Open Access

SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling

  • Authors:
    • Feng Gao
    • Yongcheng Zhao
    • Bin Zhang
    • Chunwei Xiao
    • Zhanfa Sun
    • Yuan Gao
    • Xueyong Dou
  • View Affiliations

  • Published online on: March 11, 2022     https://doi.org/10.3892/mmr.2022.12678
  • Article Number: 161
  • Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Endothelial cells are an important component of the heart and vasculature and form a crucial link between the cardiovascular system and the immune system. Sestrin 1 (SESN1) has an important role in atherosclerosis by inhibiting NOD‑like receptor family pyrin domain containing 3 inflammasome activation. However, whether SESN1 is involved in human umbilical vein endothelial cell (HUVEC) injury caused by atherosclerosis has remained to be elucidated. The present study aimed to investigate the functions of SESN1 in the inflammatory response, apoptosis and endothelial‑mesenchymal transition (EndMT) of HUVECs following stimulation with oxidized low‑density lipoprotein (Ox‑LDL). SESN1 expression at the mRNA and protein levels was detected using reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Following SESN1 overexpression in Ox‑LDL‑stimulated HUVECs, cell viability was determined using a Cell Counting Kit‑8 assay. Terminal deoxynucleotidyl transferase‑mediated nick‑end labeling staining was employed to detect cell apoptosis and western blot analysis was used to determine the levels of apoptosis‑related proteins. RT‑qPCR, ELISA and western blot were utilized to determine the levels of inflammatory factors. Immunofluorescence staining, RT‑qPCR and western blot analysis were employed to assess the EndMT of Ox‑LDL‑stimulated HUVECs. The results revealed that SESN1 exhibited a low expression in HUVECs following Ox‑LDL stimulation. SESN1 overexpression suppressed inflammation, apoptosis and EndMT in Ox‑LDL‑induced HUVECs. In addition, SESN1 stimulated adenosine monophosphate‑activated protein kinase catalytic subunit α1/sirtuin 1 signaling to suppress Ox‑LDL receptor‑1 expression. An AMPK and SIRT1 inhibitor reversed the effects of SESN1 overexpression on the inflammatory response, apoptosis and EndMT of HUVECs exposed to Ox‑LDL. Taken together, the present study demonstrated that SENS1 exerts a suppressive effect on Ox‑LDL‑induced inflammation, apoptosis and EndMT of HUVECs, suggesting that SENS1 may be used as a novel biomarker for endothelial injury‑related disorders.
View Figures
View References

Related Articles

Journal Cover

May-2022
Volume 25 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y and Dou X: SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling. Mol Med Rep 25: 161, 2022
APA
Gao, F., Zhao, Y., Zhang, B., Xiao, C., Sun, Z., Gao, Y., & Dou, X. (2022). SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling. Molecular Medicine Reports, 25, 161. https://doi.org/10.3892/mmr.2022.12678
MLA
Gao, F., Zhao, Y., Zhang, B., Xiao, C., Sun, Z., Gao, Y., Dou, X."SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling". Molecular Medicine Reports 25.5 (2022): 161.
Chicago
Gao, F., Zhao, Y., Zhang, B., Xiao, C., Sun, Z., Gao, Y., Dou, X."SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling". Molecular Medicine Reports 25, no. 5 (2022): 161. https://doi.org/10.3892/mmr.2022.12678