|
1
|
Kelsen D: Principles and practice of
gastrointestinal oncology. Lippincott. Williams & Wilkins;
Philadelphia, PA: 2008
|
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y,
Ueda J, Wei W, Inoue M and Tanaka H: Epidemiology of esophageal
cancer in Japan and China. J Epidemiol. 23:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zheng RS, Sun KX, Zhang SW, Zeng HM, Zou
XN, Chen R, Gu XY, Wei WW and He J: Report of cancer epidemiology
in China, 2015. Zhonghua Zhong Liu Za Zhi. 41:19–28. 2019.(In
Chinese). PubMed/NCBI
|
|
5
|
He Z and Ke Y: Precision screening for
esophageal squamous cell carcinoma in China. Chin J Cancer Res.
32:673–682. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Malhotra A, Sharma U, Puhan S, Bandari NC,
Kharb A, Arifa PP, Thakur L, Prakash H, Vasquez KM and Jain A:
Stabilization of miRNAs in esophageal cancer contributes to
radioresistance and limits efficacy of therapy. Biochimie.
156:148–157. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Klug F, Prakash H, Huber PE, Seibel T,
Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et
al: Low-dose irradiation programs macrophage differentiation to an
iNOS(+)/M1 phenotype that orchestrates effective T cell
immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang
S, Gu H, Wang X, Zhao D and Fan R: CircRNA_100367 regulated the
radiation sensitivity of esophageal squamous cell carcinomas
through miR-217/Wnt3 pathway. Aging (Albany NY). 11:12412–12427.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang YH, Wang QQ, Li H, Ye T, Gao F and
Liu YC: miR-124 radiosensitizes human esophageal cancer cell TE-1
by targeting CDK4. Genet Mol Res. 15:150278932016.
|
|
10
|
Chen Z, Hu X, Wu Y, Cong L, He X, Lu J,
Feng J and Liu D: Long non-coding RNA XIST promotes the development
of esophageal cancer by sponging miR-494 to regulate CDK6
expression. Biomed Pharmacother. 109:2228–2236. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mathieu M, Martin-Jaular L, Lavieu G and
Thery C: Specificities of secretion and uptake of exosomes and
other extracellular vesicles for cell-to-cell communication. Nat
Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wei Z, Batagov AO, Schinelli S, Wang J,
Wang Y, Fatimy RE, Rabinovsky R, Balaj L, Chen CC, Hochberg F, et
al: Coding and noncoding landscape of extracellular RNA released by
human glioma stem cells. Nat Commun. 8:11452017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang H, Freitas D, Kim HS, Fabijanic K,
Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, et al:
Identification of distinct nanoparticles and subsets of
extracellular vesicles by asymmetric flow field-flow fractionation.
Nat Cell Biol. 20:332–343. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Balandeh E, Mohammadshafie K, Mahmoudi Y,
Pourhanifeh MH, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N,
Hamblin MR and Mirzaei H: Roles of non-coding RNAs and angiogenesis
in glioblastoma. Front Cell Dev Biol. 9:7164622021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang J, Li S, Li L, Guo C, Yao J and Mi
S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Costa-Silva B, Aiello NM, Ocean AJ, Singh
S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et
al: Pancreatic cancer exosomes initiate pre-metastatic niche
formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Peinado H, ković MA, Lavotshkin S, Matei
I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C,
García-Santos G, Ghajar CM, et al: Corrigendum: Melanoma exosomes
educate bone marrow progenitor cells toward a pro-metastatic
phenotype through MET. Nat Med. 22:15022016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Peinado H, Aleckovic M, Lavotshkin S,
Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M,
Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes
educate bone marrow progenitor cells toward a pro-metastatic
phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hoshino A, Costa-Silva B, Shen TL,
Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Giannatale
AD, Ceder S, et al: Tumour exosome integrins determine organotropic
metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Skog J, Wurdinger T, van Rijn S, Meijer
DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky
