|
1
|
Hannah-Shmouni F, Faucz FR and Stratakis
CA: Alterations of phosphodiesterases in adrenocortical tumors.
Front Endocrinol (Lausanne). 7:1112016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rall TW and Sutherland EW: Formation of a
cyclic adenine ribonucleotide by tissue particles. J Biol Chem.
232:1065–1076. 1958. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Butcher RW and Sutherland EW: Adenosine
3′,5′-phosphate in biological materials. I. purification and
properties of cyclic 3′,5′-Nucleotide phosphodiesterase and use of
this enzyme to characterize adenosine 3′,5′-phosphate in human
urine. J Biol Chem. 237:1244–1250. 1962. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu Y, Chen J, Fontes SK, Bautista EN and
Cheng Z: Physiological and pathological roles of protein kinase a
in the heart. Cardiovasc Res. 118:386–398. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Calamera G, Moltzau LR, Levy FO and
Andressen KW: Phosphodiesterases and compartmentation of camp and
cgmp signaling in regulation of cardiac contractility in normal and
failing hearts. Int J Mol Sci. 23:21452022. View Article : Google Scholar
|
|
6
|
Levy I, Horvath A, Azevedo M, de Alexandre
RB and Stratakis CA: Phosphodiesterase function and endocrine
cells: Links to human disease and roles in tumor development and
treatment. Curr Opin Pharmacol. 11:689–697. 2011. View Article : Google Scholar
|
|
7
|
Makhlouf A, Kshirsagar A and Niederberger
C: Phosphodiesterase 11: A brief review of structure, expression
and function. Int J Impot Res. 18:501–519. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Huang J, Hu B, Xu Z, Ye Y, Wang H, Wang S,
Liu Z and Wang J: Selectivity mechanism of phosphodiesterase
isoform inhibitor through in silico investigations. J Mol Model.
28:92021. View Article : Google Scholar
|
|
9
|
Omori K and Kotera J: Overview of PDEs and
their regulation. Circ Res. 100:309–327. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ke H and Wang H: Crystal structures of
phosphodiesterases and implications on substrate specificity and
inhibitor selectivity. Curr Top Med Chem. 7:391–403. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rotella DP: Phosphodiesterase 5
inhibitors: Current status and potential applications. Nat Rev Drug
Discov. 1:674–682. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Galie N, Ghofrani HA, Torbicki A, Barst
RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A,
et al: Sildenafil citrate therapy for pulmonary arterial
hypertension. N Engl J Med. 353:2148–2157. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kleiman RJ, Chapin DS, Christoffersen C,
Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajós
M, Harms JF, et al: Phosphodiesterase 9a regulates central cgmp and
modulates responses to cholinergic and monoaminergic perturbation
in vivo. J Pharmacol Exp Ther. 341:396–409. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Schmidt CJ: Phosphodiesterase inhibitors
as potential cognition enhancing agents. Curr Top Med Chem.
10:222–230. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Blokland A, Schreiber R and Prickaerts J:
Improving memory: A role for phosphodiesterases. Curr Pharm Des.
12:2511–2523. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Menniti FS, Faraci WS and Schmidt CJ:
Phosphodiesterases in the Cns: Targets for drug development. Nat
Rev Drug Discov. 5:660–670. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hetman JM, Robas N, Baxendale R, Fidock M,
Phillips SC, Soderling SH and Beavo JA: Cloning and
characterization of two splice variants of human phosphodiesterase
11A. Proc Natl Acad Sci USA. 97:12891–12895. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fawcett L, Baxendale R, Stacey P,
McGrouther C, Harrow I, Soderling S, Hetman J, Beavo JA and
Phillips SC: Molecular Cloning and characterization of a distinct
human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci
USA. 97:3702–3707. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yuasa K, Kotera J, Fujishige K, Michibata
H, Sasaki T and Omori K: Isolation and characterization of two
novel phosphodiesterase PDE11A variants showing unique structure
and tissue-specific expression. J Biol Chem. 275:31469–31479. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yuasa K, Ohgaru T, Asahina M and Omori K:
Identification of rat cyclic nucleotide phosphodiesterase 11A
(PDE11A): Comparison of rat and human PDE11A Splicing variants. Eur
J Biochem. 268:4440–4448. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Weeks JL II, Zoraghi R, Francis SH and
Corbin JD: N-Terminal domain of phosphodiesterase-11A4 (PDE11A4)
decreases affinity of the catalytic site for substrates and
tadalafil, and is involved in oligomerization. Biochemistry.
