|
1
|
Sugiura M, Sato H, Kanesaka M, Imamura Y,
Sakamoto S, Ichikawa T and Kaneda A: Epigenetic modifications in
prostate cancer. Int J Urol. 28:140–149. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang G, Zhao D, Spring DJ and DePinho RA:
Genetics and biology of prostate cancer. Genes Dev. 32:1105–1140.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lobo J, Barros-Silva D, Henrique R and
Jerónimo C: The emerging role of epitranscriptomics in cancer:
Focus on urological tumors. Genes (Basel). 9:5522018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rebello RJ, Oing C, Knudsen KE, Loeb S,
Johnson DC, Reiter RE, Gillessen S, Van der Kwast T and Bristow RG:
Prostate cancer. Nat Rev Dis Primers. 7:92021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kimura T, Sato S, Takahashi H and Egawa S:
Global trends of latent prostate cancer in autopsy studies. Cancers
(Basel). 13:3592021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Maitland NJ: Resistance to antiandrogens
in prostate cancer: Is it inevitable, intrinsic or induced? Cancers
(Basel). 13:3272021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y
and Xu C: Mechanisms of enzalutamide resistance in
castration-resistant prostate cancer and therapeutic strategies to
overcome it. Br J Pharmacol. 178:239–261. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lowrance WT, Breau RH, Chou R, Chapin BF,
Crispino T, Dreicer R, Jarrard DF, Kibel AS, Morgan TM, Morgans AK,
et al: Advanced prostate cancer: AUA/ASTRO/SUO guideline PART I. J
Urol. 205:14–21. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Borque-Fernando A, Espilez R, Miramar D,
Corbatón D, Rodríguez A, Castro E, Mateo J, Rello L, Méndez A and
Gil Sanz MJ: Genetic counseling in prostate cancer: How to
implement it in daily clinical practice? Actas Urol Esp (Engl Ed).
45:8–20. 2021.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nowacka-Zawisza M and Wiśnik E: DNA
methylation and histone modifications as epigenetic regulation in
prostate cancer (review). Oncol Rep. 38:2587–2596. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cimadamore A, Gasparrini S, Scarpelli M,
Doria A, Mazzucchelli R, Massari F, Cheng L, Lopez-Beltran A and
Montironi R: Epigenetic Modifications and modulators in prostate
cancer. Crit Rev Oncog. 22:439–450. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang YN, Yu CY and Jin HZ: RNA
N(6)-methyladenosine modifications and the immune response. J
Immunol Res. 2020:63276142020.PubMed/NCBI
|
|
13
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleosides in messenger RNA from
Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Perry RP, Kelley DE, Friderici K and
Rottman F: The methylated constituents of L cell messenger RNA:
Evidence for an unusual cluster at the 5′ terminus. Cell.
4:387–394. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3′ UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liang Z, Kidwell RL, Deng H and Xie Q:
Epigenetic N6-methyladenosine modification of RNA and DNA regulates
cancer. Cancer Biol Med. 17:9–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang Z, Wang T, Wu D, Min Z, Tan J and Yu
B: RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and
angiogenesis in colon cancer. J Exp Clin Cancer Res. 39:2032020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cui H, Wang Y, Li F, He G, Jiang Z, Gang X
and Wang G: Quantifying observational evidence for risk of dementia
following androgen deprivation therapy for prostate cancer: An
updated systematic review and meta-analysis. Prostate Cancer
Prostatic Dis. 24:15–23. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B,
Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated
N6-methyladenosine modification of SOX4 mRNA inhibits tumor
metastasis in colorectal cancer. Mol Cancer. 19:1062020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun
L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine
demethylase FTO promotes breast tumor progression through
inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu Q, Xie X, Huang Y, Meng S, Li Y, Wang H
and Hu Y: N6-methyladenosine RNA methylation regulators contribute
to the progression of prostate cancer. J Cancer. 12:682–692. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ji G, Huang C, He S, Gong Y, Song G, Li X
and Zhou L: Comprehensive analysis of m6A regulators prognostic
value in prostate cancer. Aging (Albany NY). 12:14863–14884. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Somasekharan SP, Saxena N, Zhang F,
Beraldi E, Huang JN, Gentle C, Fazli L, Thi M, Sorensen PH and
Gleave M: Regulation of AR mRNA translation in response to acute AR
pathway inhibition. Nucleic Acids Res. 50:1069–1091. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wood S, Willbanks A and Cheng JX: The role
of RNA modifications and RNA-modifying proteins in cancer therapy
and drug resistance. Curr Cancer Drug Targets. 21:326–352. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nombela P, Miguel-López B and Blanco S:
The role of m6A, m5C and Ψ RNA modifications
in cancer: Novel therapeutic opportunities. Mol Cancer. 20:182021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Barbieri I and Kouzarides T: Role of RNA
modifications in cancer. Nat Rev Cancer. 20:303–322. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu Z, Zhong J, Zeng J, Duan X, Lu J, Sun
X, Liu Q, Liang Y, Lin Z, Zhong W, et al: Characterization of the
m6A-Associated tumor immune microenvironment in prostate cancer to
aid immunotherapy. Front Immunol. 12:7351702021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schöller E, Weichmann F, Treiber T, Ringle
S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G:
Interactions, localization, and phosphorylation of the
m6A generating METTL3-METTL14-WTAP complex. RNA.
