Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
April-2022 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis

  • Authors:
    • Cuisong Tang
    • Dengpan Liang
    • Yuyou Qiu
    • Jingqi Zhu
    • Guangyu Tang
  • View Affiliations / Copyright

    Affiliations: Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China, Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China, Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China, Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China, Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai 200072, P.R. China
    Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 132
    |
    Published online on: February 17, 2022
       https://doi.org/10.3892/mmr.2022.12648
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis is a bone‑related disease that results from impaired bone formation and excessive bone resorption. The potential value of adipokines has been investigated previously, due to their influence on osteogenesis. However, the osteogenic effects induced by omentin‑1 remain unclear. The aim of the present study was to determine the regulatory effects of omentin‑1 on osteoblast viability and differentiation, as well as to explore the underlying molecular mechanism. The present study investigated the effects of omentin‑1 on the viability and differentiation of mouse pre‑osteoblast cells (MC3T3‑E1) using quantitative and qualitative measures. A Cell Counting Kit‑8 assay was used to assess the viability of MC3T3‑E1 cells following treatment with different doses of omentin‑1. Omentin‑1 and bone morphogenetic protein (BMP) inhibitor were added to osteogenic induction mediums in different ways to assess their effect. The alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining of MC3T3‑E1 cells treated with omentin‑1 and/or BMP inhibitor were used to examine the effects of omentin‑1 on differentiation and mineralization. Western blotting was used to further explore its potential mechanism, and to study the role of omentin‑1 on the viability and differentiation of osteoblasts. The results showed that omentin‑1 altered the viability of MC3T3‑E1 cells in a dose‑dependent manner. Omentin‑1 treatment significantly increased the expression of members of the TGF‑β/Smad signaling pathway. In the omentin‑1 group, the ALP activity of the MC3T3‑E1 cells was increased, and the ARS staining area was also increased. The mRNA and protein expression levels of BMP2, Runt‑related transcription factor 2, collagen1, osteopontin, osteocalcin and osterix in the omentin‑1 group were also significantly upregulated. All these effects were reversed following treatment with SIS3 HCl. These results demonstrated that omentin‑1 can significantly promote osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway, thereby promoting bone formation and preventing osteoporosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Miller PD: Management of severe osteoporosis. Expert Opin Pharmacother. 17:473–488. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Noh JY, Yang Y and Jung H: Molecular mechanisms and emerging therapeutics for osteoporosis. Int J Mol Sci. 21:76232020. View Article : Google Scholar : PubMed/NCBI

3 

Clark S: Osteoporosis-the disease of the 21st century? Lancet. 359:17142002. View Article : Google Scholar : PubMed/NCBI

4 

Cooper C: Epidemiology of osteoporosis. Osteoporos Int. 9 (Suppl 2):S2–S8. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Johnell O and Kanis J: Epidemiology of osteoporotic fractures. Osteoporos Int. 16 (Suppl 2):S3–S7. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Straka M, Straka-Trapezanlidis M, Deglovic J and Varga I: Periodontitis and osteoporosis. Neuro Endocrinol Lett. 36:401–406. 2015.PubMed/NCBI

7 

Kurra S, Fink DA and Siris ES: Osteoporosis-associated fracture and diabetes. Endocrinol Metab Clin North Am. 43:233–243. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Lane NE: Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 194 (Suppl 2):S3–S11. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Baccaro LF, Conde DM, Costa-Paiva L and Pinto-Neto AM: The epidemiology and management of postmenopausal osteoporosis: A viewpoint from Brazil. Clin Interv Aging. 10:583–591. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Lane JM, Russell L and Khan SN: Osteoporosis. Clin Orthop Relat Res. 372:139–150. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Chen X, Wang Z, Duan N, Zhu G, Schwarz EM and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Jayakumar P and Di Silvio L: Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H. 224:1415–1440. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Malhotra A and Habibovic P: Calcium phosphates and angiogenesis: Implications and advances for bone regeneration. Trends Biotechnol. 34:983–992. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Leijten J, Chai YC, Papantoniou I, Geris L, Schrooten J and Luyten FP: Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev. 84:30–44. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Wei DX, Dao JW and Chen GQ: A Micro-Ark for Cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv Mater. 30:e18022732018. View Article : Google Scholar : PubMed/NCBI