AM and Breakefield XO: Glioblastoma microvesicles transport RNA and
proteins that promote tumour growth and provide diagnostic
biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Valadi H, Ekstrom K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang J, Zhang X, Cao J, Xu P, Chen Z, Wang
S, Li B, Zhang L, Xie L, Fang L and Xu Z: Circular RNA UBE2Q2
promotes malignant progression of gastric cancer by regulating
signal transducer and activator of transcription 3-mediated
autophagy and glycolysis. Cell Death Dis. 12:9102021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cooks T, Pateras IS, Jenkins LM, Patel KM,
Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris
CC: Mutant p53 cancers reprogram macrophages to tumor supporting
macrophages via exosomal miR-1246. Nat Commun. 9:7712018.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen F, Chu L, Li J, Shi Y, Xu B, Gu J,
Yao X, Tian M, Yang X and Sun X: Hypoxia induced changes in miRNAs
and their target mRNAs in extracellular vesicles of esophageal
squamous cancer cells. Thorac Cancer. 11:570–580. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen F, Xu B, Li J, Yang X, Gu J, Yao X
and Sun X: Hypoxic tumour cell-derived exosomal miR-340-5p promotes
radioresistance of oesophageal squamous cell carcinoma via KLF10. J
Exp Clin Cancer Res. 40:382021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Butz F, Eichelmann AK, Mayne GC, Wang T,
Bastian I, Chiam K, Marri S, Sykes PJ, Wijnhoven BP, Toxopeus E, et
al: MicroRNA profiling in oesophageal adenocarcinoma cell lines and
patient serum samples reveals a role for miR-451a in radiation
resistance. Int J Mol Sci. 21:88982020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zheng Y, Campbell EC, Lucocq J, Riches A
and Powis SJ: Monitoring the Rab27 associated exosome pathway using
nanoparticle tracking analysis. Exp Cell Res. 319:1706–1713. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang W, Peng P, Kuang Y, Yang J, Cao D,
You Y and Shen K: Characterization of exosomes derived from ovarian
cancer cells and normal ovarian epithelial cells by nanoparticle
tracking analysis. Tumour Biol. 37:4213–4221. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Simpson RJ, Jensen SS and Lim JW:
Proteomic profiling of exosomes: Current perspectives. Proteomics.
8:4083–4099. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schneider CA, Rasband WS and Eliceiri KW:
NIH image to imageJ: 25 years of image analysis. Nat Methods.
9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li BQ XJ, Li QZ, Li XY, Gu FZ and Mu XL: A
study on cell biological characters of human esophageal cancer cell
line TE-1. Chin J Mod Med. 13:33–35. 2011.(In Chinese).
|
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fonseka P, Pathan M, Chitti SV, Kang T and
Mathivanan S: FunRich enables enrichment analysis of OMICs
datasets. J Mol Biol. 433:1667472021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Otasek D, Morris JH, Boucas J, Pico AR and
Demchak B: Cytoscape automation: Empowering workflow-based network
analysis. Genome Biol. 20:1852019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Feng H, Hu YY, Jin P, Meng XK, Chen YB and
Zhang HM: Intensity-modulated radiotherapy combined with iodine-125
seed implantation in non-central recurrence of cervical cancer: A
case report and literature review. Oncol Letters. 14:4085–4091.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jeppesen DK, Fenix AM, Franklin JL,
Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q,
Evans R, et al: Reassessment of exosome composition. Cell.
177:428–445.e18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kowal J, Arras G, Colombo M, Jouve M,
Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry
C: Proteomic comparison defines novel markers to characterize
heterogeneous populations of extracellular vesicle subtypes. Proc
Natl Acad Sci USA. 113:E968–E977. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lu M, Song Y, Fu W, Liu Y, Huai S, Cui X,
Pang L, Yang L and Wei Y: MicroRNA and target mRNA selection
through invasion and cytotoxicity cell modeling and bioinformatics
approaches in esophageal squamous cell carcinoma. Oncol Rep.