24:499–512. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tao Z, Zhao Y and Chen X: Role of
methyltransferase-like enzyme 3 and methyltransferase-like enzyme
14 in urological cancers. PeerJ. 8:e95892020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cai J, Yang F, Zhan H, Situ J, Li W, Mao Y
and Luo Y: RNA m6A methyltransferase METTL3 promotes the
growth of prostate cancer by regulating hedgehog pathway. Onco
Targets Ther. 12:9143–9152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ma XX, Cao ZG and Zhao SL: m6A
methyltransferase METTL3 promotes the progression of prostate
cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci.
24:3565–3571. 2020.PubMed/NCBI
|
|
32
|
Yuan Y, Du Y, Wang L and Liu X: The M6A
methyltransferase METTL3 promotes the development and progression
of prostate carcinoma via mediating MYC methylation. J Cancer.
11:3588–3595. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li J, Xie H, Ying Y, Chen H, Yan H, He L,
Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA
degradation of the tumor suppressors to induce AKT phosphorylation
in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer.
19:1522020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ma H, Zhang F, Zhong Q and Hou J:
METTL3-mediated m6A modification of KIF3C-mRNA promotes prostate
cancer progression and is negatively regulated by miR-320d. Aging
(Albany NY). 13:22332–22344. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J,
Chen P, Xiang Z, Rao Q and Han X: Silencing of METTL3 effectively
hinders invasion and metastasis of prostate cancer cells.
Theranostics. 11:7640–7657. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li E, Wei B, Wang X and Kang R: METTL3
enhances cell adhesion through stabilizing integrin β1 mRNA via an
m6A-HuR-dependent mechanism in prostatic carcinoma. Am J Cancer
Res. 10:1012–1025. 2020.PubMed/NCBI
|
|
37
|
Wu LS, Qian JY, Wang M and Yang H:
Identifying the role of Wilms tumor 1 associated protein in cancer
prediction using integrative genomic analyses. Mol Med Rep.
14:2823–2831. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Piette ER and Moore JH: Identification of
epistatic interactions between the human RNA demethylases FTO and
ALKBH5 with gene set enrichment analysis informed by differential
methylation. BMC Proc. 12 (Suppl 9):S592018. View Article : Google Scholar
|
|
39
|
Zou S, Toh JD, Wong KH, Gao YG, Hong W and
Woon EC: N(6)-Methyladenosine: a conformational marker that
regulates the substrate specificity of human demethylases FTO and
ALKBH5. Sci Rep. 6:256772016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wu A, Cremaschi P, Wetterskog D, Conteduca
V, Franceschini GM, Kleftogiannis D, Jayaram A, Sandhu S, Wong SQ,
Benelli M, et al: Genome-wide plasma DNA methylation features of
metastatic prostate cancer. J Clin Invest. 130:1991–2000. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhu K, Li Y and Xu Y: The FTO
m6A demethylase inhibits the invasion and migration of
prostate cancer cells by regulating total m6A levels.
