|
1
|
Itagaki K, Riça I, Konecna B, Kim HI, Park
J, Kaczmarek E and Hauser CJ: Role of mitochondria-derived danger
signals released after injury in systemic inflammation and sepsis.
Antioxid Redox Signal. 35:1273–1290. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kang J, Kim S, Cho H and Lee S: DAMPs
activating innate immune responses in sepsis. Ageing Res Rev.
24:54–65. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Khwaja B, Thankam FG and Agrawal DK:
Mitochondrial DAMPs and altered mitochondrial dynamics in OxLDL
burden in atherosclerosis. Mol Cell Biochem. 476:1915–1928. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schneck E, Edinger F, Hecker M, Sommer N,
Pak O, Weissmann N, Hecker A, Reichert M, Markmann M, Sander M and
Koch C: Blood levels of free-circulating mitochondrial DNA in
septic shock and postsurgical systemic inflammation and its
influence on coagulation: A secondary analysis of a prospective
observational study. J Clin Med. 9:20562020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jiménez-Sousa MA, Tamayo E,
Guzmán-Fulgencio M, Heredia M, Fernández-Rodríguez A, Gómez E,
Almansa R, Gómez-Herreras JI, García-Álvarez M, Gutiérrez-Junco S,
et al: Mitochondrial DNA haplogroups are associated with severe
sepsis and mortality in patients who underwent major surgery. J
Infect. 70:20–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hu Q, Ren J, Wu J, Li G, Wu X, Liu S, Wang
G, Gu G and Li J: Elevated levels of plasma mitochondrial DNA are
associated with clinical outcome in intra-abdominal infections
caused by severe trauma. Surg Infect (Larchmt). 18:610–618. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kung CT, Hsiao SY, Tsai TC, Su CM, Chang
WN, Huang CR, Wang HC, Lin WC, Chang HW, Lin YJ, et al: Plasma
nuclear and mitochondrial DNA levels as predictors of outcome in
severe sepsis patients in the emergency room. J Transl Med.
10:1302012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li S, Hu Q, Huang J, Wu X and Ren J:
Mitochondria-derived damage-associated molecular patterns in
sepsis: From bench to bedside. Oxid Med Cell Longev.
2019:69148492019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
West AP and Shadel GS: Mitochondrial DNA
in innate immune responses and inflammatory pathology. Nat Rev
Immunol. 17:363–375. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ryoo IG and Kwak MK: Regulatory crosstalk
between the oxidative stress-related transcription factor
Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol. 359:24–33.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pihán P, Carreras-Sureda A and Hetz C:
BCL-2 family: Integrating stress responses at the ER to control
cell demise. Cell Death Differ. 24:1478–1487. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Picca A, Calvani R, Coelho-Junior HJ and
Marzetti E: Cell death and inflammation: The role of mitochondria
in health and disease. Cells. 10:5372021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bock FJ and Tait SWG: Mitochondria as
multifaceted regulators of cell death. Nat Rev Mol Cell Biol.
21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Campbell KJ and Tait SWG: Targeting BCL-2
regulated apoptosis in cancer. Open Biol. 8:1800022018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hu Q, Ren H, Ren J, Liu Q, Wu J, Wu X, Li
G, Wang G, Gu G, Guo K, et al: Released mitochondrial DNA following
intestinal ischemia reperfusion induces the inflammatory response
and gut barrier dysfunction. Sci Rep. 8:73502018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wenceslau CF, Szasz T, McCarthy CG, Baban
B, NeSmith E and Webb RC: Mitochondrial N-formyl peptides cause
airway contraction and lung neutrophil infiltration via formyl
peptide receptor activation. Pulm Pharmacol Ther. 37:49–56. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hepokoski M, Wang J, Li K, Li Y, Gupta P,
Mai T, Moshensky A, Alotaibi M, Crotty Alexander LE, Malhotra A and
Singh P: Altered lung metabolism and mitochondrial DAMPs in lung
injury due to acute kidney injury. Am J Physiol Lung Cell Mol
Physiol. 320:L821–L831. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McIlroy DJ, Bigland M, White AE, Hardy BM,
Lott N, Smith DW and Balogh ZJ: Cell necrosis-independent sustained
mitochondrial and nuclear DNA release following trauma surgery. J
Trauma Acute Care Surg. 78:282–288. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pencovich N, Nevo N, Weiser R, Bonder E,
Bogoch Y and Nachmany I: Postoperative rise of circulating
mitochondrial DNA is associated with inflammatory response in
patients following pancreaticoduodenectomy. Eur Surg Res. 62:18–24.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Csóka B, Németh ZH, Szabó I, Davies DL,
Varga ZV, Pálóczi J, Falzoni S, Di Virgilio F, Muramatsu R,
Yamashita T, et al: Macrophage P2X4 receptors augment bacterial
killing and protect against sepsis. JCI Insight. 3:e994312018.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Csóka B, Németh ZH, Törő G, Idzko M, Zech
A, Koscsó B, Spolarics Z, Antonioli L, Cseri K, Erdélyi K, et al:
Extracellular ATP protects against sepsis through macrophage P2X7
purinergic receptors by enhancing intracellular bacterial killing.
