|
1
|
Saikolappan S, Kumar B, Shishodia G, Koul
S and Koul HK: Reactive oxygen species and cancer: A complex
interaction. Cancer Lett. 452:132–143. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sarmiento-Salinas FL, Perez-Gonzalez A,
Acosta-Casique A, Ix-Ballote A, Diaz A, Treviño S, Rosas-Murrieta
NH, Millán-Perez-Peña L and Maycotte P: Reactive oxygen species:
Role in carcinogenesis, cancer cell signaling and tumor
progression. Life Sci. 284:1199422021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Venza I, Venza M, Visalli M, Lentini G,
Teti D and d'Alcontres FS: ROS as regulators of cellular processes
in melanoma. Oxid Med Cell Longev. 2021:12086902021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pizzimenti S, Ribero S, Cucci MA,
Grattarola M, Monge C, Dianzani C, Barrera G and Muzio G: Oxidative
stress-related mechanisms in melanoma and in the acquired
resistance to targeted therapies. Antioxidants (Basel).
10:19422021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Morishita H and Mizushima N: Diverse
cellular roles of autophagy. Annu Rev Cell Dev Biol. 35:453–475.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Catalani E, Giovarelli M, Zecchini S,
Perrotta C and Cervia D: Oxidative stress and autophagy as key
targets in melanoma cell fate. Cancers (Basel). 13:57912021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gao L, Loveless J, Shay C and Teng Y:
Targeting ROS-Mediated crosstalk between autophagy and apoptosis in
cancer. Adv Exp Med Biol. 1260:1–12. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fried L and Arbiser JL: The reactive
oxygen-driven tumor: Relevance to melanoma. Pigment Cell Melanoma
Res. 21:117–122. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hseu YC, Cho HJ, Gowrisankar YV,
Thiyagarajan V, Chen XZ, Lin KY, Huang HC and Yang HL:
Kalantuboside B induced apoptosis and cytoprotective autophagy in
human melanoma A2058cells: An in vitro and in vivo study. Free
Radic Biol Med. 143:397–411. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Santos GMP, Oliveira SCPS, Monteiro JCS,
Fagnani SR, Sampaio FP, Correia NA, Crugeira PJL and Pinheiro ALB:
ROS-induced autophagy reduces B16F10 melanoma cell proliferative
activity. Lasers Med Sci. 33:1335–1340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV Light Touches the Brain and
Endocrine System Through Skin, and Why. Endocrinology.
159:1992–2007. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
von Thaler AK, Kamenisch Y and Berneburg
M: The role of ultraviolet radiation in melanomagenesis. Exp
Dermatol. 19:81–88. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Terra VA, Souza-Neto FP, Pereira RC, Silva
TN, Costa AC, Luiz RC, Cecchini R and Cecchini AL: Time-dependent
reactive species formation and oxidative stress damage in the skin
after UVB irradiation. J Photochem Photobiol B. 109:34–41. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Baumler W, Regensburger J, Knak A,
Felgentrager A and Maisch T: UVA and endogenous
photosensitizers-the detection of singlet oxygen by its
luminescence. Photochem Photobiol Sci. 11:107–117. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Knak A, Regensburger J, Maisch T and
Baumler W: Exposure of vitamins to UVB and UVA radiation generates
singlet oxygen. Photochem Photobiol Sci. 13:820–829. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Regensburger J, Maisch T, Knak A, Gollmer
A, Felgentraeger A, Lehner K and Baeumler W: UVA irradiation of
fatty acids and their oxidized products substantially increases
their ability to generate singlet oxygen. Phys Chem Chem Phys.
