Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway

  • Authors:
    • Xiaoying Wang
    • Kai He
    • Linlin Ma
    • Lan Wu
    • Yan Yang
    • Yanfei Li
  • View Affiliations / Copyright

    Affiliations: Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 306
    |
    Published online on: August 9, 2022
       https://doi.org/10.3892/mmr.2022.12822
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Cho YS, Moon SC, Ryu KS and Ryu KH: A study on clinical and healthcare recommending service based on cardiovascula disease pattern analysis. Int J Biosci Biotechnol. 8:287–294. 2016.

3 

Nalban N, Sangaraju R, Alavala S, Mir SM, Jerald MK and Sistla R: Arbutin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting TLR-4/NF-κB pathway in mice. Cardiovasc Toxicol. 20:235–248. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Roth GA, Mensah GA and Fuster V: The global burden of cardiovascular diseases and risks: A compass for global action. J Am Coll Cardiol. 76:2980–2981. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Oh T, Kim D, Lee S, Won C, Kim S, Yang JS, Yu J, Kim B and Lee J: Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Sci Rep. 12:22502022. View Article : Google Scholar : PubMed/NCBI

6 

Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, Schwalm JD and Yusuf S: Reducing the global burden of cardiovascular disease, part 2: Prevention and treatment of cardiovascular disease. Circ Res. 121:695–710. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Van Camp G: Cardiovascular disease prevention. Acta Clin Belg. 69:407–411. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhao Y, Jia WW, Ren S, Xiao W, Li GW, Jin L and Lin Y: Difluoromethylornithine attenuates isoproterenol-induced cardiac hypertrophy by regulating apoptosis, autophagy and the mitochondria-associated membranes pathway. Exp Ther Med. 22:8702021. View Article : Google Scholar : PubMed/NCBI

9 

Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI

10 

Ellison GM, Waring CD, Vicinanza C and Torella D: Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart. 98:5–10. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Selvetella G, Hirsch E, Notte A, Tarone G and Lembo G: Adaptive and maladaptive hypertrophic pathways: Points of convergence and divergence. Cardiovasc Res. 63:373–380. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Shimizu I and Minamino T: Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Kurosawa Y, Kojima K, Kato M, Ohashi R, Minami K and Narita H: Protective action of angiotensin converting enzyme inhibitors on cardiac hypertrophy in the aortic-banded rat. Jpn Heart J. 40:645–654. 1999. View Article : Google Scholar : PubMed/NCBI

14 

A Romero C, Mathew S, Wasinski B, Reed B, Brody A, Dawood R, Twiner MJ, McNaughton CD, Fridman R, Flack JM, et al: Angiotensin-converting enzyme inhibitors increase anti-fibrotic biomarkers in African Americans with left ventricular hypertrophy. J Clin Hypertens (Greenwich). 23:1008–1016. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Liu Y, Shen HJ, Wang XQ, Liu HQ, Zheng LY and Luo JD: EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes. J Cell Biochem. 119:8290–8303. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Walsh-Wilkinson É, Drolet MC, Le Houillier C, Roy ÈM, Arsenault M and Couet J: Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy. PeerJ. 7:e74612019. View Article : Google Scholar : PubMed/NCBI

17 

Chang CS, Tsai PJ, Sung JM, Chen JY, Ho LC, Pandya K, Maeda N and Tsai YS: Diuretics prevent thiazolidinedione-induced cardiac hypertrophy without compromising insulin-sensitizing effects in mice. Am J Pathol. 184:442–453. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Okura T, Miyoshi K, Irita J, Enomoto D, Jotoku M, Nagao T, Watanabe K, Matsuokan H, Ashihara T, Higaki J, et al: Comparison of the effect of combination therapy with an angiotensin II receptor blocker and either a low-dose diuretic or calcium channel blocker on cardiac hypertrophy in patients with hypertension. Clin Exp Hypertens. 35:563–569. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Zhang X, Zhang MC and Wang CT: Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 506:137–144. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Zang Y, Wan J, Zhang Z, Huang S, Liu X and Zhang W: An updated role of astragaloside IV in heart failure. Biomed Pharmacother. 126:1100122020. View Article : Google Scholar : PubMed/NCBI

21 

Ma Y, Kang R and Liu X: Research progress in prevention and cure of fibrosis by traditional Chinese medicine. Mod Appl Sci. 2:127–132. 2008. View Article : Google Scholar

