Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functional characteristics and research trends of PDE11A in human diseases (Review)

  • Authors:
    • Gyeyeong Kong
    • Hyunji Lee
    • Thuy-Trang T. Vo
    • Uijin Juang
    • So Hee Kwon
    • Jisoo Park
    • Jongsun Park
    • Seon-Hwan Kim
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea, Mitos Research Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea, Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
    Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 298
    |
    Published online on: August 4, 2022
       https://doi.org/10.3892/mmr.2022.12814
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

cAMP and cGMP are important secondary messengers involved in cell regulation and metabolism driven by the G protein‑coupled receptor. cAMP is converted via adenylyl cyclase (AC) and activates protein kinase A to phosphorylate intracellular proteins that mediate specific responses. cAMP signaling serves a role at multiple steps in tumorigenesis. The level of cAMP is increased in association with cancer cell formation through activation of AC‑stimulatory G protein by mutation. Phosphodiesterases (PDEs) hydrolyze cAMP and cGMP to AMP and GMP. PDEs are composed of 11 families, and each can hydrolyze cAMP and cGMP or both cAMP and cGMP. PDEs perform various roles depending on their location and expression site, and are involved in several diseases, including male erectile dysfunction, pulmonary hypertension, Alzheimer's disease and schizophrenia. PDE11A is the 11th member of the PDE family and is characterized by four splice variants with varying tissue expression and N‑terminal regulatory regions. Among tissues, the expression of PDE11A was highest in the prostate, and it was also expressed in hepatic skeletal muscle, pituitary, pancreas and kidney. PDE11A is the first PDE associated with an adrenocortical tumor associated genetic condition. In several studies, three PDE11A mutations have been reported in patients with Cushing syndrome with primary pigmented nodular adrenocortical disease or isolated micronodular adrenocortical disease without other genetic defects. It has been reported that an increase in PDE11A expression affects the proliferation of glioblastoma and worsens patient prognosis. The present mini‑review summarizes the location of PDE11A expression, the impact of structural differences and disease relevance.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Hannah-Shmouni F, Faucz FR and Stratakis CA: Alterations of phosphodiesterases in adrenocortical tumors. Front Endocrinol (Lausanne). 7:1112016. View Article : Google Scholar : PubMed/NCBI

2 

Rall TW and Sutherland EW: Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 232:1065–1076. 1958. View Article : Google Scholar : PubMed/NCBI

3 

Butcher RW and Sutherland EW: Adenosine 3′,5′-phosphate in biological materials. I. purification and properties of cyclic 3′,5′-Nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem. 237:1244–1250. 1962. View Article : Google Scholar : PubMed/NCBI

4 

Liu Y, Chen J, Fontes SK, Bautista EN and Cheng Z: Physiological and pathological roles of protein kinase a in the heart. Cardiovasc Res. 118:386–398. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Calamera G, Moltzau LR, Levy FO and Andressen KW: Phosphodiesterases and compartmentation of camp and cgmp signaling in regulation of cardiac contractility in normal and failing hearts. Int J Mol Sci. 23:21452022. View Article : Google Scholar

6 

Levy I, Horvath A, Azevedo M, de Alexandre RB and Stratakis CA: Phosphodiesterase function and endocrine cells: Links to human disease and roles in tumor development and treatment. Curr Opin Pharmacol. 11:689–697. 2011. View Article : Google Scholar

7 

Makhlouf A, Kshirsagar A and Niederberger C: Phosphodiesterase 11: A brief review of structure, expression and function. Int J Impot Res. 18:501–519. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Huang J, Hu B, Xu Z, Ye Y, Wang H, Wang S, Liu Z and Wang J: Selectivity mechanism of phosphodiesterase isoform inhibitor through in silico investigations. J Mol Model. 28:92021. View Article : Google Scholar