15:17672–17680. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Baier J, Maisch T, Maier M, Engel E,
Landthaler M and Baumler W: Singlet oxygen generation by UVA light
exposure of endogenous photosensitizers. Biophys J. 91:1452–1459.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Regensburger J, Knak A, Maisch T,
Landthaler M and Baumler W: Fatty acids and vitamins generate
singlet oxygen under UVB irradiation. Exp Dermatol. 21:135–139.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Valencia A and Kochevar IE: Nox1-based
NADPH oxidase is the major source of UVA-induced reactive oxygen
species in human keratinocytes. J Invest Dermatol. 128:214–222.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhao B, Shah P, Qiang L, He TC, Budanov A
and He YY: Distinct Role of Sesn2 in Response to UVB-Induced DNA
Damage and UVA-Induced Oxidative Stress in Melanocytes. Photochem
Photobiol. 93:375–381. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cadet J, Douki T and Ravanat JL:
Oxidatively generated damage to cellular DNA by UVB and UVA
radiation. Photochem Photobiol. 91:140–155. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Meyskens FL Jr, McNulty SE, Buckmeier JA,
Tohidian NB, Spillane TJ, Kahlon RS and Gonzalez RI: Aberrant redox
regulation in human metastatic melanoma cells compared to normal
melanocytes. Free Radic Biol Med. 31:799–808. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jenkins NC and Grossman D: Role of melanin
in melanocyte dysregulation of reactive oxygen species. Biomed Res
Int. 2013:9087972013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Arslanbaeva LR and Santoro MM: Adaptive
redox homeostasis in cutaneous melanoma. Redox Biol. 37:1017532020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Slominski RM, Sarna T, Plonka PM, Raman C,
Brozyna AA and Slominski AT: Melanoma, melanin, and melanogenesis:
The Yin and Yang relationship. Front Oncol. 12:8424962022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Slominski A, Tobin DJ, Shibahara S and
Wortsman J: Melanin pigmentation in mammalian skin and its hormonal
regulation. Physiol Rev. 84:1155–1228. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Slominski A, Zmijewski MA and Pawelek J:
L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators
of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Panzella L, Leone L, Greco G, Vitiello G,
D'Errico G, Napolitano A and d'Ischia M: Red human hair pheomelanin
is a potent pro-oxidant mediating UV-independent contributory
mechanisms of melanomagenesis. Pigment Cell Melanoma Res.
27:244–252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Panzella L, Szewczyk G, d'Ischia M,
Napolitano A and Sarna T: Zinc-induced structural effects enhance
oxygen consumption and superoxide generation in synthetic
pheomelanins on UVA/visible light irradiation. Photochem Photobiol.
86:757–764. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Shain AH and Bastian BC: From melanocytes
to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Swope VB and Abdel-Malek ZA: MC1R: Front
and center in the bright side of dark eumelanin and DNA repair. Int
J Mol Sci. 19:26672018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nasti TH and Timares L: MC1R, eumelanin
and pheomelanin: Their role in determining the susceptibility to
skin cancer. Photochem Photobiol. 91:188–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brozyna AA, Jozwicki W, Roszkowski K,
Filipiak J and Slominski AT: Melanin content in melanoma metastases
affects the outcome of radiotherapy. Oncotarget. 7:17844–17853.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu-Smith F, Dellinger R and Meyskens FL
Jr: Updates of reactive oxygen species in melanoma etiology and
progression. Arch Biochem Biophys. 563:51–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Meierjohann S: Oxidative stress in
melanocyte senescence and melanoma transformation. Eur J Cell Biol.
93:36–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Govindarajan B, Sligh JE, Vincent BJ, Li
M, Canter JA, Nickoloff BJ, Rodenburg RJ, Smeitink JA, Oberley L,
Zhang Y, et al: Overexpression of Akt converts radial growth
melanoma to vertical growth melanoma. J Clin Invest. 117:719–729.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ribeiro-Pereira C, Moraes JA, Souza Mde J,
Laurindo FR, Arruda MA and Barja-Fidalgo C: Redox modulation of FAK
controls melanoma survival-role of NOX4. PLoS One. 9:e994812014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu GS, Wu JC, Tsai HE, Dusting GJ, Chan
EC, Wu CS and Tai MH: Proopiomelanocortin gene delivery induces
apoptosis in melanoma through NADPH oxidase 4-mediated ROS
generation. Free Radic Biol Med. 70:14–22. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Quast SA, Berger A and Eberle J:
ROS-dependent phosphorylation of Bax by wortmannin sensitizes
melanoma cells for TRAIL-induced apoptosis. Cell Death Dis.
4:e8392013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu GS, Peshavariya H, Higuchi M, Brewer
AC, Chang CW, Chan EC and Dusting GJ: Microphthalmia-associated
transcription factor modulates expression of NADPH oxidase type 4:
A negative regulator of melanogenesis. Free Radic Biol Med.
52:1835–1843. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yamaura M, Mitsushita J, Furuta S, Kiniwa
Y, Ashida A, Goto Y, Shang WH, Kubodera M, Kato M, Takata M, et al:
NADPH oxidase 4 contributes to transformation phenotype of melanoma
cells by regulating G2-M cell cycle progression. Cancer Res.
69:2647–2654. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Antony S, Jiang G, Wu Y, Meitzler JL,
Makhlouf HR, Haines DC, Butcher D, Hoon DS, Ji J, Zhang Y, et al:
NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates
normoxic HIF-1α and p27Kip1 expression in malignant
melanoma and other human tumors. Mol Carcinog. 56:2643–2662. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xian D, Lai R, Song J, Xiong X and Zhong
J: Emerging Perspective: Role of Increased ROS and Redox Imbalance
in Skin Carcinogenesis. Oxid Med Cell Longev. 2019:81273622019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mouret S, Forestier A and Douki T: The
specificity of UVA-induced DNA damage in human melanocytes.
