L: Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis Markers. 35:203–206. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Chang SH and Dong C: Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal. 23:1069–1075. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Zhang X, Angkasekwinai P, Dong C and Tang H: Structure and function of interleukin-17 family cytokines. Protein Cell. 2:26–40. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Korn T, Bettelli E, Oukka M and Kuchroo VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Pawłowska J, Mikosik A, Soroczynska-Cybula M, Jóźwik A, Łuczkiewicz P, Mazurkiewicz S, Lorczyński A, Witkowski JM and Bryl E: Different distribution of CD4 and CD8 T cells in synovial membrane and peripheral blood of rheumatoid arthritis and osteoarthritis patients. Folia Histochem Cytobiol. 47:627–632. 2009.PubMed/NCBI

83 

Ishii H, Tanaka H, Katoh K, Nakamura H, Nagashima M and Yoshino S: Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage. 10:277–281. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE and Schuerwegh AJ: Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 13:R1502011. View Article : Google Scholar : PubMed/NCBI

85 

Liu Y, Peng H, Meng Z and Wei M: Correlation of IL-17 Level in synovia and severity of knee osteoarthritis. Med Sci Monit. 21:1732–1736. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Koenders MI, Marijnissen RJ, Devesa I, Lubberts E, Joosten LA, Roth J, van Lent PL, van de Loo FA and van den Berg WB: Tumor necrosis factor-interleukin-17 interplay induces S100A8,interleukin-1β,and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis Rheum. 63:2329–2339. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Honorati MC, Cattini L and Facchini A: VEGF production by osteoarthritic chondrocytes cultured in micromass and stimulated by IL-17 and TNF-alpha. Connect Tissue Res. 48:239–245. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Honorati MC, Neri S, Cattini L and Facchini A: Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 14:345–352. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Lubberts E, Joosten LA, van de Loo FA, van den Gersselaar LA and van den Berg WB: Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum. 43:1300–1306. 2000. View Article : Google Scholar : PubMed/NCBI

90 

Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al: Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 378:88–91. 1995. View Article : Google Scholar : PubMed/NCBI

91 

Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, et al: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 386:619–623. 1997. View Article : Google Scholar : PubMed/NCBI

92 

Malemud CJ: Cytokines as therapeutic targets for osteoarthritis. BioDrugs. 18:23–35. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Joosten LA, Radstake TR, Lubberts E, van den Bersselaar LA, van Riel PL, van Lent PL, Barrera P and van den Berg WB: Association of interleukin-18 expression with enhanced levels of both interleukin-1beta and tumor necrosis factor alpha in knee synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 48:339–347. 2003. View Article : Google Scholar : PubMed/NCBI

94 

Joosten LAB, Smeets RL, Koenders MI, van den Bersselaar LA, Helsen MM, Oppers-Walgreen B, Lubberts E, Iwakura Y, van de Loo FA and van den Berg WB: Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am J Pathol. 165:959–967. 2004. View Article : Google Scholar : PubMed/NCBI

95 

Inoue H, Hiraoka K, Hoshino T, Okamoto M, Iwanaga T, Zenmyo M, Shoda T, Aizawa H and Nagata K: High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone. 42:1102–1110. 2008. View Article : Google Scholar : PubMed/NCBI

96 

John T, Kohl B, Mobasheri A, Ertel W and Shakibaei M: Interleukin-18 induces apoptosis in human articular chondrocytes. Histol Histopathol. 22:469–482. 2007.PubMed/NCBI

97 

Dai SM, Shan ZZ, Nishioka K and Yudoh K: Implication of interleukin 18 in production of matrix metalloproteinases in Articular chondrocytes in arthritis: Direct effect on chondrocytes may not be pivotal. Ann Rheum Dis. 64:735–742. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Powers R, Garrett DS, March CJ, Frieden EA, Gronenborn AM and Clore GM: The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry. 32:6744–6762. 1993. View Article : Google Scholar : PubMed/NCBI

99 

Wlodawer A, Pavlovsky A and Gustchina A: Crystal structure of human recombinant interleukin-4 at 2.25 A resolution. FEBS Lett. 309:59–64. 1992. View Article : Google Scholar : PubMed/NCBI

100 

Carr C, Aykent S, Kimack NM and Levine AD: Disulfide assignments in recombinant mouse and human interleukin 4. Biochemistry. 30:1515–1523. 1991. View Article : Google Scholar : PubMed/NCBI

