Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of ROS‑mediated autophagy in melanoma (Review)

  • Authors:
    • Xuebing Zhang
    • Huaijun Li
    • Chengxiang Liu
    • Xingxing Yuan
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 303
    |
    Published online on: August 9, 2022
       https://doi.org/10.3892/mmr.2022.12819
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Melanoma is the most aggressive form of skin cancer with the poorest prognosis and its pathogenesis has yet to be fully elucidated. As key factors that regulate cellular homeostasis, both reactive oxygen species (ROS) and autophagy are involved in the development of melanoma, from melanomagenesis to progression and drug resistance. However, the interaction between ROS and autophagy in the etiology and treatment of melanoma is not well characterized. The present review examined the production of ROS and the role of oxidative stress in melanoma, and summarized the role of ROS‑mediated autophagy in melanomagenesis and melanoma cell fate decision following treatment with various anticancer drugs. The present findings may lead to a better understanding of the pathogenesis and progression of melanoma, and suggest promising treatment options for this disease.
View Figures

Figure 1

Figure 2

View References

1 

Saikolappan S, Kumar B, Shishodia G, Koul S and Koul HK: Reactive oxygen species and cancer: A complex interaction. Cancer Lett. 452:132–143. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Sarmiento-Salinas FL, Perez-Gonzalez A, Acosta-Casique A, Ix-Ballote A, Diaz A, Treviño S, Rosas-Murrieta NH, Millán-Perez-Peña L and Maycotte P: Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 284:1199422021. View Article : Google Scholar : PubMed/NCBI

3 

Venza I, Venza M, Visalli M, Lentini G, Teti D and d'Alcontres FS: ROS as regulators of cellular processes in melanoma. Oxid Med Cell Longev. 2021:12086902021. View Article : Google Scholar : PubMed/NCBI

4 

Pizzimenti S, Ribero S, Cucci MA, Grattarola M, Monge C, Dianzani C, Barrera G and Muzio G: Oxidative stress-related mechanisms in melanoma and in the acquired resistance to targeted therapies. Antioxidants (Basel). 10:19422021. View Article : Google Scholar : PubMed/NCBI

5 

Morishita H and Mizushima N: Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 35:453–475. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Catalani E, Giovarelli M, Zecchini S, Perrotta C and Cervia D: Oxidative stress and autophagy as key targets in melanoma cell fate. Cancers (Basel). 13:57912021. View Article : Google Scholar : PubMed/NCBI

7 

Gao L, Loveless J, Shay C and Teng Y: Targeting ROS-Mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol. 1260:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Fried L and Arbiser JL: The reactive oxygen-driven tumor: Relevance to melanoma. Pigment Cell Melanoma Res. 21:117–122. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Hseu YC, Cho HJ, Gowrisankar YV, Thiyagarajan V, Chen XZ, Lin KY, Huang HC and Yang HL: Kalantuboside B induced apoptosis and cytoprotective autophagy in human melanoma A2058cells: An in vitro and in vivo study. Free Radic Biol Med. 143:397–411. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Santos GMP, Oliveira SCPS, Monteiro JCS, Fagnani SR, Sampaio FP, Correia NA, Crugeira PJL and Pinheiro ALB: ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity. Lasers Med Sci. 33:1335–1340. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP and Paus R: How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology. 159:1992–2007. 2018. View Article : Google Scholar : PubMed/NCBI