46:10353–10364. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
D'Andrea MR, Qiu Y, Haynes-Johnson D,
Bhattacharjee S, Kraft P and Lundeen S: Expression of PDE11A in
normal and malignant human tissues. J Histochem Cytochem.
53:895–903. 2005. View Article : Google Scholar
|
|
23
|
Kelly MP: A role for phosphodiesterase 11A
(PDE11A) in the formation of social memories and the stabilization
of mood. Adv Neurobiol. 17:201–230. 2017. View Article : Google Scholar
|
|
24
|
Kelly MP: Does phosphodiesterase 11A
(PDE11A) hold promise as a future therapeutic target? Curr Pharm
Des. 21:389–416. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pilarzyk K, Farmer R, Porcher L and Kelly
MP: The role of PDE11A4 in social isolation-induced changes in
intracellular signaling and neuroinflammation. Front Pharmacol.
12:7496282021. View Article : Google Scholar
|
|
26
|
Wettschureck N and Offermanns S: Mammalian
G proteins and their cell type specific functions. Physiol Rev.
85:1159–1204. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Stratakis CA: Mutations of the gene
encoding the protein kinase a type I-Alpha regulatory subunit
(PRKAR1A) in patients with the ‘complex of spotty skin
pigmentation, myxomas, endocrine overactivity, and schwannomas’
(Carney Complex). Ann N Y Acad Sci. 968:3–21. 2002. View Article : Google Scholar
|
|
28
|
Bertherat J, Horvath A, Groussin L, Grabar
S, Boikos S, Cazabat L, Libe R, René-Corail F, Stergiopoulos S,
Bourdeau I, et al: Mutations in regulatory subunit type 1A of
cyclic adenosine 5′-Monophosphate-dependent protein kinase
(PRKAR1A): Phenotype analysis in 353 patients and 80 different
genotypes. J Clin Endocrinol Metab. 94:2085–2091. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Greene EL, Horvath AD, Nesterova M,
Giatzakis C, Bossis I and Stratakis CA: In vitro functional studies
of naturally occurring pathogenic PRKAR1A mutations that are not
subject to nonsense mRNA decay. Hum Mutat. 29:633–639. 2008.
View Article : Google Scholar
|
|
30
|
Groussin L, Kirschner LS, Vincent-Dejean
C, Perlemoine K, Jullian E, Delemer B, Zacharieva S, Pignatelli D,
Carney JA, Luton JP, et al: Molecular analysis of the cyclic
AMP-Dependent Protein Kinase A (PKA) regulatory subunit 1A
(PRKAR1A) gene in patients with carney complex and primary
pigmented nodular adrenocortical disease (PPNAD) reveals novel
mutations and clues for pathophysiology: Augmented PKA signaling is
associated with adrenal tumorigenesis in PPNAD. Am J Hum Genet.
71:1433–1442. 2002. View
Article : Google Scholar
|
|
31
|
Horvath A, Bertherat J, Groussin L,
Guillaud-Bataille M, Tsang K, Cazabat L, Libé R, Remmers E,
René-Corail F, Faucz FR, et al: Mutations and polymorphisms in the
gene encoding regulatory subunit type 1-alpha of protein kinase A
(PRKAR1A): An update. Hum Mutat. 31:369–379. 2010. View Article : Google Scholar
|
|
32
|
Sandrini F and Stratakis C: Clinical and
molecular genetics of carney complex. Mol Genet Metab. 78:83–92.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kirschner LS, Carney JA, Pack SD, Taymans
SE, Giatzakis C, Cho YS, Cho-Chung YS and Stratakis CA: Mutations
of the gene encoding the protein kinase a type I-alpha regulatory
subunit in patients with the carney complex. Nat Genet. 26:89–92.