Life Sci. 271:1191802021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lewis SJ, Murad A, Chen L, Davey Smith G,
Donovan J, Palmer T, Hamdy F, Neal D, Lane JA, Davis M, et al:
Associations between an obesity related genetic variant (FTO
rs9939609) and prostate cancer risk. PLoS One. 5:e134852010.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Khella MS, Salem AM, Abdel-Rahman O and
Saad AS: The association between the FTO rs9939609 variant and
malignant pleural mesothelioma risk: A case-control study. Genet
Test Mol Biomarkers. 22:79–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Salgado-Montilla JL, Rodríguez-Cabán JL,
Sánchez-García J, Sánchez-Ortiz R and Irizarry-Ramírez M: Impact of
FTO SNPs rs9930506 and rs9939609 in prostate cancer severity in a
cohort of puerto rican men. Arch Cancer Res. 5:1482017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li S and Cao L: Demethyltransferase FTO
alpha-ketoglutarate dependent dioxygenase (FTO) regulates the
proliferation, migration, invasion and tumor growth of prostate
cancer by modulating the expression of melanocortin 4 receptor
(MC4R). Bioengineered. 13:5598–5612. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai
S, Sun X, Huang J and Guo Q: YTH domain proteins: A family of
m6A readers in cancer progression. Front Oncol.
11:6295602021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu S, Li G, Li Q, Zhang Q, Zhuo L, Chen
X, Zhai B, Sui X, Chen K and Xie T: The roles and mechanisms of YTH
domain-containing proteins in cancer development and progression.
Am J Cancer Res. 10:1068–1084. 2020.PubMed/NCBI
|
|
48
|
Müller S, Bley N, Busch B, Glaß M, Lederer
M, Misiak C, Fuchs T, Wedler A, Haase J, Bertoldo JB, et al: The
oncofetal RNA-binding protein IGF2BP1 is a druggable,
post-transcriptional super-enhancer of E2F-driven gene expression
in cancer. Nucleic Acids Res. 48:8576–8590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gruber AJ, Schmidt R, Ghosh S, Martin G,
Gruber AR, van Nimwegen E and Zavolan M: Discovery of physiological
and cancer-related regulators of 3′ UTR processing with KAPAC.
Genome Biol. 19:442018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jiang M, Lu Y, Duan D, Wang H, Man G, Kang
C, Abulimiti K and Li Y: Systematic investigation of mRNA N
6-methyladenosine machinery in primary prostate cancer.
Dis Markers. 2020:88334382020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Singh AN and Sharma N: Quantitative
SWATH-based proteomic profiling for identification of
mechanism-driven diagnostic biomarkers conferring in the
progression of metastatic prostate cancer. Front Oncol. 10:4932020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Torosyan Y, Dobi A, Glasman M, Mezhevaya
K, Naga S, Huang W, Paweletz C, Leighton X, Pollard HB and
Srivastava M: Role of multi-hnRNP nuclear complex in regulation of
tumor suppressor ANXA7 in prostate cancer cells. Oncogene.
29:2457–2466. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Luxton HJ, Simpson BS, Mills IG, Brindle
NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S and Whitaker HC: The
oncogene metadherin interacts with the known splicing proteins
YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA
splicing. Cancers (Basel). 11:12332019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li J, Yu W, Ge J, Zhang J, Wang Y, Wang P
and Shi G: Targeting eIF3f suppresses the growth of prostate cancer
cells by inhibiting Akt signaling. Onco Targets Ther. 13:3739–3750.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Saramäki O, Willi N, Bratt O, Gasser TC,
Koivisto P, Nupponen NN, Bubendorf L and Visakorpi T: Amplification
of EIF3S3 gene is associated with advanced stage in prostate
cancer. Am J Pathol. 159:2089–2094. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Savinainen KJ, Helenius MA, Lehtonen HJ
and Visakorpi T: Overexpression of EIF3S3 promotes cancer cell
growth. Prostate. 66:1144–1150. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Savinainen KJ, Linja MJ, Saramäki OR,
Tammela TL, Chang GT, Brinkmann AO and Visakorpi T: Expression and
copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and
prostate cancer. Br J Cancer. 90:1041–1046. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang X, Wang D, Liu B, Jin X, Wang X, Pan
J, Tu W and Shao Y: IMP3 accelerates the progression of prostate
cancer through inhibiting PTEN expression in a SMURF1-dependent
way. J Exp Clin Cancer Res. 39:1902020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Du C, Lv C, Feng Y and Yu S: Activation of
the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate
cancer progression. J Exp Clin Cancer Res. 39:2232020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li J, Meng S, Xu M, Wang S, He L, Xu X,
Wang X and Xie L: Downregulation of N6-methyladenosine
binding YTHDF2 protein mediated by miR-493-3p suppresses prostate
cancer by elevating N6-methyladenosine levels.