Photochem Photobiol Sci. 11:155–162. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Murtas D, Piras F, Minerba L, Ugalde J,
Floris C, Maxia C, Demurtas P, Perra MT and Sirigu P: Nuclear
8-hydroxy-2′-deoxyguanosine as survival biomarker in patients with
cutaneous melanoma. Oncol Rep. 23:329–335. 2010.PubMed/NCBI
|
|
46
|
Landi MT, Bauer J, Pfeiffer RM, Elder DE,
Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D and Bastian
BC: MC1R germline variants confer risk for BRAF-mutant melanoma.
Science. 313:521–522. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Comito G, Calvani M, Giannoni E, Bianchini
F, Calorini L, Torre E, Migliore C, Giordano S and Chiarugi P:
HIF-1α stabilization by mitochondrial ROS promotes Met-dependent
invasive growth and vasculogenic mimicry in melanoma cells. Free
Radic Biol Med. 51:893–904. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Slominski A, Kim TK, Brozyna AA,
Janjetovic Z, Brooks DL, Schwab LP, Skobowiat C, Jóźwicki W and
Seagroves TN: The role of melanogenesis in regulation of melanoma
behavior: Melanogenesis leads to stimulation of HIF-1α expression
and HIF-dependent attendant pathways. Arch Biochem Biophys.
563:79–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Park SJ, Kim YT and Jeon YJ: Antioxidant
dieckol downregulates the Rac1/ROS signaling pathway and inhibits
Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous
protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma
cells. Mol Cells. 33:363–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jenkins NC, Liu T, Cassidy P, Leachman SA,
Boucher KM, Goodson AG, Samadashwily G and Grossman D: The
p16(INK4A) tumor suppressor regulates cellular oxidative stress.
Oncogene. 30:265–274. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kazimierczak U, Dondajewska E,
Zajaczkowska M, Karwacka M, Kolenda T and Mackiewicz A: LATS1 Is a
Mediator of Melanogenesis in Response to Oxidative Stress and
Regulator of Melanoma Growth. Int J Mol Sci. 22:31082021.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Molognoni F, de Melo FH, da Silva CT and
Jasiulionis MG: Ras and Rac1, frequently mutated in melanomas, are
activated by superoxide anion, modulate Dnmt1 level and are
causally related to melanocyte malignant transformation. PLoS One.
8:e819372013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lingappan K: NF-κB in Oxidative Stress.
Curr Opin Toxicol. 7:81–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Dolcet X, Llobet D, Pallares J and
Matias-Guiu X: NF-kB in development and progression of human
cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Slominski A and Wortsman J:
Neuroendocrinology of the skin. Endocr Rev. 21:457–487. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Slominski RM, Zmijewski MA and Slominski
AT: The role of melanin pigment in melanoma. Exp Dermatol.
24:258–259. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li W, Slominski R and Slominski AT:
High-resolution magic angle spinning nuclear magnetic resonance
analysis of metabolic changes in melanoma cells after induction of
melanogenesis. Anal Biochem. 386:282–284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kamenisch Y, Ivanova I, Drexler K and
Berneburg M: UVA, metabolism and melanoma: UVA makes melanoma
hungry for metastasis. Exp Dermatol. 27:941–949. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Slominski A, Paus R and Mihm MC:
Inhibition of melanogenesis as an adjuvant strategy in the
treatment of melanotic melanomas: Selective review and hypothesis.
Anticancer Res. 18((5B)): 3709–3715. 1998.PubMed/NCBI
|
|
60
|
Slominski A, Zbytek B and Slominski R:
Inhibitors of melanogenesis increase toxicity of cyclophosphamide
and lymphocytes against melanoma cells. Int J Cancer.
124:1470–1477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kuo CL, Chou HY, Chiu YC, Cheng AN, Fan
CC, Chang YN, Chen CH, Jiang SS, Chen NJ and Lee AY: Mitochondrial
oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor
microenvironment that promotes cancer progression and metastasis.
Cancer Lett. 474:138–150. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li D, Ding Z, Du K, Ye X and Cheng S:
Reactive oxygen species as a link between antioxidant pathways and
autophagy. Oxid Med Cell Longev. 2021:55832152021.PubMed/NCBI
|
|
63
|
Poillet-Perez L, Despouy G,
Delage-Mourroux R and Boyer-Guittaut M: Interplay between ROS and
autophagy in cancer cells, from tumor initiation to cancer therapy.