2000. View Article : Google Scholar
|
|
34
|
Weinstein LS, Shenker A, Gejman PV, Merino
MJ, Friedman E and Spiegel AM: Activating mutations of the
stimulatory G protein in the McCune-albright syndrome. N Engl J
Med. 325:1688–1695. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stewart V and Yanofsky C: Role of leader
peptide synthesis in tryptophanase operon expression in Escherichia
Coli K-12. J Bacteriol. 167:383–386. 1986. View Article : Google Scholar
|
|
36
|
Velterop JS, Sellink E, Meulenberg JJ,
David S, Bulder I and Postma PW: Synthesis of pyrroloquinoline
quinone in vivo and in vitro and detection of an intermediate in
the biosynthetic pathway. J Bacteriol. 177:5088–5098. 1995.
View Article : Google Scholar
|
|
37
|
Meulenberg JJ, Sellink E, Riegman NH and
Postma PW: Nucleotide sequence and structure of the klebsiella
pneumoniae Pqq operon. Mol Gen Genet. 232:284–294. 1992. View Article : Google Scholar
|
|
38
|
Roelofs J, Smith JL and Van Haastert PJ:
Cgmp signalling: Different ways to create a pathway. Trends Genet.
19:132–134. 2003. View Article : Google Scholar
|
|
39
|
Ochman H: Distinguishing the ORFs from the
ELFs: Short bacterial genes and the annotation of genomes. Trends
Genet. 18:335–337. 2002. View Article : Google Scholar
|
|
40
|
Yanofsky C: Transcription Attenuation. J
Biol Chem. 263:609–612. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
You JY, Liu XW, Bao YX, Shen ZN, Wang Q,
He GY, Lu J, Zhang JG, Chen JW and Liu PQ: A novel
phosphodiesterase 9A inhibitor LW33 protects against ischemic
stroke through the cGMP/PKG/CREB Pathway. Eur J Pharmacol.
925:1749872022. View Article : Google Scholar
|
|
42
|
Libe R, Fratticci A, Coste J, Tissier F,
Horvath A, Ragazzon B, Rene-Corail F, Groussin L, Bertagna X,
Raffin-Sanson ML, et al: Phosphodiesterase 11A (PDE11A) and genetic
predisposition to adrenocortical tumors. Clin Cancer Res.
14:4016–4024. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Horvath A, Boikos S, Giatzakis C,
Robinson-White A, Groussin L, Griffin KJ, Stein E, Levine E,
Delimpasi G, Hsiao HP, et al: A genome-wide scan identifies
mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in
individuals with adrenocortical hyperplasia. Nat Genet. 38:794–800.
2006. View
Article : Google Scholar
|
|
44
|
Horvath A, Korde L, Greene MH, Libe R,
Osorio P, Faucz FR, Raffin-Sanson ML, Tsang KM, Drori-Herishanu L,
Patronas Y, et al: Functional phosphodiesterase 11A mutations may
modify the risk of familial and bilateral testicular germ cell
tumors. Cancer Res. 69:5301–5306. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
de Alexandre RB, Horvath AD, Szarek E,
Manning AD, Leal LF, Kardauke F, Epstein JA, Carraro DM, Soares FA,
Apanasovich TV, et al: Phosphodiesterase Sequence variants may
predispose to prostate cancer. Endocr Relat Cancer. 22:519–530.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lefievre L, de Lamirande E and Gagnon C:
Presence of Cyclic nucleotide phosphodiesterases PDE1A, existing as
a stable complex with calmodulin, and PDE3A in human spermatozoa.
Biol Reprod. 67:423–430. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fidock M, Miller M and Lanfear J:
Isolation and differential tissue distribution of two human cDNAs
encoding PDE1 splice variants. Cell Signal. 14:53–60. 2002.
View Article : Google Scholar
|
|
48
|
Michibata H, Yanaka N, Kanoh Y, Okumura K
and Omori K: Human Ca2+/Calmodulin-dependent phosphodiesterase
PDE1A: Novel splice variants, their specific expression, genomic
organization, and chromosomal localization. Biochim Biophys Acta.