101 

Mueller TD, Zhang JL, Sebald W and Duschl A: Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta. 1592:237–250. 2002. View Article : Google Scholar : PubMed/NCBI

102 

Schlaak JF, Pfers I, Meyer Zum Büschenfelde KH and Märker-Hermann E: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 14:155–162. 1996.PubMed/NCBI

103 

Brown MA and Hural J: Functions of IL-4 and control of its expression. Crit Rev Immunol. 17:1–32. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Wang P, Wu P, Siegel MI, Egan RW and Billah MM: Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem. 270:9558–9563. 1995. View Article : Google Scholar : PubMed/NCBI

105 

te Velde AA, Huijbens RJ, Heije K, de Vries JE and Figdor CG: Interleukin-4 (IL-4) inhibits secretion of IL-1beta, tumor necrosis factor alpha, and human IL-6 by human monocytes. Blood. 76:1392–1397. 1990. View Article : Google Scholar : PubMed/NCBI

106 

Paul WE: Interleukin-4: A prototypic immunoregulatory lymphokine. Blood. 77:1859–1870. 1991. View Article : Google Scholar : PubMed/NCBI

107 

Vannier E, Miller MC and Dinarello CA: Coordinated antiinflammatory effects of interleukin 4: Interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA. 89:4076–4080. 1992. View Article : Google Scholar : PubMed/NCBI

108 

Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS and Hamilton JA: Potential anti-inflammatory effects of interleukin 4: Suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA. 86:3803–3807. 1989. View Article : Google Scholar : PubMed/NCBI

109 

Yeh LA, Augustine AJ, Lee P, Riviere LR and Sheldon A: Interleukin-4, an inhibitor of cartilage breakdown in bovine articular cartilage explants. J Rheumatol. 22:1740–1746. 1995.PubMed/NCBI

110 

Van Meegeren ME, Roosendaal G, Jansen NW, Wenting MJ, van Wesel AC, van Roon JA and Lafeber FP: IL-4 alone and in combination with IL-10 protects against blood-Induced cartilage damage. Osteoarthritis Cartilage. 20:764–772. 2012. View Article : Google Scholar : PubMed/NCBI

111 

van Lent PL, Holthuysen AE, Slöetjes A, Lubberts E and van den Berg WB: Local overexpression of adeno-viral IL-4 protects cartilage from metallo proteinase-induced destruction during immune complex-mediated arthritis by preventing activation of pro-MMPs. Osteoarthritis Cartilage. 10:234–243. 2002. View Article : Google Scholar : PubMed/NCBI

112 

Doi H, Nishida K, Yorimitsu M, Komiyama T, Kadota Y, Tetsunaga T, Yoshida A, Kubota S, Takigawa M and Ozaki T: Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by rat normal chondrocytes. Acta Medica Okayama. 62:119–126. 2008.PubMed/NCBI

113 

Yorimitsu M, Nishida K, Shimizu A, Doi H, Miyazawa S, Komiyama T, Nasu Y, Yoshida A, Watanabe S and Ozaki T: Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced osteoarthritis in rat knee joints. Osteoarthritis Cartilage. 16:764–771. 2008. View Article : Google Scholar : PubMed/NCBI

114 

von Kaeppler EP, Wang Q, Raghu H, Bloom MS, Wong H and Robinson WH: Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin Immunol. 229:1087842021. View Article : Google Scholar : PubMed/NCBI

115 

Shah SS and Mithoefer K: Current Applications of growth factors for knee cartilage repair and osteoarthritis treatment. Curr Rev Musculoskelet Med. 13:641–650. 2020. View Article : Google Scholar : PubMed/NCBI

116 

McAlindon TE, Teale JD and Dieppe PA: Levels of insulin related growth factor 1 in osteoarthritis of the knee. Ann Rheum Dis. 52:229–231. 1993. View Article : Google Scholar : PubMed/NCBI

117 

McQuillan DJ, Handley CJ, Campbell MA, Bolis S, Milway VE and Herington AC: Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J. 240:423–430. 1986. View Article : Google Scholar : PubMed/NCBI

118 

van Osch GJ, van den Berg WB, Hunziker EB, Hunziker EB and Häuselmann HJ: Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 6:187–195. 1998. View Article : Google Scholar : PubMed/NCBI