Redox Biol. 4:184–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Scherz-Shouval R, Shvets E, Fass E, Shorer
H, Gil L and Elazar Z: Reactive oxygen species are essential for
autophagy and specifically regulate the activity of Atg4. EMBO J.
38:e1018122019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mathew R, Karp CM, Beaudoin B, Vuong N,
Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al:
Autophagy suppresses tumorigenesis through elimination of p62.
Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jain A, Lamark T, Sjøttem E, Larsen KB,
Awuh JA, Øvervatn A, McMahon M, Hayes JD and Johansen T: p62/SQSTM1
is a target gene for transcription factor NRF2 and creates a
positive feedback loop by inducing antioxidant response
element-driven gene transcription. J Biol Chem. 285:22576–22591.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Redza-Dutordoir M and Averill-Bates DA:
Interactions between reactive oxygen species and autophagy: Special
issue: Death mechanisms in cellular homeostasis. Biochim Biophys
Acta Mol Cell Res. 1868:1190412021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sample A, Zhao B, Wu C, Qian S, Shi X,
Aplin A and He YY: The autophagy receptor adaptor p62 is
Up-regulated by UVA radiation in melanocytes and in melanoma cells.
Photochem Photobiol. 94:432–437. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xie X, Koh JY, Price S, White E and
Mehnert JM: Atg7 overcomes senescence and promotes growth of
BrafV600E-Driven melanoma. Cancer Discov. 5:410–423. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhao Y, Wang W, Min I, Wyrwas B, Moore M,
Zarnegar R and Fahey TJ III: BRAF V600E-dependent role of autophagy
in uveal melanoma. J Cancer Res Clin Oncol. 143:447–455. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang Y, Wang Y, Wu J, Wang W and Zhang Y:
Oxygen partial pressure plays a crucial role in B16 melanoma cell
survival by regulating autophagy and mitochondrial functions.
Biochem Biophys Res Commun. 510:643–648. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rouschop KM, Ramaekers CH, Schaaf MB,
Keulers TG, Savelkouls KG, Lambin P, Koritzinsky M and Wouters BG:
Autophagy is required during cycling hypoxia to lower production of
reactive oxygen species. Radiother Oncol. 92:411–416. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ma XH, Piao SF, Dey S, McAfee Q,
Karakousis G, Villanueva J, Hart LS, Levi S, Hu J, Zhang G, et al:
Targeting ER stress-induced autophagy overcomes BRAF inhibitor
resistance in melanoma. J Clin Invest. 124:1406–1417. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Victor P, Sarada D and Ramkumar KM:
Crosstalk between endoplasmic reticulum stress and oxidative
stress: Focus on protein disulfide isomerase and endoplasmic
reticulum oxidase 1. Eur J Pharmacol. 892:1737492021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Santos CX, Tanaka LY, Wosniak J and
Laurindo FR: Mechanisms and implications of reactive oxygen species
generation during the unfolded protein response: Roles of
endoplasmic reticulum oxidoreductases, mitochondrial electron
transport, and NADPH oxidase. Antioxid Redox Signal. 11:2409–2427.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Corazzari M, Rapino F, Ciccosanti F,
Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE and Piacentini
M: Oncogenic BRAF induces chronic ER stress condition resulting in
increased basal autophagy and apoptotic resistance of cutaneous
melanoma. Cell Death Differ. 22:946–958. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ghaemi B, Moshiri A, Herrmann IK, Hajipour
MJ, Wick P, Amani A and Kharrazi S: Supramolecular insights into
domino effects of simpleAg@ZnO-Induced oxidative
stress in melanoma cancer cells. ACS Appl Mater Interfaces.
11:46408–46418. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang SN, Khan I, Kim CG, Park SM, Choi
DK, Lee H, Hwang BS, Kang SC and Park JG: Decursinol angelate
arrest melanoma cell proliferation by initiating cell death and
tumor shrinkage via induction of apoptosis. Int J Mol Sci.
22:40962021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou DZ, Sun HY, Yue JQ, Peng Y, Chen YM
and Zhong ZJ: Dihydromyricetin induces apoptosis and cytoprotective
autophagy through ROS-NF-κB signalling in human melanoma cells.