1517:278–287. 2001. View Article : Google Scholar
|
|
49
|
Loughney K, Martins TJ, Harris EA, Sadhu
K, Hicks JB, Sonnenburg WK, Beavo JA and Ferguson K: Isolation and
Characterization of CDNAs corresponding to two human calcium,
calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J
Biol Chem. 271:796–806. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kanda N and Watanabe S: Regulatory roles
of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and
4 in interleukin-13 production by activated human T cells. Biochem
Pharmacol. 62:495–507. 2001. View Article : Google Scholar
|
|
51
|
Yan C, Zhao AZ, Bentley JK, Loughney K,
Ferguson K and Beavo JA: Molecular cloning and characterization of
a calmodulin-dependent phosphodiesterase enriched in olfactory
sensory neurons. Proc Natl Acad Sci USA. 92:9677–9681. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nikolaev VO, Gambaryan S, Engelhardt S,
Walter U and Lohse MJ: Real-Time Monitoring of the PDE2 activity of
live cells: Hormone-stimulated camp hydrolysis is faster than
hormone-stimulated camp synthesis. J Biol Chem. 280:1716–1719.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Maurice DH, Palmer D, Tilley DG, Dunkerley
HA, Netherton SJ, Raymond DR, Elbatarny HS and Jimmo SL: Cyclic
nucleotide phosphodiesterase activity, expression, and targeting in
cells of the cardiovascular system. Mol Pharmacol. 64:533–546.
2003. View Article : Google Scholar
|
|
54
|
Degerman E, Belfrage P and Manganiello VC:
Structure, localization, and regulation of cgmp-inhibited
phosphodiesterase (PDE3). J Biol Chem. 272:6823–6826. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mongillo M, Tocchetti CG, Terrin A,
Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci
N, Houslay MD and Zaccolo M: Compartmentalized phosphodiesterase-2
activity blunts beta-adrenergic cardiac inotropy via an
No/cGMP-dependent pathway. Circ Res. 98:226–234. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bender AT, Ostenson CL, Giordano D and
Beavo JA: Differentiation of human monocytes in vitro with
granulocyte-macrophage colony-stimulating factor and macrophage
colony-stimulating factor produces distinct changes in cGMP
phosphodiesterase expression. Cell Signal. 16:365–374. 2004.
View Article : Google Scholar
|
|
57
|
Seybold J, Thomas D, Witzenrath M, Boral
S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, et
al: Tumor necrosis factor-alpha-dependent expression of
phosphodiesterase 2: Role in endothelial hyperpermeability. Blood.
105:3569–3576. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Domek-Lopacinska K and Strosznajder JB:
The effect of selective inhibition of cyclic GMP hydrolyzing
phosphodiesterases 2 and 5 on learning and memory processes and
nitric oxide synthase activity in brain during aging. Brain Res.
1216:68–77. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
de Oliveira SK and Smolenski A:
Phosphodiesterases link the aryl hydrocarbon receptor complex to
cyclic nucleotide signaling. Biochem Pharmacol. 77:723–733. 2009.
View Article : Google Scholar
|
|
60
|
Rena G, Begg F, Ross A, MacKenzie C,
McPhee I, Campbell L, Huston E, Sullivan M and Houslay MD:
Molecular cloning, genomic positioning, promoter identification,
and characterization of the novel cyclic amp-specific
phosphodiesterase PDE4A10. Mol Pharmacol. 59:996–1011. 2001.
View Article : Google Scholar
|
|
61
|
Wang P, Wu P, Ohleth KM, Egan RW and
Billah MM: Phosphodiesterase 4B2 is the predominant
phosphodiesterase species and undergoes differential regulation of
gene expression in human monocytes and neutrophils. Mol Pharmacol.
56:170–174. 1999. View Article : Google Scholar
|
|
62
|
Bolger G, Michaeli T, Martins T, St John
T, Steiner B, Rodgers L, Riggs M, Wigler M and Ferguson K: A family
of human phosphodiesterases homologous to the dunce learning and
memory gene product of drosophila melanogaster are potential
targets for antidepressant drugs. Mol Cell Biol. 13:6558–6571.
1993. View Article : Google Scholar
|
|
63
|
Dunkern TR and Hatzelmann A: The effect of
sildenafil on human platelet secretory function is controlled by a
complex interplay between phosphodiesterases 2, 3 and 5. Cell
Signal. 17:331–339. 2005. View Article : Google Scholar
|
|
64
|
Prickaerts J, Sik A, van Staveren WC,
Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J and
Blokland A: Phosphodiesterase type 5 inhibition improves early
memory consolidation of object information. Neurochem Int.