12 

von Thaler AK, Kamenisch Y and Berneburg M: The role of ultraviolet radiation in melanomagenesis. Exp Dermatol. 19:81–88. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Terra VA, Souza-Neto FP, Pereira RC, Silva TN, Costa AC, Luiz RC, Cecchini R and Cecchini AL: Time-dependent reactive species formation and oxidative stress damage in the skin after UVB irradiation. J Photochem Photobiol B. 109:34–41. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Baumler W, Regensburger J, Knak A, Felgentrager A and Maisch T: UVA and endogenous photosensitizers-the detection of singlet oxygen by its luminescence. Photochem Photobiol Sci. 11:107–117. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Knak A, Regensburger J, Maisch T and Baumler W: Exposure of vitamins to UVB and UVA radiation generates singlet oxygen. Photochem Photobiol Sci. 13:820–829. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Regensburger J, Maisch T, Knak A, Gollmer A, Felgentraeger A, Lehner K and Baeumler W: UVA irradiation of fatty acids and their oxidized products substantially increases their ability to generate singlet oxygen. Phys Chem Chem Phys. 15:17672–17680. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Baier J, Maisch T, Maier M, Engel E, Landthaler M and Baumler W: Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J. 91:1452–1459. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Regensburger J, Knak A, Maisch T, Landthaler M and Baumler W: Fatty acids and vitamins generate singlet oxygen under UVB irradiation. Exp Dermatol. 21:135–139. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Valencia A and Kochevar IE: Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Invest Dermatol. 128:214–222. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Zhao B, Shah P, Qiang L, He TC, Budanov A and He YY: Distinct Role of Sesn2 in Response to UVB-Induced DNA Damage and UVA-Induced Oxidative Stress in Melanocytes. Photochem Photobiol. 93:375–381. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Cadet J, Douki T and Ravanat JL: Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 91:140–155. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Meyskens FL Jr, McNulty SE, Buckmeier JA, Tohidian NB, Spillane TJ, Kahlon RS and Gonzalez RI: Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med. 31:799–808. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Jenkins NC and Grossman D: Role of melanin in melanocyte dysregulation of reactive oxygen species. Biomed Res Int. 2013:9087972013. View Article : Google Scholar : PubMed/NCBI

24 

Arslanbaeva LR and Santoro MM: Adaptive redox homeostasis in cutaneous melanoma. Redox Biol. 37:1017532020. View Article : Google Scholar : PubMed/NCBI

25 

Slominski RM, Sarna T, Plonka PM, Raman C, Brozyna AA and Slominski AT: Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. Front Oncol. 12:8424962022. View Article : Google Scholar : PubMed/NCBI

26 

Slominski A, Tobin DJ, Shibahara S and Wortsman J: Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Slominski A, Zmijewski MA and Pawelek J: L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Panzella L, Leone L, Greco G, Vitiello G, D'Errico G, Napolitano A and d'Ischia M: Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res. 27:244–252. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Panzella L, Szewczyk G, d'Ischia M, Napolitano A and Sarna T: Zinc-induced structural effects enhance oxygen consumption and superoxide generation in synthetic pheomelanins on UVA/visible light irradiation. Photochem Photobiol. 86:757–764. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Shain AH and Bastian BC: From melanocytes to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Swope VB and Abdel-Malek ZA: MC1R: Front and center in the bright side of dark eumelanin and DNA repair. Int J Mol Sci. 19:26672018. View Article : Google Scholar : PubMed/NCBI

32 

Nasti TH and Timares L: MC1R, eumelanin and pheomelanin: Their role in determining the susceptibility to skin cancer. Photochem Photobiol. 91:188–200. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Brozyna AA, Jozwicki W, Roszkowski K, Filipiak J and Slominski AT: Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget. 7:17844–17853. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Liu-Smith F, Dellinger R and Meyskens FL Jr: Updates of reactive oxygen species in melanoma etiology and progression. Arch Biochem Biophys. 563:51–55. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Meierjohann S: Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol. 93:36–41. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Govindarajan B, Sligh JE, Vincent BJ, Li M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L, Zhang Y, et al: Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. J Clin Invest. 117:719–729. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Ribeiro-Pereira C, Moraes JA, Souza Mde J, Laurindo FR, Arruda MA and Barja-Fidalgo C: Redox modulation of FAK controls melanoma survival-role of NOX4. PLoS One. 9:e994812014. View Article : Google Scholar : PubMed/NCBI

38 

Liu GS, Wu JC, Tsai HE, Dusting GJ, Chan EC, Wu CS and Tai MH: Proopiomelanocortin gene delivery induces apoptosis in melanoma through NADPH oxidase 4-mediated ROS generation. Free Radic Biol Med. 70:14–22. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Quast SA, Berger A and Eberle J: ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis. 4:e8392013. View Article : Google Scholar : PubMed/NCBI