119 

Sah RL, Chen AC, Grodzinsky AJ and Trippel SB: Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 308:137–147. 1994. View Article : Google Scholar : PubMed/NCBI

120 

Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R and McPherson JM: Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res. 237:318–325. 1997. View Article : Google Scholar : PubMed/NCBI

121 

Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D and Trippel SB: Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12:1171–1179. 2005. View Article : Google Scholar : PubMed/NCBI

122 

Fortier LA, Mohammed HO, Lust G and Nixon AJ: Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 84:276–288. 2002. View Article : Google Scholar : PubMed/NCBI

123 

Davies LC, Blain EJ, Gilbert SJ, Caterson B and Duance VC: The potential of IGF-1 and TGFbeta1 for promoting ‘adult’ articular cartilage repair: An in vitro study. Tissue Eng Part A. 14:1251–1261. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL and Spagnoli A: Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res. 21:626–636. 2006. View Article : Google Scholar : PubMed/NCBI

125 

Morisset S, Frisbie DD, Robbins PD, Nixon AJ and McIlwraith CW: IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res. 462:221–228. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Mushtaq T, Bijman P, Ahmed SF and Farquharson C: Insulin-like growth factor-I augments chondrocyte hypertrophy and reverses glucocorticoid-mediated growth retardation in fetal mice metatarsal cultures. Endocrinology. 145:2478–2486. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R and Seino Y: Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res. 18:2043–2051. 2003. View Article : Google Scholar : PubMed/NCBI

128 

Fytili P, Giannatou E, Karachalios T, Malizos K and Tsezou A: Interleukin-10G and interleukin-10R microsatellite polymorphisms and osteoarthritis of the knee. Clin Exp Rheumatol. 23:621–627. 2005.PubMed/NCBI

129 

Jansen NWD, Roosendaal G, Hooiveld MJJ, Bijlsma JW, van Roon JA, Theobald M and Lafeber FP: Interleukin-10 protects against blood-induced joint damage. Br J Haematol. 142:953–961. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Wang Y and Lou S: Direct protective effect of interleukin-10 on articular chondrocytes in vitro. Chin Med J (Engl). 114:723–725. 2001.PubMed/NCBI

131 

Behrendt P, Preusse-Prange A, Klüter T, Haake M, Rolauffs B, Grodzinsky AJ, Lippross S and Kurz B: IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage. 24:1981–1988. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Rudwaleit M, Yin Z, Siegert S, Grolms M, Radbruch A, Braun J and Sieper J: Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor alpha, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann Rheum Dis. 59:311–314. 2000. View Article : Google Scholar : PubMed/NCBI

133 

Zeng L, Kempf H, Murtaugh LC, Sato ME and Lassar AB: Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 16:1990–2005. 2002. View Article : Google Scholar : PubMed/NCBI

134 

Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Gañan Y, Macias D, Merino R and Hurle JM: Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol. 257:292–301. 2003. View Article : Google Scholar : PubMed/NCBI

135 

Horbelt D, Denkis A and Knaus P: A portrait of transforming growth factor β superfamily signalling: Background matters. Int J Biochem Cell Biol. 44:469–474. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Massagué J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103:295–309. 2000. View Article : Google Scholar : PubMed/NCBI

137 

Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3:807–821. 2003. View Article : Google Scholar : PubMed/NCBI

138 

Santo VE, Gomes ME, Mano JF and Reis RL: Controlled release strategies for bone, cartilage, and osteochondral engineering-part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev. 19:308–326. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Cals FL, Hellingman CA, Koevoet W, Baatenburg de Jong RJ and van Osch GJ: Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J Tissue Eng Regen Med. 6:68–76. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Fortier LA, Barker JU, Strauss EJ, McCarrel TM and Cole BJ: The role of growth factors in cartilage repair. Clin Orthop Relat Res. 469:2706–2715. 2011. View Article : Google Scholar : PubMed/NCBI

141 

Zhang RK, Li GW, Zeng C, Lin CX, Huang LS, Huang GX, Zhao C, Feng SY and Fang H: Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res. 7:587–594. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Rosen DM, Stempien SA, Thompson AY, Brennan JE, Ellingsworth LR and Seyedin SM: Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin B. Exp Cell Res. 165:127–138. 1986. View Article : Google Scholar : PubMed/NCBI