FASEB J. 29:3626–3637. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Konecna B, Park J, Kwon WY, Vlkova B,
Zhang Q, Huang W, Kim HI, Yaffe MB, Otterbein LE, Itagaki K and
Hauser CJ: Monocyte exocytosis of mitochondrial danger-associated
molecular patterns in sepsis suppresses neutrophil chemotaxis. J
Trauma Acute Care Surg. 90:46–53. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal
T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating
mitochondrial DAMPs cause inflammatory responses to injury. Nature.
464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kaczmarek E, Hauser CJ, Kwon WY, Riça I,
Chen L, Sandler N, Otterbein LE, Campbell Y, Cook CH, Yaffe MB, et
al: A subset of five human mitochondrial formyl peptides mimics
bacterial peptides and functionally deactivates human neutrophils.
J Trauma Acute Care. 85:936–943. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fang C, Wei X and Wei Y: Mitochondrial DNA
in the regulation of innate immune responses. Protein Cell.
7:11–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu Z, Sainz AG and Shadel GS:
Mitochondrial DNA: Cellular genotoxic stress sentinel. Trends
Biochem Sci. 46:812–821. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Riley JS and Tait SW: Mitochondrial DNA in
inflammation and immunity. EMBO Rep. 21:e497992020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Garrabou G, Morén C, López S, Tobías E,
Cardellach F, Miró O and Casademont J: The effects of sepsis on
mitochondria. J Infect Dis. 205:392–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bonekamp NA and Larsson NG: SnapShot:
Mitochondrial nucleoid. Cell. 172:388–388.e1. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
van der Slikke EC, Star BS, van Meurs M,
Henning RH, Moser J and Bouma HR: Sepsis is associated with
mitochondrial DNA damage and a reduced mitochondrial mass in the
kidney of patients with sepsis-AKI. Crit Care. 25:362021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nakahira K, Kyung SY, Rogers AJ, Gazourian
L, Youn S, Massaro AF, Quintana C, Osorio JC, Wang Z, Zhao Y, et
al: Circulating mitochondrial DNA in patients in the ICU as a
marker of mortality: Derivation and validation. PLoS Med.
10:e10015772013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Busani S, De Biasi S, Nasi M, Paolini A,
Venturelli S, Tosi M, Girardis M and Cossarizza A: Increased plasma
levels of mitochondrial DNA and normal inflammasome gene expression
in monocytes characterize patients with septic shock due to
multidrug resistant bacteria. Front Immunol. 11:7682020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang WZ, Hoffman KL, Schiffer KT,
Oromendia C, Rice MC, Barjaktarevic I, Peters SP, Putcha N, Bowler
RP, Wells JM, et al: Association of plasma mitochondrial DNA with
COPD severity and progression in the SPIROMICS cohort. Respir Res.
22:1262021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Faust HE, Reilly JP, Anderson BJ, Ittner
CAG, Forker CM, Zhang P, Weaver BA, Holena DN, Lanken PN, Christie
JD, et al: Plasma mitochondrial DNA levels are associated with ARDS
in trauma and sepsis patients. Chest. 157:67–76. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
McIlroy DJ, Minahan K, Keely S, Lott N,
Hansbro P, Smith DW and Balogh ZJ: Reduced deoxyribonuclease enzyme
activity in response to high postinjury mitochondrial DNA
concentration provides a therapeutic target for systemic
inflammatory response syndrome. J Trauma Acute Care Surg.
85:354–358. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Boyapati RK, Dorward DA, Tamborska A,
Kalla R, Ventham NT, Doherty MK, Whitfield PD, Gray M, Loane J,
Rossi AG, et al: Mitochondrial DNA is a pro-inflammatory
damage-associated molecular pattern released during active IBD.
Inflamm Bowel Dis. 24:2113–2122. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bliksøen M, Mariero LH, Torp MK, Baysa A,
Ytrehus K, Haugen F, Seljeflot I, Vaage J, Valen G and Stensløkken
KO: Extracellular mtDNA activates NF-κB via toll-like receptor 9
and induces cell death in cardiomyocytes. Basic Res Cardiol.