9 

Omori K and Kotera J: Overview of PDEs and their regulation. Circ Res. 100:309–327. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Ke H and Wang H: Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem. 7:391–403. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Rotella DP: Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat Rev Drug Discov. 1:674–682. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, et al: Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 353:2148–2157. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajós M, Harms JF, et al: Phosphodiesterase 9a regulates central cgmp and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther. 341:396–409. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Schmidt CJ: Phosphodiesterase inhibitors as potential cognition enhancing agents. Curr Top Med Chem. 10:222–230. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Blokland A, Schreiber R and Prickaerts J: Improving memory: A role for phosphodiesterases. Curr Pharm Des. 12:2511–2523. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Menniti FS, Faraci WS and Schmidt CJ: Phosphodiesterases in the Cns: Targets for drug development. Nat Rev Drug Discov. 5:660–670. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Hetman JM, Robas N, Baxendale R, Fidock M, Phillips SC, Soderling SH and Beavo JA: Cloning and characterization of two splice variants of human phosphodiesterase 11A. Proc Natl Acad Sci USA. 97:12891–12895. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, Hetman J, Beavo JA and Phillips SC: Molecular Cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci USA. 97:3702–3707. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T and Omori K: Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem. 275:31469–31479. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Yuasa K, Ohgaru T, Asahina M and Omori K: Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): Comparison of rat and human PDE11A Splicing variants. Eur J Biochem. 268:4440–4448. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Weeks JL II, Zoraghi R, Francis SH and Corbin JD: N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry. 46:10353–10364. 2007. View Article : Google Scholar : PubMed/NCBI

22 

D'Andrea MR, Qiu Y, Haynes-Johnson D, Bhattacharjee S, Kraft P and Lundeen S: Expression of PDE11A in normal and malignant human tissues. J Histochem Cytochem. 53:895–903. 2005. View Article : Google Scholar

23 

Kelly MP: A role for phosphodiesterase 11A (PDE11A) in the formation of social memories and the stabilization of mood. Adv Neurobiol. 17:201–230. 2017. View Article : Google Scholar

24 

Kelly MP: Does phosphodiesterase 11A (PDE11A) hold promise as a future therapeutic target? Curr Pharm Des. 21:389–416. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Pilarzyk K, Farmer R, Porcher L and Kelly MP: The role of PDE11A4 in social isolation-induced changes in intracellular signaling and neuroinflammation. Front Pharmacol. 12:7496282021. View Article : Google Scholar

26 

Wettschureck N and Offermanns S: Mammalian G proteins and their cell type specific functions. Physiol Rev. 85:1159–1204. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Stratakis CA: Mutations of the gene encoding the protein kinase a type I-Alpha regulatory subunit (PRKAR1A) in patients with the ‘complex of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas’ (Carney Complex). Ann N Y Acad Sci. 968:3–21. 2002. View Article : Google Scholar

28 

Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, René-Corail F, Stergiopoulos S, Bourdeau I, et al: Mutations in regulatory subunit type 1A of cyclic adenosine 5′-Monophosphate-dependent protein kinase (PRKAR1A): Phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 94:2085–2091. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Greene EL, Horvath AD, Nesterova M, Giatzakis C, Bossis I and Stratakis CA: In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat. 29:633–639. 2008. View Article : Google Scholar

30 

Groussin L, Kirschner LS, Vincent-Dejean C, Perlemoine K, Jullian E, Delemer B, Zacharieva S, Pignatelli D, Carney JA, Luton JP, et al: Molecular analysis of the cyclic AMP-Dependent Protein Kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: Augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am J Hum Genet. 71:1433–1442. 2002. View Article : Google Scholar

31 

Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, Libé R, Remmers E, René-Corail F, Faucz FR, et al: Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): An update. Hum Mutat. 31:369–379. 2010. View Article : Google Scholar

32 

Sandrini F and Stratakis C: Clinical and molecular genetics of carney complex. Mol Genet Metab. 78:83–92. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS and Stratakis CA: Mutations of the gene encoding the protein kinase a type I-alpha regulatory subunit in patients with the carney complex. Nat Genet. 26:89–92. 2000. View Article : Google Scholar

34 

Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E and Spiegel AM: Activating mutations of the stimulatory G protein in the McCune-albright syndrome. N Engl J Med. 325:1688–1695. 1991. View Article : Google Scholar : PubMed/NCBI

35 

Stewart V and Yanofsky C: Role of leader peptide synthesis in tryptophanase operon expression in Escherichia Coli K-12. J Bacteriol. 167:383–386. 1986. View Article : Google Scholar

36 

Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I and Postma PW: Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol. 177:5088–5098. 1995. View Article : Google Scholar