Free Radic Res. 51:517–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Marino ML, Fais S, Djavaheri-Mergny M,
Villa A, Meschini S, Lozupone F, Venturi G, Della Mina P, Pattingre
S, Rivoltini L, et al: Proton pump inhibition induces autophagy as
a survival mechanism following oxidative stress in human melanoma
cells. Cell Death Dis. 1:e872010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Y, Kang X, Niu G, He S, Zhang T, Bai
Y, Li Y, Hao H, Chen C, Shou Z and Li B: Shikonin induces apoptosis
and prosurvival autophagy in human melanoma A375 cells via
ROS-mediated ER stress and p38 pathways. Artif Cells Nanomed
Biotechnol. 47:626–635. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Valli F, García Vior MC, Roguin LP and
Marino J: Crosstalk between oxidative stress-induced apoptotic and
autophagic signaling pathways in Zn(II) phthalocyanine photodynamic
therapy of melanoma. Free Radic Biol Med. 152:743–754. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Niu T, Tian Y, Mei Z and Guo G: Inhibition
of autophagy enhances curcumin united light irradiation-induced
oxidative stress and tumor growth suppression in human melanoma
cells. Sci Rep. 6:313832016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liang QP, Xu TQ, Liu BL, Lei XP, Hambrook
JR, Zhang DM and Zhou GX: Sasanquasaponin III from Schima crenata
Korth induces autophagy through Akt/mTOR/p70S6K pathway and
promotes apoptosis in human melanoma A375 cells. Phytomedicine.
58:1527692019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kretschmer N, Deutsch A, Durchschein C,
Rinner B, Stallinger A, Higareda-Almaraz JC, Scheideler M,
Lohberger B and Bauer R: Comparative gene expression analysis in
WM164 melanoma cells revealed that β-β-Dimethylacrylshikonin Leads
to ROS generation, loss of mitochondrial membrane potential, and
autophagy induction. Molecules. 23:28232018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yumnam S, Kang MC, Oh SH, Kwon HC, Kim JC,
Jung ES, Lee CH, Lee AY, Hwang JI and Kim SY: Downregulation of
dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression
via triggering oxidative stress and altering energy metabolism.
Free Radic Biol Med. 162:77–87. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fang J, Huang X, Yang Y, Wang X, Liang X
and Liu J: Berberine-photodynamic induced apoptosis by activating
endoplasmic reticulum stress-autophagy pathway involving CHOP in
human malignant melanoma cells. Biochem Biophys Res Commun.
552:183–190. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hu WP, Hsu CC, Wang YC, Senadi GC, Kuo KK,
Jen JF and Wang JJ: Bis(phenylidenebenzeneamine)-1-disulfide
derivatives induce autophagy in melanoma cells through a
mitochondria-mediated pathway. Anticancer Res. 35:6075–6080.
2015.PubMed/NCBI
|
|
89
|
Ghosh S, Bishayee K and Khuda-Bukhsh AR:
Graveoline isolated from ethanolic extract of Ruta graveolens
triggers apoptosis and autophagy in skin melanoma cells: A novel
apoptosis-independent autophagic signaling pathway. Phytother Res.
28:1153–1162. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Nicolau-Galmés F, Asumendi A,
Alonso-Tejerina E, Pérez-Yarza G, Jangi SM, Gardeazabal J,
Arroyo-Berdugo Y, Careaga JM, Díaz-Ramón JL, Apraiz A and Boyano
MD: Terfenadine induces apoptosis and autophagy in melanoma cells
through ROS-dependent and -independent mechanisms. Apoptosis.
16:1253–1267. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mohammadalipour Z, Rahmati M, Khataee A
and Moosavi MA: Differential effects of N-TiO2
nanoparticle and its photo-activated form on autophagy and
necroptosis in human melanoma A375 cells. J Cell Physiol.
235:8246–8259. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yun HR, Jo YH, Kim J, Shin Y, Kim SS and
Choi TG: Roles of autophagy in oxidative stress. Int J Mol Sci.
21:32892020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Soldevila-Barreda JJ, Romero-Canelón I,
Habtemariam A and Sadler PJ: Transfer hydrogenation catalysis in
cells as a new approach to anticancer drug design. Nat Commun.
6:65822015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sopha P, Ren HY, Grove DE and Cyr DM:
Endoplasmic reticulum stress-induced degradation of DNAJB12
stimulates BOK accumulation and primes cancer cells for apoptosis.
J Biol Chem. 292:11792–11803. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Coverdale JPC, Romero-Canelon I,
Sanchez-Cano C, Clarkson GJ, Habtemariam A, Wills M and Sadler PJ:
Asymmetric transfer hydrogenation by synthetic catalysts in cancer
cells. Nat Chem. 10:347–354. 2018. View Article : Google Scholar : PubMed/NCBI
|