111:422016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Simmons JD, Lee Y, Mulekar S, Kuck JL,
Brevard SB, Gonzalez RP, Gillespie MN and Richards WO: Elevated
levels of plasma mitochondrial DNA DAMPs are linked to clinical
outcome in severely injured human subjects. Ann Surg. 258:591–598.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Harrington JS, Choi AM and Nakahira K:
Mitochondrial DNA in Sepsis. Curr Opin Crit Care. 23:284–290. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu Q, Zhang D, Hu D, Zhou X and Zhou Y:
The role of mitochondria in NLRP3 inflammasome activation. Mol
Immunol. 103:115–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhou L and Tan L: Role of mitochondrial
DNA in acute lung injury/acute respiratory distress syndrome
induced by sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.
32:253–256. 2020.(In Chinese). PubMed/NCBI
|
|
42
|
Shepard CR: TLR9 in MAFLD and NASH: At the
intersection of inflammation and metabolism. Front Endocrinol
(Lausanne). 11:6136392021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Medeiros TC and Graef M: Autophagy
determines mtDNA copy number dynamics during starvation. Autophagy.
15:178–179. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pickles S, Vigié P and Youle RJ: Mitophagy
and quality control mechanisms in mitochondrial maintenance. Curr
Biol. 28:R170–R185. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang JZ, Liu Z, Liu J, Ren JX and Sun TS:
Mitochondrial DNA induces inflammation and increases TLR9/NF-κB
expression in lung tissue. Int J Mol Med. 33:817–824. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lin JY, Jing R, Lin F, Ge WY, Dai HJ and
Pan L: High tidal volume induces mitochondria damage and releases
mitochondrial DNA to aggravate the ventilator-induced lung injury.
Front Immunol. 9:14772018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jing R, Hu ZK, Lin F, He S, Zhang SS, Ge
WY, Dai HJ, Du XK, Lin JY and Pan LH: Mitophagy-mediated mtDNA
release aggravates stretching-induced inflammation and lung
epithelial cell injury via the TLR9/MyD88/NF-κB pathway. Front Cell
Dev Biol. 8:8192020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bueno M, Lai YC, Romero Y, Brands J, St
Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, et
al: PINK1 deficiency impairs mitochondrial homeostasis and promotes
lung fibrosis. J Clin Invest. 125:521–538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shimada K, Crother TR, Karlin J, Dagvadorj
J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et
al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome
during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sok SPM, Ori D, Wada A, Okude H, Kawasaki
T, Momota M, Nagoor NH and Kawai T: 1′-Acetoxychavicol acetate
inhibits NLRP3-dependent inflammasome activation via mitochondrial
ROS suppression. Int Immunol. 33:373–386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li S, Li H, Zhang YL, Xin QL, Guan ZQ,
Chen X, Zhang XA, Li XK, Xiao GF, Lozach PY, et al: SFTSV infection
induces BAK/BAX-dependent mitochondrial DNA release to trigger
NLRP3 inflammasome activation. Cell Rep. 30:4370–4385.e7. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xian H, Liu Y, Rundberg Nilsson A,
Gatchalian R, Crother TR, Tourtellotte WG, Zhang Y, Aleman-Muench
GR, Lewis G, et al: Metformin inhibition of mitochondrial ATP and
DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary
inflammation. Immunity. 54:1463–1477. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu Y, Hao C, Liu X, Han G, Yin J, Zou Z,
Zhou J and Xu C: MitoQ protects against liver injury induced by
severe burn plus delayed resuscitation by suppressing the
mtDNA-NLRP3 axis. Int Immunopharmacol. 80:1061892020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ishikawa H and Barber GN: STING is an
endoplasmic reticulum adaptor that facilitates innate immune
signalling. Nature. 455:674–678. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bryant JD, Lei Y, VanPortfliet JJ, Winters
AD and West AP: Assessing mitochondrial DNA release into the
cytosol and subsequent activation of innate immune-related pathways
in mammalian cells. Curr Protoc. 2:e3722022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Luo W, Wang Y, Zhang L, Ren P, Zhang C, Li
Y, Azares AR, Zhang M, Guo J, Ghaghada KB, et al: Critical role of
cytosolic DNA and its sensing adaptor STING in aortic degeneration,
dissection, and rupture. Circulation. 141:42–66. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wan D, Jiang W and Hao J: Research
advances in how the cGAS-STING pathway controls the cellular
inflammatory response. Front Immunol. 11:6152020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J,
Zheng J, Huang J, Slade DA, Wu X and Ren J: STING-mediated
intestinal barrier dysfunction contributes to lethal sepsis.
Ebiomedicine. 41:497–508. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vringer E and Tait SW: Mitochondria and
inflammation: Cell death heats up. Front Cell Dev Biol. 7:1002019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Comish PB, Liu M, Huebinger R, Carlson D,
Kang R and Tang D: The cGAS-STING pathway connects mitochondrial
damage to inflammation in burn-induced acute lung injury in rat.