38:1181–1189. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhen C, Huang J and Lu J: MicroRNA-652
inhibits the biological characteristics of esophageal squamous cell
carcinoma by directly targeting fibroblast growth factor receptor
1. Exp Ther Med. 18:4473–4480. 2019.PubMed/NCBI
|
|
40
|
Yan Q, Liu L, Yang H, Xu C, Wang Z, Wang
Q, Wu Z, Wu C, Dong L, Wang J and Wu M: Long non-coding RNA
OIP5-AS1 inhibits the proliferation and migration of esophageal
squamous carcinoma cells by targeting FOXD1/miR-30a-5p axis and the
effect of micro- and nano-particles on targeting transfection
system. J Biomed Nanotechnol. 17:1380–1391. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wada M, Goto Y, Tanaka T, Okada R, Moriya
S, Idichi T, Noda M, Sasaki K, Kita Y, Kurahara H, et al: RNA
sequencing-based microRNA expression signature in esophageal
squamous cell carcinoma: oncogenic targets by antitumor miR-143-5p
and miR-143-3p regulation. J Hum Genet. 65:1019–1034. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Duff D and Long A: Roles for RACK1 in
cancer cell migration and invasion. Cell Signal. 35:250–255. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rodriguez LG, Wu X and Guan JL:
Wound-healing assay. Methods Mol Biol. 294:23–29. 2005.PubMed/NCBI
|
|
44
|
Wang F, Chen TS, Xing D, Wang JJ and Wu
YX: Measuring dynamics of caspase-3 activity in living cells using
FRET technique during apoptosis induced by high fluence low-power
laser irradiation. Lasers Surg Med. 36:2–7. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Morita Y, Naka T, Kawazoe Y, Fujimoto M,
Narazaki M, Nakagawa R, Fukuyama H, Nagata S and Kishimoto T:
Signals transducers and activators of transcription (STAT)-induced
STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1
(SOCS-1) suppresses tumor necrosis factor alpha-induced cell death
in fibroblasts. Proc Natl Acad Sci USA. 97:5405–5410. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chan WWL, Lam KO and Kwong DLW:
Radiotherapy for thoracic esophageal squamous cell carcinoma.
Methods Mol Biol. 2129:307–319. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zou B, Tu Y, Liao D, Xu Y, Wang J, Huang
M, Ren L, Zhu J, Gong Y, Liu Y, et al: Radical esophagectomy for
stage II and III thoracic esophageal squamous cell carcinoma
followed by adjuvant radiotherapy with or without chemotherapy:
Which is more beneficial? Thorac Cancer. 11:631–639. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Deng W, Yang J, Ni W, Li C, Chang X, Han
W, Zhou Z, Chen D, Feng Q, Liang J, et al: Postoperative
radiotherapy in pathological T2-3N0M0 thoracic esophageal squamous
cell carcinoma: Interim report of a prospective, phase III,
randomized controlled study. Oncologist. 25:e701–e708. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Al-Mayah AH, Irons SL, Pink RC, Carter DR
and Kadhim MA: Possible role of exosomes containing RNA in
mediating nontargeted effect of ionizing radiation. Radiat Res.
177:539–545. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Su LL, Chang XJ, Zhou HD, Hou LB and Xue
XY: Exosomes in esophageal cancer: A review on tumorigenesis,
diagnosis and therapeutic potential. World J Clin Cases. 7:908–916.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jin X, Chen Y, Chen H, Fei S, Chen D, Cai
X, Liu L, Lin B, Su H, Zhao L, et al: Evaluation of tumor-derived
exosomal miRNA as potential diagnostic biomarkers for early-stage
non-small cell lung cancer using next-generation sequencing. Clin
Cancer Res. 23:5311–5319. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Luo A, Zhou X, Shi X, Zhao Y, Men Y, Chang
X, Chen H, Ding F, Li Y, Su D, et al: Exosome-derived miR-339-5p
mediates radiosensitivity by targeting Cdc25A in locally advanced
esophageal squamous cell carcinoma. Oncogene. 38:4990–5006. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sun Y, Wang J, Ma Y, Li J, Sun X, Zhao X,
Shi X, Hu Y, Qu F and Zhang X: Radiation induces NORAD expression
to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1
signalling and by inhibiting pri-miR-199a1 processing and the
exosomal transfer of miR-199a-5p. J Exp Clin Cancer Res.