16 

Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B and Chen L: Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials. 106:205–216. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Cahill KS, Chi JH, Day A and Claus EB: Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 302:58–66. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Skovrlj B, Koehler SM, Anderson PA, Qureshi SA, Hecht AC, Iatridis JC and Cho SK: Association between BMP-2 and carcinogenicity. Spine (Phila Pa 1976). 40:1862–1871. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP and Wang Y: Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials. 32:1051–1058. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G and Xiao Y: The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater. 6:3021–3028. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Holzwarth JM and Ma PX: Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 32:9622–9629. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J and Buchler C: Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta. 1732:96–102. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC and Gong DW: Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 290:E1253–E1261. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M and Hara Y: Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 408:339–343. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Yamawaki H, Tsubaki N, Mukohda M, Okada M and Hara Y: Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 393:668–672. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Duan XY, Xie PL, Ma YL and Tang SY: Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids. 41:1223–1231. 2011. View Article : Google Scholar : PubMed/NCBI

27 

de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, et al: Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 56:1655–1661. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Tohidi M, Akbarzadeh S, Larijani B, Kalantarhormozi M, Ostovar A, Assadi M, Vahdat K, Farrokhnia M, Sanjdideh Z, Amirinejad R and Nabipour I: Omentin-1, visfatin and adiponectin levels in relation to bone mineral density in Iranian postmenopausal women. Bone. 51:876–881. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, Frühbeck G and Fernández-Real JM: Circulating omentin concentration increases after weight loss. Nutr Metab (Lond). 7:272010. View Article : Google Scholar : PubMed/NCBI

30 

Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, Yuan LQ, Sheng ZF, Tang SY, Luo XH and Liao EY: Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res. 92:296–306. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wang J, Wang M, Chen F, Wei Y, Chen X, Zhou Y, Yang X, Zhu X, Tu C and Zhang X: Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway. Int J Nanomedicine. 14:7987–8000. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Liu Z, Yu Z, Chang H, Wang Y, Xiang H, Zhang X and Yu B: Strontium-containing α-calcium sulfate hemihydrate promotes bone repair via the TGF-β/Smad signaling pathway. Mol Med Rep. 20:3555–3564. 2019.PubMed/NCBI

33 

Wang QL, Li HF, Wang DP, Liu ZY, Xiao WW, Xu LL and Yu S: Effect of GGCX on the differentiation function of osteoporosis bone marrow mesenchymal stem cells through regulating TGFβ/smad signaling pathway. Eur Rev Med Pharmacol Sci. 23:7224–7231. 2019.PubMed/NCBI

34 

Kim SW, Her SJ, Park SJ, Kim D, Park KS, Lee HK, Han BH, Kim MS, Shin CS and Kim SY: Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone. 37:359–369. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lerner UH, Kindstedt E and Lundberg P: The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol. 46 (Suppl 21):33–51. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Fili S, Karalaki M and Schaller B: Mechanism of bone metastasis: The role of osteoprotegerin and of the host-tissue microenvironment-related survival factors. Cancer Lett. 283:10–19. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Kearns AE, Khosla S and Kostenuik PJ: Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 29:155–192. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Horowitz MC, Xi Y, Wilson K and Kacena MA: Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev. 12:9–18. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Wada T, Nakashima T, Hiroshi N and Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Long F: Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 13:27–38. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Nakamichi Y, Udagawa N, Kobayashi Y, Nakamura M, Yamamoto Y, Yamashita T, Mizoguchi T, Sato M, Mogi M, Penninger JM and Takahashi N: Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol. 178:192–200. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Valenti MT, Dalle Carbonare L and Mottes M: Osteogenic differentiation in healthy and pathological conditions. Int J Mol Sci. 18:412016. View Article : Google Scholar : PubMed/NCBI

44 

Wan Hasan WN, Abd Ghafar N, Chin KY and Ima-Nirwana S: Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Des Devel Ther. 12:1715–1726. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Czekanska EM, Stoddart MJ, Richards RG and Hayes JS: In search of an osteoblast cell model for in vitro research. Eur Cell Mater. 24:1–17. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Aubin JE: Regulation of osteoblast formation and function. Rev Endocr Metab Disord. 2:81–94. 2001. View Article : Google Scholar : PubMed/NCBI

47 

Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I and Cortet B: Influence of Adipokines and Ghrelin on Bone Mineral Density and Fracture Risk: A systematic review and meta-analysis. J Clin Endocrinol Metab. 96:2703–2713. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD and Liao EY: Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 21:1648–1656. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Wang QP, Li XP, Wang M, Zhao LL, Li H, Xie H and Lu ZY: Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: An in vivo study. Endocrine. 47:845–853. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP and Liao EY: Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res. 309:99–109. 2005. View Article : Google Scholar : PubMed/NCBI