Burns. 48:168–175. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu Q, Wu J, Zhang X, Li X, Wu X, Zhao Y
and Ren J: Circulating mitochondrial DNA-triggered autophagy
dysfunction via STING underlies sepsis-related acute lung injury.
Cell Death Dis. 12:6732021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sliter DA, Martinez J, Hao L, Chen X, Sun
N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, et al: Parkin
and PINK1 mitigate STING-induced inflammation. Nature. 561:258–262.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Banoth B and Cassel SL: Mitochondria in
innate immune signaling. Transl Res. 202:52–68. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ye RD, Boulay F, Wang JM, Dahlgren C,
Gerard C, Parmentier M, Serhan CN and Murphy PM: International
Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for
the formyl peptide receptor (FPR) family. Pharmacol Rev.
61:119–161. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
He HQ and Ye RD: The formyl peptide
receptors: Diversity of ligands and mechanism for recognition.
Molecules. 22:4552017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wenceslau CF, McCarthy CG, Goulopoulou S,
Szasz T, NeSmith EG and Webb RC: Mitochondrial-derived N-formyl
peptides: Novel links between trauma, vascular collapse and sepsis.
Med Hypotheses. 81:532–535. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wenceslau CF, McCarthy CG, Szasz T,
Goulopoulou S and Webb RC: Mitochondrial N-formyl peptides induce
cardiovascular collapse and sepsis-like syndrome. Am J Physiol
Heart Circ Physiol. 308:H768–H777. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dorward DA, Lucas CD, Doherty MK, Chapman
GB, Scholefield EJ, Conway Morris A, Felton JM, Kipari T, Humphries
DC, Robb CT, et al: Novel role for endogenous mitochondrial
formylated peptide-driven formyl peptide receptor 1 signalling in
acute respiratory distress syndrome. Thorax. 72:928–936. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ueda S, Shimasaki M, Ichiseki T, Hirata H,
Kawahara N and Ueda Y: Mitochondrial transcription factor A added
to osteocytes in a stressed environment has a cytoprotective
effect. Int J Med Sci. 17:1293–1299. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Schindler SM, Frank MG, Annis JL, Maier SF
and Klegeris A: Pattern recognition receptors mediate
pro-inflammatory effects of extracellular mitochondrial
transcription factor A (TFAM). Mol Cell Neurosci. 89:71–79. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
West AP, Khoury-Hanold W, Staron M, Tal
MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff
DA, et al: Mitochondrial DNA stress primes the antiviral innate
immune response. Nature. 520:553–557. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
van der Flier LG and Clevers H: Stem
cells, self-renewal, and differentiation in the intestinal
epithelium. Annu Rev Physiol. 71:241–260. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rath E, Moschetta A and Haller D:
Mitochondrial function-gatekeeper of intestinal epithelial cell
homeostasis. Nat Rev Gastroenterol Hepatol. 15:497–516. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang X, Wu J, Liu Q, Li X, Li S, Chen J,
Hong Z, Wu X, Zhao Y and Ren J: mtDNA-STING pathway promotes
necroptosis-dependent enterocyte injury in intestinal ischemia
reperfusion. Cell Death Dis. 11:10502020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Druml W: Intestinal cross-talk: The gut as
motor of multiple organ failure. Med Klin Intensivmed Notfmed.
113:470–477. 2018.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu
G, Ren H, Hong Z and Li J: The mitochondrially targeted antioxidant
MitoQ protects the intestinal barrier by ameliorating mitochondrial
DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis.
9:4032018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chelakkot C, Ghim J and Ryu SH: Mechanisms
regulating intestinal barrier integrity and its pathological
implications. Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Marchiando AM, Shen L, Graham WV, Weber
CR, Schwarz BT, Austin JN II, Raleigh DR, Guan Y, Watson AJ,
Montrose MH and Turner JR: Caveolin-1-dependent occludin
endocytosis is required for TNF-induced tight junction regulation
in vivo. J Cell Biol. 189:111–126. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Odenwald MA and Turner JR: The intestinal
epithelial barrier: A therapeutic target? Nat Rev Gastroenterol
Hepatol. 14:9–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Assimakopoulos SF, Triantos C, Thomopoulos
K, Fligou F, Maroulis I, Marangos M and Gogos CA: Gut-origin sepsis
in the critically ill patient: Pathophysiology and treatment.
Infection. 46:751–760. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou M, Aziz M and Wang P:
Damage-associated molecular patterns as double-edged swords in
sepsis. Antioxid Redox Signal. 35:1308–1323. 2021. View Article : Google Scholar : PubMed/NCBI
|