45:915–928. 2004. View Article : Google Scholar
|
|
65
|
Miller CL and Yan C: Targeting cyclic
nucleotide phosphodiesterase in the heart: Therapeutic
implications. J Cardiovasc Transl Res. 3:507–515. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ridge KD, Abdulaev NG, Sousa M and
Palczewski K: Phototransduction: Crystal clear. Trends Biochem Sci.
28:479–487. 2003. View Article : Google Scholar
|
|
67
|
Morin F, Lugnier C, Kameni J and Voisin P:
Expression and role of phosphodiesterase 6 in the chicken pineal
gland. J Neurochem. 78:88–99. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bloom TJ and Beavo JA: Identification and
tissue-specific expression of PDE7 phosphodiesterase splice
variants. Proc Natl Acad Sci USA. 93:14188–14192. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Han P, Zhu X and Michaeli T: Alternative
splicing of the high affinity cAMP-specific phosphodiesterase
(PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem.
272:16152–16157. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sasaki T, Kotera J and Omori K:
Transcriptional activation of phosphodiesterase 7B1 by dopamine d1
receptor stimulation through the cyclic AMP/Cyclic AMP-dependent
protein kinase/cyclic AMP-response element binding protein pathway
in primary striatal neurons. J Neurochem. 89:474–483. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Glavas NA, Ostenson C, Schaefer JB, Vasta
V and Beavo JA: T cell activation up-regulates cyclic nucleotide
phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA.
98:6319–6324. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Patrucco E, Albergine MS, Santana LF and
Beavo JA: Phosphodiesterase 8A (PDE8A) regulates
excitation-contraction coupling in ventricular myocytes. J Mol Cell
Cardiol. 49:330–333. 2010. View Article : Google Scholar
|
|
73
|
Mehats C, Andersen CB, Filopanti M, Jin SL
and Conti M: Cyclic nucleotide phosphodiesterases and their role in
endocrine cell signaling. Trends Endocrinol Metab. 13:29–35. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hayashi M, Matsushima K, Ohashi H, Tsunoda
H, Murase S, Kawarada Y and Tanaka T: Molecular cloning and
characterization of human PDE8B, a novel thyroid-specific isozyme
of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Res
Commun. 250:751–756. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hayashi M, Shimada Y, Nishimura Y, Hama T
and Tanaka T: Genomic organization, chromosomal localization, and
alternative splicing of the human phosphodiesterase 8B gene.
Biochem Biophys Res Commun. 297:1253–1258. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Horvath A, Giatzakis C, Tsang K, Greene E,
Osorio P, Boikos S, Libè R, Patronas Y, Robinson-White A, Remmers
E, et al: A cAMP-specific phosphodiesterase (PDE8B) that is mutated
in adrenal hyperplasia is expressed widely in human and mouse
tissues: A novel PDE8B isoform in human adrenal cortex. Eur J Hum
Genet. 16:1245–1253. 2008. View Article : Google Scholar
|
|
77
|
Rentero C, Monfort A and Puigdomenech P:
Identification and distribution of different mRNA variants produced
by differential splicing in the human phosphodiesterase 9A gene.
Biochem Biophys Res Commun. 301:686–692. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Furukawa T, Youssef EM, Yatsuoka T,
Yokoyama T, Makino N, Inoue H, Fukushige S, Hoshi M, Hayashi Y,
Sunamura M and Horii A: Cloning and characterization of the human
Udp-N-Acetylglucosamine: Alpha-1,3-D-mannoside
beta-1,4-N-acetylglucosaminyltransferase IV-Homologue (hGnT-IV-H)
gene. J Hum Genet. 44:397–401. 1999. View Article : Google Scholar
|
|
79
|
Kelly MP, Logue SF, Brennan J, Day JP,
Lakkaraju S, Jiang L, Zhong X, Tam M, Sukoff Rizzo SJ, Platt BJ, et
al: Phosphodiesterase 11A in brain is enriched in ventral
hippocampus and deletion causes psychiatric disease-related
phenotypes. Proc Natl Acad Sci USA. 107:8457–8462. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kleppisch T: Phosphodiesterases in the
central nervous system. Handb Exp Pharmacol. 71–92. 2009.