40 

Liu GS, Peshavariya H, Higuchi M, Brewer AC, Chang CW, Chan EC and Dusting GJ: Microphthalmia-associated transcription factor modulates expression of NADPH oxidase type 4: A negative regulator of melanogenesis. Free Radic Biol Med. 52:1835–1843. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Yamaura M, Mitsushita J, Furuta S, Kiniwa Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, et al: NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression. Cancer Res. 69:2647–2654. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Antony S, Jiang G, Wu Y, Meitzler JL, Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, et al: NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27Kip1 expression in malignant melanoma and other human tumors. Mol Carcinog. 56:2643–2662. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Xian D, Lai R, Song J, Xiong X and Zhong J: Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxid Med Cell Longev. 2019:81273622019. View Article : Google Scholar : PubMed/NCBI

44 

Mouret S, Forestier A and Douki T: The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci. 11:155–162. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Murtas D, Piras F, Minerba L, Ugalde J, Floris C, Maxia C, Demurtas P, Perra MT and Sirigu P: Nuclear 8-hydroxy-2′-deoxyguanosine as survival biomarker in patients with cutaneous melanoma. Oncol Rep. 23:329–335. 2010.PubMed/NCBI

46 

Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D and Bastian BC: MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 313:521–522. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, Migliore C, Giordano S and Chiarugi P: HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 51:893–904. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Slominski A, Kim TK, Brozyna AA, Janjetovic Z, Brooks DL, Schwab LP, Skobowiat C, Jóźwicki W and Seagroves TN: The role of melanogenesis in regulation of melanoma behavior: Melanogenesis leads to stimulation of HIF-1α expression and HIF-dependent attendant pathways. Arch Biochem Biophys. 563:79–93. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Park SJ, Kim YT and Jeon YJ: Antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Mol Cells. 33:363–369. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Jenkins NC, Liu T, Cassidy P, Leachman SA, Boucher KM, Goodson AG, Samadashwily G and Grossman D: The p16(INK4A) tumor suppressor regulates cellular oxidative stress. Oncogene. 30:265–274. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Kazimierczak U, Dondajewska E, Zajaczkowska M, Karwacka M, Kolenda T and Mackiewicz A: LATS1 Is a Mediator of Melanogenesis in Response to Oxidative Stress and Regulator of Melanoma Growth. Int J Mol Sci. 22:31082021. View Article : Google Scholar : PubMed/NCBI

52 

Molognoni F, de Melo FH, da Silva CT and Jasiulionis MG: Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One. 8:e819372013. View Article : Google Scholar : PubMed/NCBI

53 

Lingappan K: NF-κB in Oxidative Stress. Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-kB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Slominski A and Wortsman J: Neuroendocrinology of the skin. Endocr Rev. 21:457–487. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Slominski RM, Zmijewski MA and Slominski AT: The role of melanin pigment in melanoma. Exp Dermatol. 24:258–259. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Li W, Slominski R and Slominski AT: High-resolution magic angle spinning nuclear magnetic resonance analysis of metabolic changes in melanoma cells after induction of melanogenesis. Anal Biochem. 386:282–284. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Kamenisch Y, Ivanova I, Drexler K and Berneburg M: UVA, metabolism and melanoma: UVA makes melanoma hungry for metastasis. Exp Dermatol. 27:941–949. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Slominski A, Paus R and Mihm MC: Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: Selective review and hypothesis. Anticancer Res. 18((5B)): 3709–3715. 1998.PubMed/NCBI

60 

Slominski A, Zbytek B and Slominski R: Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer. 124:1470–1477. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Kuo CL, Chou HY, Chiu YC, Cheng AN, Fan CC, Chang YN, Chen CH, Jiang SS, Chen NJ and Lee AY: Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 474:138–150. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Li D, Ding Z, Du K, Ye X and Cheng S: Reactive oxygen species as a link between antioxidant pathways and autophagy. Oxid Med Cell Longev. 2021:55832152021.PubMed/NCBI