143 

Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A, Siegel NR, Galluppi GR and Piez KA: Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J Biol Chem. 261:5693–5695. 1986. View Article : Google Scholar : PubMed/NCBI

144 

Kato Y, Iwamoto M, Koike T, Suzuki F and Takano Y: Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: Regulation by transforming growth factor beta and serum factors. Proc Natl Acad Sci USA. 85:9552–9556. 1988. View Article : Google Scholar : PubMed/NCBI

145 

Leonard CM, Fuld HM, Frenz DA, Downie SA, Massagué J and Newman SA: Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol. 145:99–109. 1991. View Article : Google Scholar : PubMed/NCBI

146 

Xu C, Oyajobi BO, Frazer A, Kozaci LD, Russell RG and Hollander AP: Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology. 137:3557–3565. 1996. View Article : Google Scholar : PubMed/NCBI

147 

Ito T, Sawada R, Fujiwara Y, Seyama Y and Tsuchiya T: FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun. 359:108–114. 2007. View Article : Google Scholar : PubMed/NCBI

148 

Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X and Tian W: Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med. 9:929–939. 2005. View Article : Google Scholar : PubMed/NCBI

149 

Bian L, Zhai DY, Tous E, Rai R, Mauck RL and Burdick JA: Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in-vitro and in vivo. Biomaterials. 2:6425–6434. 2011. View Article : Google Scholar : PubMed/NCBI

150 

Bhang SH, Jeon JY, La WG, Seong JY, Hwang JW, Ryu SE and Kim BS: Enhanced chondrogenic marker expression of human mesenchymal stem cells by interaction with both TGF-β3 and hyaluronic acid. Biotechnol Appl Biochem. 58:271–276. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Barry F, Boynton RE, Liu B and Murphy JM: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI

152 

Dave K and Gomes VG: Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Mater Sci Eng C Mater Biol Appl. 105:1100782019. View Article : Google Scholar : PubMed/NCBI

153 

Huang BJ, Hu JC and Athanasiou KA: Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 98:1–22. 2016. View Article : Google Scholar : PubMed/NCBI

154 

Yang J, Zhang YS, Yue K and Khademhosseini A: Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Kim YG, Choi J and Kim K: Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 15:e20000822020. View Article : Google Scholar : PubMed/NCBI

156 

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI

157 

Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L and Martini A: Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells. 6:562–569. 2008. View Article : Google Scholar : PubMed/NCBI

158 

Rasmusson I, Le Blanc K, Sundberg B and Ringdén O: Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol. 65:336–343. 2007. View Article : Google Scholar : PubMed/NCBI

159 

Spaggiari GM, Capobianco A, Becchetti S, Mingari MC and Moretta L: Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 107:1484–1490. 2006. View Article : Google Scholar : PubMed/NCBI

160 

Liang X, Ding Y, Zhang Y, Tse HF and Lian Q: Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplant. 23:1045–1059. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI

162 

Li X, Ellman M, Muddasani P, Wang JH, Cs-Szabo G, van Wijnen AJ and Im HJ: Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum. 60:513–523. 2009. View Article : Google Scholar : PubMed/NCBI

163 

Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI

164 

Song Y, Zhang TJ, Li Y and Gao Y: Mesenchymal stem cells decrease M1/M2 ratio and alleviate inflammation to improve limb ischemia in mice. Med Sci Monit. 26:e9232872020. View Article : Google Scholar : PubMed/NCBI

165 

Toh WS, Zhang B, Lai RC and Lim SK: Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 20:1419–1426. 2018. View Article : Google Scholar : PubMed/NCBI

166 

Chang YH, Wu KC, Harn HJ, Lin SZ and Ding DC: Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant. 27:349–363. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI

168 

Temenoff JS and Mikos AG: Review: Tissue engineering for regeneration of articular cartilage. Biomaterials. 21:431–440. 2000. View Article : Google Scholar : PubMed/NCBI

169 

Hutmacher DW: Scaffolds in tissue engineering bone and cartilage. Biomaterials. 21:2529–2543. 2000. View Article : Google Scholar : PubMed/NCBI

170 

Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pellé A, Pavon-Djavid G and Matricardi P: PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: A cardiovascular approach. Biomed Mater. 13:0150202017. View Article : Google Scholar : PubMed/NCBI