View Article : Google Scholar
|
|
81
|
Knott EP, Assi M, Rao SN, Ghosh M and
Pearse DD: Phosphodiesterase inhibitors as a therapeutic approach
to neuroprotection and repair. Int J Mol Sci. 18:6962017.
View Article : Google Scholar
|
|
82
|
Libe R, Horvath A, Vezzosi D, Fratticci A,
Coste J, Perlemoine K, Ragazzon B, Guillaud-Bataille M, Groussin L,
Clauser E, et al: Frequent phosphodiesterase 11A gene (PDE11A)
defects in patients with carney complex (CNC) Caused by PRKAR1A
Mutations: PDE11A may contribute to adrenal and testicular tumors
in CNC as a modifier of the phenotype. J Clin Endocrinol Metab.
96:E208–E214. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Jager R, Russwurm C, Schwede F, Genieser
HG, Koesling D and Russwurm M: Activation of PDE10 and PDE11
phosphodiesterases. J Biol Chem. 287:1210–1219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pitsava G and Stratakis CA: Genetic
alterations in benign adrenal tumors. Biomedicines. 10:10412022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hsiao HP, Kirschner LS, Bourdeau I, Keil
MF, Boikos SA, Verma S, Robinson-White AJ, Nesterova M, Lacroix A
and Stratakis CA: Clinical and genetic heterogeneity, overlap with
other tumor syndromes, and atypical glucocorticoid hormone
secretion in adrenocorticotropin-independent macronodular adrenal
hyperplasia compared with other adrenocortical tumors. J Clin
Endocrinol Metab. 94:2930–2937. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Horvath A, Giatzakis C, Robinson-White A,
Boikos S, Levine E, Griffin K, Stein E, Kamvissi V, Soni P, Bossis
I, et al: Adrenal hyperplasia and adenomas are associated with
inhibition of phosphodiesterase 11A in carriers of PDE11A sequence
variants that are frequent in the population. Cancer Res.
66:11571–11575. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Pathak A, Stewart DR, Faucz FR, Xekouki P,
Bass S, Vogt A, Zhang X, Boland J, Yeager M, Loud JT, et al: Rare
inactivating PDE11A variants associated with testicular germ cell
tumors. Endocr Relat Cancer. 22:909–917. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dal J, Nielsen EH, Klose M,
Feldt-Rasmussen U, Andersen M, Vang S, Korbonits M and Jørgensen
JOL: Phenotypic and genotypic features of a large kindred with a
germline AIP variant. Clin Endocrinol (Oxf). 93:146–153. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Pinto EM, Faucz FR, Paza LZ, Wu G,
Fernandes ES, Bertherat J, Stratakis CA, Lalli E, Ribeiro RC,
Rodriguez-Galindo C, et al: Germline variants in phosphodiesterase
genes and genetic predisposition to pediatric adrenocortical
tumors. Cancers (Basel). 12:5062020. View Article : Google Scholar
|
|
90
|
Faucz FR, Horvath A, Rothenbuhler A,
Almeida MQ, Libe R, Raffin-Sanson ML, Bertherat J, Carraro DM,
Soares FA, Molina Gde C, et al: Phosphodiesterase 11A (PDE11A)
genetic variants may increase susceptibility to prostatic cancer. J
Clin Endocrinol Metab. 96:E135–E140. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dono A, Nickles J, Rodriguez-Armendariz
AG, McFarland BC, Ajami NJ, Ballester LY, Wargo JA and Esquenazi Y:
Glioma and the gut-brain axis: Opportunities and future
perspectives. Neurooncol Adv. 4:vdac0542022.PubMed/NCBI
|
|
92
|
Schwartz KA, Noel M, Nikolai M, Olson LK,
Hord NG, Zakem M, Clark J, Elnabtity M, Figueroa B and Chang HT:
Long term survivals in aggressive primary brain malignancies
treated with an adjuvant ketogenic diet. Front Nutr. 9:7707962022.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Burns TC, Awad AJ, Li MD and Grant GA:
Radiation-induced brain injury: Low-hanging fruit for
neuroregeneration. Neurosurg Focus. 40:E32016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lee H, Park S, Kong G, Kwon SH, Park J,
Park J and Kim SH: Phosphodiesterase 11A (PDE11A), a potential
biomarker for glioblastoma. Toxicol Res. 2022. View Article : Google Scholar
|
|
96
|
Rothenbuhler A, Horvath A, Libe R, Faucz
FR, Fratticci A, Raffin Sanson ML, Vezzosi D, Azevedo M, Levy I,
Almeida MQ, et al: Identification of novel genetic variants in
phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase
highly expressed in the adrenal cortex, in a cohort of patients
with adrenal tumours. Clin Endocrinol (Oxf). 77:195–199. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hou Y, Wren A, Mylarapu N, Browning K,
Islam BN, Wang R, Vega KJ and Browning DD: Inhibition of colon
cancer cell growth by phosphodiesterase inhibitors is independent
of cGMP Signaling. J Pharmacol Exp Ther. 381:42–53. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Di Iorio P, Ronci M, Giuliani P, Caciagli
F, Ciccarelli R, Caruso V, Beggiato S and Zuccarini M: Pros and
cons of pharmacological manipulation of cGMP-PDEs in the prevention
and treatment of breast cancer. Int J Mol Sci. 23:2622021.