37 

Meulenberg JJ, Sellink E, Riegman NH and Postma PW: Nucleotide sequence and structure of the klebsiella pneumoniae Pqq operon. Mol Gen Genet. 232:284–294. 1992. View Article : Google Scholar

38 

Roelofs J, Smith JL and Van Haastert PJ: Cgmp signalling: Different ways to create a pathway. Trends Genet. 19:132–134. 2003. View Article : Google Scholar

39 

Ochman H: Distinguishing the ORFs from the ELFs: Short bacterial genes and the annotation of genomes. Trends Genet. 18:335–337. 2002. View Article : Google Scholar

40 

Yanofsky C: Transcription Attenuation. J Biol Chem. 263:609–612. 1988. View Article : Google Scholar : PubMed/NCBI

41 

You JY, Liu XW, Bao YX, Shen ZN, Wang Q, He GY, Lu J, Zhang JG, Chen JW and Liu PQ: A novel phosphodiesterase 9A inhibitor LW33 protects against ischemic stroke through the cGMP/PKG/CREB Pathway. Eur J Pharmacol. 925:1749872022. View Article : Google Scholar

42 

Libe R, Fratticci A, Coste J, Tissier F, Horvath A, Ragazzon B, Rene-Corail F, Groussin L, Bertagna X, Raffin-Sanson ML, et al: Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res. 14:4016–4024. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, Stein E, Levine E, Delimpasi G, Hsiao HP, et al: A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 38:794–800. 2006. View Article : Google Scholar

44 

Horvath A, Korde L, Greene MH, Libe R, Osorio P, Faucz FR, Raffin-Sanson ML, Tsang KM, Drori-Herishanu L, Patronas Y, et al: Functional phosphodiesterase 11A mutations may modify the risk of familial and bilateral testicular germ cell tumors. Cancer Res. 69:5301–5306. 2009. View Article : Google Scholar : PubMed/NCBI

45 

de Alexandre RB, Horvath AD, Szarek E, Manning AD, Leal LF, Kardauke F, Epstein JA, Carraro DM, Soares FA, Apanasovich TV, et al: Phosphodiesterase Sequence variants may predispose to prostate cancer. Endocr Relat Cancer. 22:519–530. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Lefievre L, de Lamirande E and Gagnon C: Presence of Cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod. 67:423–430. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Fidock M, Miller M and Lanfear J: Isolation and differential tissue distribution of two human cDNAs encoding PDE1 splice variants. Cell Signal. 14:53–60. 2002. View Article : Google Scholar

48 

Michibata H, Yanaka N, Kanoh Y, Okumura K and Omori K: Human Ca2+/Calmodulin-dependent phosphodiesterase PDE1A: Novel splice variants, their specific expression, genomic organization, and chromosomal localization. Biochim Biophys Acta. 1517:278–287. 2001. View Article : Google Scholar

49 

Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA and Ferguson K: Isolation and Characterization of CDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J Biol Chem. 271:796–806. 1996. View Article : Google Scholar : PubMed/NCBI

50 

Kanda N and Watanabe S: Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem Pharmacol. 62:495–507. 2001. View Article : Google Scholar

51 

Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K and Beavo JA: Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci USA. 92:9677–9681. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Nikolaev VO, Gambaryan S, Engelhardt S, Walter U and Lohse MJ: Real-Time Monitoring of the PDE2 activity of live cells: Hormone-stimulated camp hydrolysis is faster than hormone-stimulated camp synthesis. J Biol Chem. 280:1716–1719. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS and Jimmo SL: Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 64:533–546. 2003. View Article : Google Scholar

54 

Degerman E, Belfrage P and Manganiello VC: Structure, localization, and regulation of cgmp-inhibited phosphodiesterase (PDE3). J Biol Chem. 272:6823–6826. 1997. View Article : Google Scholar : PubMed/NCBI

55 

Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD and Zaccolo M: Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an No/cGMP-dependent pathway. Circ Res. 98:226–234. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Bender AT, Ostenson CL, Giordano D and Beavo JA: Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal. 16:365–374. 2004. View Article : Google Scholar

57 

Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, et al: Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: Role in endothelial hyperpermeability. Blood. 105:3569–3576. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Domek-Lopacinska K and Strosznajder JB: The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 1216:68–77. 2008. View Article : Google Scholar : PubMed/NCBI