22 

Yang QY, Chen KJ, Lu S and Sun HR: Research progress on mechanism of action of Radix Astragalus in the treatment of heart failure. Chin J Integr Med. 18:235–240. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Karmazyn M and Gan XT: Treatment of the cardiac hypertrophic response and heart failure with ginseng, ginsenosides, and ginseng-related products. Can J Physiol Pharmacol. 95:1170–1176. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Yang J, Wang HX, Zhang YJ, Yang YH, Lu ML, Zhang J, Li ST, Zhang SP and Li G: Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кB signaling pathway in isoproterenol-induced myocardial hypertrophy. J Ethnopharmacol. 150:1062–1070. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Liu ZH, Liu HB and Wang J: Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed Pharmacother. 97:1468–1478. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS and Karmazyn M: Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail. 4:79–88. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Qin N, Gong QH, Wei LW, Wu Q and Huang XN: Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull. 31:1530–1535. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C and Xiong L: Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 132:1108552020. View Article : Google Scholar : PubMed/NCBI

29 

Luo J, Xu H and Chen K: Systematic review of compound danshen dropping pill: A chinese patent medicine for acute myocardial infarction. Evid Based Complement Alternat Med. 2013:8080762013. View Article : Google Scholar : PubMed/NCBI

30 

Tu Y: Artemisinin-A gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl. 55:10210–10226. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Yang R, Yuan BC, Ma YS, Zhou S and Liu Y: The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol. 55:5–18. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Mu F, Duan J, Bian H, Zhai X, Shang P, Lin R, Zhao M, Hu D, Yin Y, Wen A and Xi M: Metabonomic strategy for the evaluation of Chinese medicine Salvia miltiorrhiza and Dalbergia odorifera interfering with myocardial ischemia/reperfusion injury in rats. Rejuvenation Res. 20:263–277. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Wang S, Zhang S, Wang S, Gao P and Dai L: A comprehensive review on Pueraria: Insights on its chemistry and medicinal value. Biomed Pharmacother. 131:1107342020. View Article : Google Scholar : PubMed/NCBI

34 

Hou N, Huang Y, Cai SA, Yuan WC, Li LR, Liu XW, Zhao GJ, Qiu XX, Li AQ, Cheng CF, et al: Puerarin ameliorated pressure overload-induced cardiac hypertrophy in ovariectomized rats through activation of the PPARα/PGC-1 pathway. Acta Pharmacol Sin. 42:55–67. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Yuan G, Shi S, Jia Q, Shi J, Shi S, Zhang X, Shou X, Zhu X and Hu Y: Use of network pharmacology to explore the mechanism of Gegen (Puerariae lobatae Radix) in the treatment of type 2 diabetes mellitus associated with hyperlipidemia. Evid Based Complement Alternat Med. 2021:66334022021. View Article : Google Scholar : PubMed/NCBI

36 

Zhou YX, Zhang H and Peng C: Puerarin: A review of pharmacological effects. Phytother Res. 28:961–975. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Liu J, Zhang HJ, Ji BP, Cai SB, Wang RJ, Zhou F, Yang JS and Liu HJ: A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct. 5:1038–1049. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Liu B, Wu Z, Li Y, Ou C, Huang Z, Zhang J, Liu P, Luo C and Chen M: Puerarin prevents cardiac hypertrophy induced by pressure overload through activation of autophagy. Biochem Biophys Res Commun. 464:908–915. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H and Chi K: Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Biosci Rep. 40:BSR202006692020. View Article : Google Scholar : PubMed/NCBI

40 

Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A and Blankesteijn WM: WNT signaling in cardiac and vascular disease. Pharmacol Rev. 70:68–141. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Weeks KL, Bernardo BC, Ooi JYY, Patterson NL and McMullen JR: The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol. 1000:187–210. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Fan J, Qiu L, Shu H, Ma B, Hagenmueller M, Riffel JH, Meryer S, Zhang M, Hardt SE, Wang L, et al: Recombinant frizzled1 protein attenuated cardiac hypertrophy after myocardial infarction via the canonical Wnt signaling pathway. Oncotarget. 9:3069–3080. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Lieven O, Knobloch J and Rüther U: The regulation of Dkk1 expression during embryonic development. Dev Biol. 340:256–268. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Li Y, Lu W, King TD, Liu CC, Bijur GN and Bu G: Dkk1 stabilizes Wnt co-receptor LRP6: Implication for Wnt ligand-induced LRP6 down-regulation. PLoS One. 5:e110142010. View Article : Google Scholar : PubMed/NCBI

46 

Wang T, Duan YM, Fu Q, Liu T, Yu JC, Sui ZY, Huang L and Wen GQ: IM-12 activates the Wnt-β-catenin signaling pathway and attenuates rtPA-induced hemorrhagic transformation in rats after acute ischemic stroke. Biochem Cell Biol. 97:702–708. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Cheng Y, Shen A, Wu X, Shen Z, Chen X, Li J, Liu L, Lin X, Wu M, Chen Y, et al: Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 133:1110222021. View Article : Google Scholar : PubMed/NCBI