View Article : Google Scholar
|
|
99
|
Vezzosi D, Cartier D, Regnier C, Otal P,
Bennet A, Parmentier F, Plantavid M, Lacroix A, Lefebvre H and
Caron P: Familial adrenocorticotropin-independent macronodular
adrenal hyperplasia with aberrant serotonin and vasopressin adrenal
receptors. Eur J Endocrinol. 156:21–31. 2007. View Article : Google Scholar
|
|
100
|
Vezzosi D, Libe R, Baudry C, Rizk-Rabin M,
Horvath A, Levy I, René-Corail F, Ragazzon B, Stratakis CA,
Vandecasteele G and Bertherat J: Phosphodiesterase 11A (PDE11A)
gene defects in patients with acth-independent macronodular adrenal
hyperplasia (AIMAH): Functional variants may contribute to genetic
susceptibility of bilateral adrenal tumors. J Clin Endocrinol
Metab. 97:E2063–E2069. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Peverelli E, Ermetici F, Filopanti M, Elli
FM, Ronchi CL, Mantovani G, Ferrero S, Bosari S, Beck-Peccoz P,
Lania A and Spada A: Analysis of genetic variants of
phosphodiesterase 11A in acromegalic patients. Eur J Endocrinol.
161:687–694. 2009. View Article : Google Scholar
|
|
102
|
Pathak G, Agostino MJ, Bishara K, Capell
WR, Fisher JL, Hegde S, Ibrahim BA, Pilarzyk K, Sabin C, Tuczkewycz
T, et al: PDE11A negatively regulates lithium responsivity. Mol
Psychiatry. 22:1714–1724. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Qin W, Zhou A, Zuo X, Jia L, Li F, Wang Q,
Li Y, Wei Y, Jin H, Cruchaga C, et al: Exome Sequencing Revealed
PDE11A as a novel candidate gene for early-onset Alzheimer's
disease. Hum Mol Genet. 30:811–822. 2021. View Article : Google Scholar
|
|
104
|
Pilarzyk K, Klett J, Pena EA, Porcher L,
Smith AJ and Kelly MP: Loss of function of phosphodiesterase 11A4
shows that recent and remote long-term memories can be uncoupled.
Curr Biol. 29:2307–2321. e52019. View Article : Google Scholar
|
|
105
|
Hegde S, Capell WR, Ibrahim BA, Klett J,
Patel NS, Sougiannis AT and Kelly MP: Phosphodiesterase 11A
(PDE11A), enriched in ventral hippocampus neurons, is required for
consolidation of social but not nonsocial memories in mice.
Neuropsychopharmacology. 41:2920–2931. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Loughney K, Taylor J and Florio VA:
3′,5′-cyclic nucleotide phosphodiesterase 11A: Localization in
human tissues. Int J Impot Res. 17:320–325. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wayman C, Phillips S, Lunny C, Webb T,
Fawcett L, Baxendale R and Burgess G: Phosphodiesterase 11 (PDE11)
regulation of spermatozoa physiology. Int J Impot Res. 17:216–223.
2005. View Article : Google Scholar : PubMed/NCBI
|