59 

de Oliveira SK and Smolenski A: Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. Biochem Pharmacol. 77:723–733. 2009. View Article : Google Scholar

60 

Rena G, Begg F, Ross A, MacKenzie C, McPhee I, Campbell L, Huston E, Sullivan M and Houslay MD: Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol. 59:996–1011. 2001. View Article : Google Scholar

61 

Wang P, Wu P, Ohleth KM, Egan RW and Billah MM: Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol. 56:170–174. 1999. View Article : Google Scholar

62 

Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M and Ferguson K: A family of human phosphodiesterases homologous to the dunce learning and memory gene product of drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 13:6558–6571. 1993. View Article : Google Scholar

63 

Dunkern TR and Hatzelmann A: The effect of sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal. 17:331–339. 2005. View Article : Google Scholar

64 

Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J and Blokland A: Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int. 45:915–928. 2004. View Article : Google Scholar

65 

Miller CL and Yan C: Targeting cyclic nucleotide phosphodiesterase in the heart: Therapeutic implications. J Cardiovasc Transl Res. 3:507–515. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Ridge KD, Abdulaev NG, Sousa M and Palczewski K: Phototransduction: Crystal clear. Trends Biochem Sci. 28:479–487. 2003. View Article : Google Scholar

67 

Morin F, Lugnier C, Kameni J and Voisin P: Expression and role of phosphodiesterase 6 in the chicken pineal gland. J Neurochem. 78:88–99. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Bloom TJ and Beavo JA: Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc Natl Acad Sci USA. 93:14188–14192. 1996. View Article : Google Scholar : PubMed/NCBI

69 

Han P, Zhu X and Michaeli T: Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem. 272:16152–16157. 1997. View Article : Google Scholar : PubMed/NCBI

70 

Sasaki T, Kotera J and Omori K: Transcriptional activation of phosphodiesterase 7B1 by dopamine d1 receptor stimulation through the cyclic AMP/Cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons. J Neurochem. 89:474–483. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Glavas NA, Ostenson C, Schaefer JB, Vasta V and Beavo JA: T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA. 98:6319–6324. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Patrucco E, Albergine MS, Santana LF and Beavo JA: Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol. 49:330–333. 2010. View Article : Google Scholar

73 

Mehats C, Andersen CB, Filopanti M, Jin SL and Conti M: Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 13:29–35. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Hayashi M, Matsushima K, Ohashi H, Tsunoda H, Murase S, Kawarada Y and Tanaka T: Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 250:751–756. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Hayashi M, Shimada Y, Nishimura Y, Hama T and Tanaka T: Genomic organization, chromosomal localization, and alternative splicing of the human phosphodiesterase 8B gene. Biochem Biophys Res Commun. 297:1253–1258. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Horvath A, Giatzakis C, Tsang K, Greene E, Osorio P, Boikos S, Libè R, Patronas Y, Robinson-White A, Remmers E, et al: A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: A novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet. 16:1245–1253. 2008. View Article : Google Scholar

77 

Rentero C, Monfort A and Puigdomenech P: Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem Biophys Res Commun. 301:686–692. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Furukawa T, Youssef EM, Yatsuoka T, Yokoyama T, Makino N, Inoue H, Fukushige S, Hoshi M, Hayashi Y, Sunamura M and Horii A: Cloning and characterization of the human Udp-N-Acetylglucosamine: Alpha-1,3-D-mannoside beta-1,4-N-acetylglucosaminyltransferase IV-Homologue (hGnT-IV-H) gene. J Hum Genet. 44:397–401. 1999. View Article : Google Scholar

79 

Kelly MP, Logue SF, Brennan J, Day JP, Lakkaraju S, Jiang L, Zhong X, Tam M, Sukoff Rizzo SJ, Platt BJ, et al: Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc Natl Acad Sci USA. 107:8457–8462. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Kleppisch T: Phosphodiesterases in the central nervous system. Handb Exp Pharmacol. 71–92. 2009. View Article : Google Scholar

81 

Knott EP, Assi M, Rao SN, Ghosh M and Pearse DD: Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int J Mol Sci. 18:6962017. View Article : Google Scholar