40:3062021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu L, Zhao L, Wang Q, Zhong S, Guo X, Zhu
Y, Bao J, Xu K and Liu S: Circulating exosomal miRNAs and cancer
early diagnosis. Clin Transl Oncol. 24:393–406. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lv J, Zhao HP, Dai K, Cheng Y, Zhang J and
Guo L: Circulating exosomal miRNAs as potential biomarkers for
Barrett's esophagus and esophageal adenocarcinoma. World J
Gastroenterol. 26:2889–2901. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Avgeris M, Panoutsopoulou K, Papadimitriou
MA and Scorilas A: Circulating exosomal miRNAs: Clinical
significance in human cancers. Expert Rev Mol Diagn. 19:979–995.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schwarzenbach H: The clinical relevance of
circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev
Mol Diagn. 15:1159–1169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Skladanowski A, Bozko P and Sabisz M: DNA
structure and integrity checkpoints during the cell cycle and their
role in drug targeting and sensitivity of tumor cells to anticancer
treatment. Chem Rev. 109:2951–2973. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Koukourakis MI: Radiation damage and
radioprotectants: New concepts in the era of molecular medicine.
Brit J Radiol. 85:313–330. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li MH, Zou X, Xia T, Wang T, Liu P, Zhou
X, Wang S and Zhu W: A five-miRNA panel in plasma was identified
for breast cancer diagnosis. Cancer Med. 8:7006–7017. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He
Y, Chen G, Zhou Q, Wang W, Zhou X, et al: Radiation-induced
miR-208a increases the proliferation and radioresistance by
targeting p21 in human lung cancer cells. J Exp Clin Canc Res.
35:72016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ham IH, Lee D and Hur H: Cancer-associated
fibroblast-induced resistance to chemotherapy and radiotherapy in
gastrointestinal cancers. Cancers (Basel). 13:11722021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xu T, Liao ZX, O'Reilly MS, Levy LB, Welsh
JW, Wang LE, Lin SH, Komaki R, Liu Z, Wei Q and Gomez DR: Serum
inflammatory miRNAs predict radiation esophagitis in patients
receiving definitive radiochemotherapy for non-small cell lung
cancer. Radiother Oncol. 113:379–384. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang J, Qiu WQ, Zhu H, Liu H, Sun JH,
Chen Y, Shen H, Qian CL and Shen ZY: HOTAIR contributes to the
carcinogenesis of gastric cancer via modulating cellular and
exosomal miRNAs level. Cell Death Dis. 11:7802020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yao W, Guo P, Mu Q and Wang Y:
Exosome-derived Circ-PVT1 contributes to cisplatin resistance by
regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1
axis in gastric cancer cells. Cancer Biother Radiopharm.
36:347–359. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kulkarni B, Gondaliya P, Kirave P, Rawal
R, Jain A, Garg R and Kalia K: Exosome-mediated delivery of miR-30a
sensitize cisplatin-resistant variant of oral squamous carcinoma
cells via modulating Beclin1 and Bcl2. Oncotarget. 11:1832–1845.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gao P, Wang D, Liu M, Chen S, Yang Z,
Zhang J, Wang H, Niu Y, Wang W, Yang J and Sun G: DNA
methylation-mediated repression of exosomal miR-652-5p expression
promotes oesophageal squamous cell carcinoma aggressiveness by
targeting PARG and VEGF pathways. PLoS Genet. 16:e10085922020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yang WH, Zhou CC, Luo M, Shi X, Li Y, Sun
Z, Zhou F, Chen Z and He J: MiR-652-3p is upregulated in non-small
cell lung cancer and promotes proliferation and metastasis by
directly targeting Lgl1. Oncotarget. 7:16703–16715. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li WF, Dai H, Ou Q, Zuo GQ and Liu CA:
Overexpression of microRNA-30a-5p inhibits liver cancer cell
proliferation and induces apoptosis by targeting MTDH/PTEN/AKT
pathway. Tumor Biol. 37:5885–5895. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sui J, Yang RS, Xu SY, Zhang YQ, Li CY,
Yang S, Yin LH, Pu YP and Liang GY: Comprehensive analysis of
aberrantly expressed microRNA profiles reveals potential biomarkers
of human lung adenocarcinoma progression. Oncol Rep. 38:2453–2463.
2017. View Article : Google Scholar : PubMed/NCBI
|