171 

Jiang T, Heng S, Huang X, Zheng L, Kai D, Loh XJ and Zhao J: Biomimetic poly(poly(ε-caprolactone)-Polytetrahydrofuran urethane) based nanofibers enhanced chondrogenic differentiation and cartilage regeneration. J Biomed Nanotechnol. 15:1005–1017. 2019. View Article : Google Scholar : PubMed/NCBI

172 

Fasolino I, Raucci MG, Soriente A, Demitri C, Madaghiele M, Sannino A and Ambrosio L: Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl. 105:1100462019. View Article : Google Scholar : PubMed/NCBI

173 

Bhardwaj N, Singh YP and Mandal BB: Silk fibroin scaffold-based 3D Co-culture model for modulation of chondrogenesis without hypertrophy via reciprocal Cross-talk and paracrine signaling. ACS Biomater Sci Eng. 5:5240–5254. 2019. View Article : Google Scholar : PubMed/NCBI

174 

Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P and Calatroni A: Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen-induced arthritis in mice. Osteoarthritis Cartilage. 16:1474–1483. 2008. View Article : Google Scholar : PubMed/NCBI

175 

Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S and Campo GM: Hyaluronan in the experimental injury of the cartilage: Biochemical action and protective effects. Inflamm Res. 67:5–20. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Chen L, Liu J, Guan M, Zhou T, Duan X and Xiang Z: Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine. 15:6097–6111. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Park E, Hart ML, Rolauffs B, Stegemann JP and T Annamalai R: Bioresponsive microspheres for on-demand delivery of anti-inflammatory cytokines for articular cartilage repair. J Biomed Mater Res A. 108:722–733. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Moutos FT, Glass KA, Compton SA, Ross AK, Gersbach CA, Guilak F and Estes BT: Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc Natl Acad Sci USA. 113:E4513–E4522. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Levinson C, Lee M, Applegate LA and Zenobi-Wong M: An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater. 99:168–180. 2019. View Article : Google Scholar : PubMed/NCBI

180 

Armiento AR, Stoddart MJ, Alini M and Eglin D: Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 65:1–20. 2018. View Article : Google Scholar : PubMed/NCBI

181 

Qasim M, Chae DS and Lee NY: Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 14:4333–4351. 2019. View Article : Google Scholar : PubMed/NCBI

182 

Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, et al: Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine. 41:556–570. 2019. View Article : Google Scholar : PubMed/NCBI

183 

Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, et al: Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 75:1714–1721. 2016. View Article : Google Scholar : PubMed/NCBI

184 

Chavez RD and Serra R: Scaffoldless tissue-engineered cartilage for studying transforming growth factor beta-mediated cartilage formation. Biotechnol Prog. 36:e28972020. View Article : Google Scholar : PubMed/NCBI

185 

Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM and Marcu KB: Roles of inflammatory and anabolic cytokines in cartilage metabolism: Signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater. 21:202–220. 2011. View Article : Google Scholar : PubMed/NCBI

186 

Contentin R, Demoor M, Concari M, Desancé M, Audigié F, Branly T and Galéra P: Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering. Stem Cell Rev Rep. 16:126–143. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W, Zhu W, et al: Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 25: 99, 2022.
APA
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y. ... Zhu, W. (2022). Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Molecular Medicine Reports, 25, 99. https://doi.org/10.3892/mmr.2022.12615
MLA
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y., Fu, Z., Xie, H., Xiong, J., Zhu, W."Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)". Molecular Medicine Reports 25.3 (2022): 99.
Chicago
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y., Fu, Z., Xie, H., Xiong, J., Zhu, W."Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)". Molecular Medicine Reports 25, no. 3 (2022): 99. https://doi.org/10.3892/mmr.2022.12615
Copy and paste a formatted citation
x
Spandidos Publications style
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W, Zhu W, et al: Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 25: 99, 2022.
APA
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y. ... Zhu, W. (2022). Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Molecular Medicine Reports, 25, 99. https://doi.org/10.3892/mmr.2022.12615
MLA
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y., Fu, Z., Xie, H., Xiong, J., Zhu, W."Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)". Molecular Medicine Reports 25.3 (2022): 99.
Chicago
Liu, S., Deng, Z., Chen, K., Jian, S., Zhou, F., Yang, Y., Fu, Z., Xie, H., Xiong, J., Zhu, W."Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)". Molecular Medicine Reports 25, no. 3 (2022): 99. https://doi.org/10.3892/mmr.2022.12615
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team