82 

Libe R, Horvath A, Vezzosi D, Fratticci A, Coste J, Perlemoine K, Ragazzon B, Guillaud-Bataille M, Groussin L, Clauser E, et al: Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with carney complex (CNC) Caused by PRKAR1A Mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 96:E208–E214. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Jager R, Russwurm C, Schwede F, Genieser HG, Koesling D and Russwurm M: Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem. 287:1210–1219. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Pitsava G and Stratakis CA: Genetic alterations in benign adrenal tumors. Biomedicines. 10:10412022. View Article : Google Scholar : PubMed/NCBI

85 

Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, Robinson-White AJ, Nesterova M, Lacroix A and Stratakis CA: Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 94:2930–2937. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, Stein E, Kamvissi V, Soni P, Bossis I, et al: Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res. 66:11571–11575. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Pathak A, Stewart DR, Faucz FR, Xekouki P, Bass S, Vogt A, Zhang X, Boland J, Yeager M, Loud JT, et al: Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocr Relat Cancer. 22:909–917. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Dal J, Nielsen EH, Klose M, Feldt-Rasmussen U, Andersen M, Vang S, Korbonits M and Jørgensen JOL: Phenotypic and genotypic features of a large kindred with a germline AIP variant. Clin Endocrinol (Oxf). 93:146–153. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Pinto EM, Faucz FR, Paza LZ, Wu G, Fernandes ES, Bertherat J, Stratakis CA, Lalli E, Ribeiro RC, Rodriguez-Galindo C, et al: Germline variants in phosphodiesterase genes and genetic predisposition to pediatric adrenocortical tumors. Cancers (Basel). 12:5062020. View Article : Google Scholar

90 

Faucz FR, Horvath A, Rothenbuhler A, Almeida MQ, Libe R, Raffin-Sanson ML, Bertherat J, Carraro DM, Soares FA, Molina Gde C, et al: Phosphodiesterase 11A (PDE11A) genetic variants may increase susceptibility to prostatic cancer. J Clin Endocrinol Metab. 96:E135–E140. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Dono A, Nickles J, Rodriguez-Armendariz AG, McFarland BC, Ajami NJ, Ballester LY, Wargo JA and Esquenazi Y: Glioma and the gut-brain axis: Opportunities and future perspectives. Neurooncol Adv. 4:vdac0542022.PubMed/NCBI

92 

Schwartz KA, Noel M, Nikolai M, Olson LK, Hord NG, Zakem M, Clark J, Elnabtity M, Figueroa B and Chang HT: Long term survivals in aggressive primary brain malignancies treated with an adjuvant ketogenic diet. Front Nutr. 9:7707962022. View Article : Google Scholar : PubMed/NCBI

93 

Burns TC, Awad AJ, Li MD and Grant GA: Radiation-induced brain injury: Low-hanging fruit for neuroregeneration. Neurosurg Focus. 40:E32016. View Article : Google Scholar : PubMed/NCBI

94 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Lee H, Park S, Kong G, Kwon SH, Park J, Park J and Kim SH: Phosphodiesterase 11A (PDE11A), a potential biomarker for glioblastoma. Toxicol Res. 2022. View Article : Google Scholar

96 

Rothenbuhler A, Horvath A, Libe R, Faucz FR, Fratticci A, Raffin Sanson ML, Vezzosi D, Azevedo M, Levy I, Almeida MQ, et al: Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clin Endocrinol (Oxf). 77:195–199. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Hou Y, Wren A, Mylarapu N, Browning K, Islam BN, Wang R, Vega KJ and Browning DD: Inhibition of colon cancer cell growth by phosphodiesterase inhibitors is independent of cGMP Signaling. J Pharmacol Exp Ther. 381:42–53. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Di Iorio P, Ronci M, Giuliani P, Caciagli F, Ciccarelli R, Caruso V, Beggiato S and Zuccarini M: Pros and cons of pharmacological manipulation of cGMP-PDEs in the prevention and treatment of breast cancer. Int J Mol Sci. 23:2622021. View Article : Google Scholar

99 

Vezzosi D, Cartier D, Regnier C, Otal P, Bennet A, Parmentier F, Plantavid M, Lacroix A, Lefebvre H and Caron P: Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol. 156:21–31. 2007. View Article : Google Scholar