63 

Poillet-Perez L, Despouy G, Delage-Mourroux R and Boyer-Guittaut M: Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 4:184–192. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L and Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 38:e1018122019. View Article : Google Scholar : PubMed/NCBI

65 

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD and Johansen T: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 285:22576–22591. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Redza-Dutordoir M and Averill-Bates DA: Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim Biophys Acta Mol Cell Res. 1868:1190412021. View Article : Google Scholar : PubMed/NCBI

68 

Sample A, Zhao B, Wu C, Qian S, Shi X, Aplin A and He YY: The autophagy receptor adaptor p62 is Up-regulated by UVA radiation in melanocytes and in melanoma cells. Photochem Photobiol. 94:432–437. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Xie X, Koh JY, Price S, White E and Mehnert JM: Atg7 overcomes senescence and promotes growth of BrafV600E-Driven melanoma. Cancer Discov. 5:410–423. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Zhao Y, Wang W, Min I, Wyrwas B, Moore M, Zarnegar R and Fahey TJ III: BRAF V600E-dependent role of autophagy in uveal melanoma. J Cancer Res Clin Oncol. 143:447–455. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wang Y, Wang Y, Wu J, Wang W and Zhang Y: Oxygen partial pressure plays a crucial role in B16 melanoma cell survival by regulating autophagy and mitochondrial functions. Biochem Biophys Res Commun. 510:643–648. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, Koritzinsky M and Wouters BG: Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol. 92:411–416. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al: Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 124:1406–1417. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Victor P, Sarada D and Ramkumar KM: Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol. 892:1737492021. View Article : Google Scholar : PubMed/NCBI

75 

Santos CX, Tanaka LY, Wosniak J and Laurindo FR: Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: Roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 11:2409–2427. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE and Piacentini M: Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ. 22:946–958. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Ghaemi B, Moshiri A, Herrmann IK, Hajipour MJ, Wick P, Amani A and Kharrazi S: Supramolecular insights into domino effects of simpleAg@ZnO-Induced oxidative stress in melanoma cancer cells. ACS Appl Mater Interfaces. 11:46408–46418. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Chang SN, Khan I, Kim CG, Park SM, Choi DK, Lee H, Hwang BS, Kang SC and Park JG: Decursinol angelate arrest melanoma cell proliferation by initiating cell death and tumor shrinkage via induction of apoptosis. Int J Mol Sci. 22:40962021. View Article : Google Scholar : PubMed/NCBI

79 

Zhou DZ, Sun HY, Yue JQ, Peng Y, Chen YM and Zhong ZJ: Dihydromyricetin induces apoptosis and cytoprotective autophagy through ROS-NF-κB signalling in human melanoma cells. Free Radic Res. 51:517–528. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Marino ML, Fais S, Djavaheri-Mergny M, Villa A, Meschini S, Lozupone F, Venturi G, Della Mina P, Pattingre S, Rivoltini L, et al: Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death Dis. 1:e872010. View Article : Google Scholar : PubMed/NCBI

81 

Liu Y, Kang X, Niu G, He S, Zhang T, Bai Y, Li Y, Hao H, Chen C, Shou Z and Li B: Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways. Artif Cells Nanomed Biotechnol. 47:626–635. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Valli F, García Vior MC, Roguin LP and Marino J: Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma. Free Radic Biol Med. 152:743–754. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Niu T, Tian Y, Mei Z and Guo G: Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells. Sci Rep. 6:313832016. View Article : Google Scholar : PubMed/NCBI

84 

Liang QP, Xu TQ, Liu BL, Lei XP, Hambrook JR, Zhang DM and Zhou GX: Sasanquasaponin III from Schima crenata Korth induces autophagy through Akt/mTOR/p70S6K pathway and promotes apoptosis in human melanoma A375 cells. Phytomedicine. 58:1527692019. View Article : Google Scholar : PubMed/NCBI

85 

Kretschmer N, Deutsch A, Durchschein C, Rinner B, Stallinger A, Higareda-Almaraz JC, Scheideler M, Lohberger B and Bauer R: Comparative gene expression analysis in WM164 melanoma cells revealed that β-β-Dimethylacrylshikonin Leads to ROS generation, loss of mitochondrial membrane potential, and autophagy induction. Molecules. 23:28232018. View Article : Google Scholar : PubMed/NCBI