Oncotarget. 9:3752–3764. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gao Y, Teng J, Hong Y, Qu F, Ren J, Li L,
Pan X, Chen L, Yin L, Xu D and Cui X: The oncogenic role of EIF3D
is associated with increased cell cycle progression and motility in
prostate cancer. Med Oncol. 32:5182015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang L, Smit-McBride Z, Pan X, Rheinhardt
J and Hershey JW: An oncogenic role for the phosphorylated
h-subunit of human translation initiation factor eIF3. J Biol Chem.
283:24047–24060. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kawakami Y, Kubota N, Ekuni N,
Suzuki-Yamamoto T, Kimoto M, Yamashita H, Tsuji H, Yoshimoto T,
Jisaka M, Tanaka J, et al: Tumor-suppressive lipoxygenases inhibit
the expression of c-myc mRNA coding region determinant-binding
protein/insulin-like growth factor II mRNA-binding protein 1 in
human prostate carcinoma PC-3 cells. Biosci Biotechnol Biochem.
73:1811–1817. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang H, Ru Y, Sanchez-Carbayo M, Wang X,
Kieft JS and Theodorescu D: Translation initiation factor eIF3b
expression in human cancer and its role in tumor growth and lung
colonization. Clin Cancer Res. 19:2850–2860. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xiang P, Sun Y, Fang Z, Yan K and Fan Y:
Eukaryotic translation initiation factor 3 subunit b is a novel
oncogenic factor in prostate cancer. Mamm Genome. 31:197–204. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hu J, Luo H, Xu Y, Luo G, Xu S, Zhu J,
Song D, Sun Z and Kuang Y: The prognostic significance of EIF3C
gene during the tumorigenesis of prostate cancer. Cancer Invest.
37:199–208. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hershey JW: The role of eIF3 and its
individual subunits in cancer. Biochim Biophys Acta. 1849:792–800.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cui L, Liu M, Lai S, Hou H, Diao T, Zhang
D, Wang M, Zhang Y and Wang J: Androgen upregulates the
palmitoylation of eIF3L in human prostate LNCaP cells. Onco Targets
Ther. 12:4451–4459. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chromecki TF, Cha EK, Pummer K, Scherr DS,
Tewari AK, Sun M, Fajkovic H, Roehrborn CG, Ashfaq R, Karakiewicz
PI and Shariat SF: Prognostic value of insulin-like growth factor
II mRNA binding protein 3 in patients treated with radical
prostatectomy. BJU Int. 110:63–68. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cheng Y, Li L, Qin Z, Li X and Qi F:
Identification of castration-resistant prostate cancer-related hub
genes using weighted gene co-expression network analysis. J Cell
Mol Med. 24:8006–8017. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Stockley J, Villasevil ME, Nixon C, Ahmad
I, Leung HY and Rajan P: The RNA-binding protein hnRNPA2 regulates
β-catenin protein expression and is overexpressed in prostate
cancer. RNA Biol. 11:755–765. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lin VC, Kuo PT, Lin YC, Chen Y, Hseu YC,
Yang HL, Kao JY, Ho CT and Way TD: Penta-O-galloyl-β-D-glucose
suppresses EGF-induced eIF3i expression through inhibition of the
PI3K/AKT/mTOR pathway in prostate cancer cells. J Agric Food Chem.
62:8990–8996. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xie C, Li Y, Li Q, Chen Y, Yao J, Yin G,
Bi Q, O'Keefe RJ, Schwarz EM and Tyler W: Increased insulin mRNA
binding protein-3 expression correlates with vascular enhancement
of renal cell carcinoma by intravenous contrast-CT and is
associated with bone metastasis. J Bone Oncol. 4:69–76. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yu YZ, Lv DJ, Wang C, Song XL, Xie T, Wang
T, Li ZM, Guo JD, Fu DJ, Li KJ, et al: Hsa_circ_0003258 promotes
prostate cancer metastasis by complexing with IGF2BP3 and sponging
miR-653-5p. Mol Cancer. 21:122022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pin E, Henjes F, Hong MG, Wiklund F,
Magnusson P, Bjartell A, Uhlén M, Nilsson P and Schwenk JM:
Identification of a novel autoimmune peptide epitope of prostein in
prostate cancer. J Proteome Res. 16:204–216. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang J, Lin H, Zhou M, Xiang Q, Deng Y,
Luo L, Liu Y, Zhu Z and Zhao Z: The m6A methylation regulator-based
signature for predicting the prognosis of prostate cancer. Future
Oncol. 16:2421–2432. 2020. View Article : Google Scholar : PubMed/NCBI
|