51 

Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H and Shimomura I: Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 331:520–526. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Wu SS, Liang QH, Liu Y, Cui RR, Yuan LQ and Liao EY: Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway. Int J Endocrinol. 2013:3689702013. View Article : Google Scholar : PubMed/NCBI

53 

Miyazono K: TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev. 11:15–22. 2000. View Article : Google Scholar : PubMed/NCBI

54 

ten Dijke P, Miyazono K and Heldin CH: Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci. 25:64–70. 2000. View Article : Google Scholar : PubMed/NCBI

55 

van Zoelen EJ, Duarte I, Hendriks JM and van der Woning SP: TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: Identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther. 7:1232016. View Article : Google Scholar : PubMed/NCBI

56 

Santibanez JF and Kocic J: Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomol Concepts. 3:429–445. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Petruschke T, Röhrig K and Hauner H: Transforming growth factor beta (TGF-beta) inhibits the differentiation of human adipocyte precursor cells in primary culture. Int J Obes Relat Metab Disord. 18:532–536. 1994.PubMed/NCBI

58 

Choy L, Skillington J and Derynck R: Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol. 149:667–682. 2000. View Article : Google Scholar : PubMed/NCBI

59 

El Bialy I, Jiskoot W and Reza Nejadnik M: Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 34:1152–1170. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Rutkovskiy A, Stensløkken KO and Vaage IJ: Osteoblast differentiation at a glance. Med Sci Monit Basic Res. 22:95–106. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Yang D, Okamura H and Qiu L: Upregulated osterix expression elicited by Runx2 and Dlx5 is required for the accelerated osteoblast differentiation in PP2A Cα-knockdown cells. Cell Biol Int. 42:403–410. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Komori T: Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 149:313–323. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, et al: Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 89:773–779. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI

65 

Varma S, Orgel JP and Schieber JD: Nanomechanics of type I collagen. Biophys J. 111:50–56. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Murshed M: Mechanism of bone mineralization. Cold Spring Harb Perspect Med. 8:a0312292018. View Article : Google Scholar : PubMed/NCBI

67 

Kisling A, Lust RM and Katwa LC: What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 228:30–34. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu Y, Liu B, Li W, He X and Lan T: Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res. 362:343–348. 2018. View Article : Google Scholar : PubMed/NCBI

69 

An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L and Chen B: Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 147:46–58. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Zhou H, Choong P, McCarthy R, Chou ST, Martin TJ and Ng KW: In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res. 9:1489–1499. 1994. View Article : Google Scholar : PubMed/NCBI

71 

van Leeuwen JP, van Driel M, van den Bemd GJ and Pols HA: Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr. 11:199–226. 2001.PubMed/NCBI

72 

Takahashi T, Kato S, Suzuki N, Kawabata N and Takagi M: Autoregulatory mechanism of Runx2 through the expression of transcription factors and bone matrix proteins in multipotential mesenchymal cell line, ROB-C26. J Oral Sci. 47:199–207. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tang C, Liang D, Qiu Y, Zhu J and Tang G: Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 25: 132, 2022.
APA
Tang, C., Liang, D., Qiu, Y., Zhu, J., & Tang, G. (2022). Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Molecular Medicine Reports, 25, 132. https://doi.org/10.3892/mmr.2022.12648
MLA
Tang, C., Liang, D., Qiu, Y., Zhu, J., Tang, G."Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis". Molecular Medicine Reports 25.4 (2022): 132.
Chicago
Tang, C., Liang, D., Qiu, Y., Zhu, J., Tang, G."Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis". Molecular Medicine Reports 25, no. 4 (2022): 132. https://doi.org/10.3892/mmr.2022.12648
Copy and paste a formatted citation
x
Spandidos Publications style
Tang C, Liang D, Qiu Y, Zhu J and Tang G: Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Mol Med Rep 25: 132, 2022.
APA
Tang, C., Liang, D., Qiu, Y., Zhu, J., & Tang, G. (2022). Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis. Molecular Medicine Reports, 25, 132. https://doi.org/10.3892/mmr.2022.12648
MLA
Tang, C., Liang, D., Qiu, Y., Zhu, J., Tang, G."Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis". Molecular Medicine Reports 25.4 (2022): 132.
Chicago
Tang, C., Liang, D., Qiu, Y., Zhu, J., Tang, G."Omentin‑1 induces osteoblast viability and differentiation via the TGF‑β/Smad signaling pathway in osteoporosis". Molecular Medicine Reports 25, no. 4 (2022): 132. https://doi.org/10.3892/mmr.2022.12648
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team