86 

Yumnam S, Kang MC, Oh SH, Kwon HC, Kim JC, Jung ES, Lee CH, Lee AY, Hwang JI and Kim SY: Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radic Biol Med. 162:77–87. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Fang J, Huang X, Yang Y, Wang X, Liang X and Liu J: Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells. Biochem Biophys Res Commun. 552:183–190. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Hu WP, Hsu CC, Wang YC, Senadi GC, Kuo KK, Jen JF and Wang JJ: Bis(phenylidenebenzeneamine)-1-disulfide derivatives induce autophagy in melanoma cells through a mitochondria-mediated pathway. Anticancer Res. 35:6075–6080. 2015.PubMed/NCBI

89 

Ghosh S, Bishayee K and Khuda-Bukhsh AR: Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: A novel apoptosis-independent autophagic signaling pathway. Phytother Res. 28:1153–1162. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Nicolau-Galmés F, Asumendi A, Alonso-Tejerina E, Pérez-Yarza G, Jangi SM, Gardeazabal J, Arroyo-Berdugo Y, Careaga JM, Díaz-Ramón JL, Apraiz A and Boyano MD: Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms. Apoptosis. 16:1253–1267. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Mohammadalipour Z, Rahmati M, Khataee A and Moosavi MA: Differential effects of N-TiO2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells. J Cell Physiol. 235:8246–8259. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Yun HR, Jo YH, Kim J, Shin Y, Kim SS and Choi TG: Roles of autophagy in oxidative stress. Int J Mol Sci. 21:32892020. View Article : Google Scholar : PubMed/NCBI

93 

Soldevila-Barreda JJ, Romero-Canelón I, Habtemariam A and Sadler PJ: Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat Commun. 6:65822015. View Article : Google Scholar : PubMed/NCBI

94 

Sopha P, Ren HY, Grove DE and Cyr DM: Endoplasmic reticulum stress-induced degradation of DNAJB12 stimulates BOK accumulation and primes cancer cells for apoptosis. J Biol Chem. 292:11792–11803. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Coverdale JPC, Romero-Canelon I, Sanchez-Cano C, Clarkson GJ, Habtemariam A, Wills M and Sadler PJ: Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat Chem. 10:347–354. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X, Li H, Liu C and Yuan X: Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 26: 303, 2022.
APA
Zhang, X., Li, H., Liu, C., & Yuan, X. (2022). Role of ROS‑mediated autophagy in melanoma (Review). Molecular Medicine Reports, 26, 303. https://doi.org/10.3892/mmr.2022.12819
MLA
Zhang, X., Li, H., Liu, C., Yuan, X."Role of ROS‑mediated autophagy in melanoma (Review)". Molecular Medicine Reports 26.4 (2022): 303.
Chicago
Zhang, X., Li, H., Liu, C., Yuan, X."Role of ROS‑mediated autophagy in melanoma (Review)". Molecular Medicine Reports 26, no. 4 (2022): 303. https://doi.org/10.3892/mmr.2022.12819
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Li H, Liu C and Yuan X: Role of ROS‑mediated autophagy in melanoma (Review). Mol Med Rep 26: 303, 2022.
APA
Zhang, X., Li, H., Liu, C., & Yuan, X. (2022). Role of ROS‑mediated autophagy in melanoma (Review). Molecular Medicine Reports, 26, 303. https://doi.org/10.3892/mmr.2022.12819
MLA
Zhang, X., Li, H., Liu, C., Yuan, X."Role of ROS‑mediated autophagy in melanoma (Review)". Molecular Medicine Reports 26.4 (2022): 303.
Chicago
Zhang, X., Li, H., Liu, C., Yuan, X."Role of ROS‑mediated autophagy in melanoma (Review)". Molecular Medicine Reports 26, no. 4 (2022): 303. https://doi.org/10.3892/mmr.2022.12819
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team