100 

Vezzosi D, Libe R, Baudry C, Rizk-Rabin M, Horvath A, Levy I, René-Corail F, Ragazzon B, Stratakis CA, Vandecasteele G and Bertherat J: Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): Functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab. 97:E2063–E2069. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Peverelli E, Ermetici F, Filopanti M, Elli FM, Ronchi CL, Mantovani G, Ferrero S, Bosari S, Beck-Peccoz P, Lania A and Spada A: Analysis of genetic variants of phosphodiesterase 11A in acromegalic patients. Eur J Endocrinol. 161:687–694. 2009. View Article : Google Scholar

102 

Pathak G, Agostino MJ, Bishara K, Capell WR, Fisher JL, Hegde S, Ibrahim BA, Pilarzyk K, Sabin C, Tuczkewycz T, et al: PDE11A negatively regulates lithium responsivity. Mol Psychiatry. 22:1714–1724. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Qin W, Zhou A, Zuo X, Jia L, Li F, Wang Q, Li Y, Wei Y, Jin H, Cruchaga C, et al: Exome Sequencing Revealed PDE11A as a novel candidate gene for early-onset Alzheimer's disease. Hum Mol Genet. 30:811–822. 2021. View Article : Google Scholar

104 

Pilarzyk K, Klett J, Pena EA, Porcher L, Smith AJ and Kelly MP: Loss of function of phosphodiesterase 11A4 shows that recent and remote long-term memories can be uncoupled. Curr Biol. 29:2307–2321. e52019. View Article : Google Scholar

105 

Hegde S, Capell WR, Ibrahim BA, Klett J, Patel NS, Sougiannis AT and Kelly MP: Phosphodiesterase 11A (PDE11A), enriched in ventral hippocampus neurons, is required for consolidation of social but not nonsocial memories in mice. Neuropsychopharmacology. 41:2920–2931. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Loughney K, Taylor J and Florio VA: 3′,5′-cyclic nucleotide phosphodiesterase 11A: Localization in human tissues. Int J Impot Res. 17:320–325. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Wayman C, Phillips S, Lunny C, Webb T, Fawcett L, Baxendale R and Burgess G: Phosphodiesterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot Res. 17:216–223. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kong G, Lee H, Vo TT, Juang U, Kwon SH, Park J, Park J and Kim S: Functional characteristics and research trends of PDE11A in human diseases (Review). Mol Med Rep 26: 298, 2022.
APA
Kong, G., Lee, H., Vo, T.T., Juang, U., Kwon, S.H., Park, J. ... Kim, S. (2022). Functional characteristics and research trends of PDE11A in human diseases (Review). Molecular Medicine Reports, 26, 298. https://doi.org/10.3892/mmr.2022.12814
MLA
Kong, G., Lee, H., Vo, T. T., Juang, U., Kwon, S. H., Park, J., Park, J., Kim, S."Functional characteristics and research trends of PDE11A in human diseases (Review)". Molecular Medicine Reports 26.4 (2022): 298.
Chicago
Kong, G., Lee, H., Vo, T. T., Juang, U., Kwon, S. H., Park, J., Park, J., Kim, S."Functional characteristics and research trends of PDE11A in human diseases (Review)". Molecular Medicine Reports 26, no. 4 (2022): 298. https://doi.org/10.3892/mmr.2022.12814
Copy and paste a formatted citation
x
Spandidos Publications style
Kong G, Lee H, Vo TT, Juang U, Kwon SH, Park J, Park J and Kim S: Functional characteristics and research trends of PDE11A in human diseases (Review). Mol Med Rep 26: 298, 2022.
APA
Kong, G., Lee, H., Vo, T.T., Juang, U., Kwon, S.H., Park, J. ... Kim, S. (2022). Functional characteristics and research trends of PDE11A in human diseases (Review). Molecular Medicine Reports, 26, 298. https://doi.org/10.3892/mmr.2022.12814
MLA
Kong, G., Lee, H., Vo, T. T., Juang, U., Kwon, S. H., Park, J., Park, J., Kim, S."Functional characteristics and research trends of PDE11A in human diseases (Review)". Molecular Medicine Reports 26.4 (2022): 298.
Chicago
Kong, G., Lee, H., Vo, T. T., Juang, U., Kwon, S. H., Park, J., Park, J., Kim, S."Functional characteristics and research trends of PDE11A in human diseases (Review)". Molecular Medicine Reports 26, no. 4 (2022): 298. https://doi.org/10.3892/mmr.2022.12814
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team