48 

Guo Y, Yu ZY, Wu J, Gong H, Kesteven S, Iismaa SE, Chan AY, Holman S, Pinto S, Pironet A, et al: The Ca2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy. Elife. 10:e665822021. View Article : Google Scholar : PubMed/NCBI

49 

Schnelle M, Chong M, Zoccarato A, Elkenani M, Sawyer GJ, Hasenfuss G, Ludwig C and Shah AM: In vivo [U-13C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. Am J Physiol Heart Circ Physiol. 319:H422–H431. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Ma X, Song Y, Chen C, Fu Y, Shen Q, Li Z and Zhang Y: Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. Sci China Life Sci. 54:493–501. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Ribeiro DA, Buttros JB, Oshima C, Bergamaschi CT and Campos RR: Ascorbic acid prevents acute myocardial infarction induced by isoproterenol in rats: Role of inducible nitric oxide synthase production. J Mol Histol. 40:99–105. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Prabhu S, Narayan S and Devi CS: Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction. Phytother Res. 23:756–760. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Xu H, Wang Z, Chen M, Zhao W, Tao T, Ma L, Ni Y and Li W: YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11:1322021. View Article : Google Scholar : PubMed/NCBI

54 

Zhang GX, Kimura S, Murao K, Yu X, Obata K, Matsuyoshi H and Takaki M: Effects of angiotensin type I receptor blockade on the cardiac Raf/MEK/ERK cascade activated via adrenergic receptors. J Pharmacol Sci. 113:224–233. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Li L, Cai H, Liu H and Guo T: β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy. Mol Med Rep. 11:4373–4380. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Werhahn SM, Kreusser JS, Hagenmüller M, Beckendorf J, Diemert N, Hoffmann S, Schultz JH, Backs J and Dewenter M: Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new ‘ISO on/off model’. PLoS One. 16:e02489332021. View Article : Google Scholar : PubMed/NCBI

57 

Garg M and Khanna D: Exploration of pharmacological interventions to prevent isoproterenol-induced myocardial infarction in experimental models. Ther Adv Cardiovasc Dis. 8:155–169. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J and Wang JX: Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 42:701–714. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Wen J, Shen J, Zhou Y, Zhao X, Dai Z and Jin Y: Pyrroloquinoline quinone attenuates isoproterenol hydrochloride-induced cardiac hypertrophy in AC16 cells by inhibiting the NF-κB signaling pathway. Int J Mol Med. 45:873–885. 2020.PubMed/NCBI

60 

Zhao Y, Jiang Y, Chen Y, Zhang F, Zhang X, Zhu L and Yao X: Dissection of mechanisms of Chinese medicinal formula Si-Miao-Yong-an decoction protects against cardiac hypertrophy and fibrosis in isoprenaline-induced heart failure. J Ethnopharmacol. 248:1120502020. View Article : Google Scholar : PubMed/NCBI

61 

Zhang C, Wang Y, Ge Z, Lin J, Liu J, Yuan X and Lin Z: GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and beta-MHC through down-regulating CCL11 in mice. Curr Mol Med. 18:661–671. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Cameron VA, Rademaker MT, Ellmers LJ, Espiner EA, Nicholls MG and Richards AM: Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology. 141:4690–4697. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Edwards JG: Cardiac MHC gene expression: More complexity and a step forward. Am J Physiol Heart Circ Physiol. 294:H14–H15. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Yuan Y, Zong J, Zhou H, Bian ZY, Deng W, Dai J, Gan HW, Yang Z, Li H and Tang QZ: Puerarin attenuates pressure overload-induced cardiac hypertrophy. J Cardiol. 63:73–81. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Yeh YL, Tsai HI, Cheng SM, Pai P, Ho TJ, Chen RJ, Lai CH, Huang PJ, Padma VV and Huang CY: Mechanism of Taiwan Mingjian Oolong tea to inhibit isoproterenol-induced hypertrophy and apoptosis in cardiomyoblasts. Am J Chin Med. 44:77–86. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, Deng LB, Wang XL, Wang JB, Ji GJ, et al: CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 21:1492–1502. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Hu H, Jiang M, Cao Y, Zhang Z, Jiang B, Tian F, Feng J, Dou Y, Gorospe M, Zheng M, et al: HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc Res. 116:944–955. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Huo S, Shi W, Ma H, Yan D, Luo P, Guo J, Li C, Lin J, Zhang C, Li S, et al: Alleviation of inflammation and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via IL-6/STAT3 inhibition by raloxifene. Oxid Med Cell Longev. 2021:66990542021. View Article : Google Scholar : PubMed/NCBI

69 

Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J and Liu P: MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int. 46:288–299. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Han B, Xu J, Shi X, Zheng Z, Shi F, Jiang F and Han J: DL-3-n-butylphthalide attenuates myocardial hypertrophy by targeting gasdermin D and inhibiting gasdermin D mediated inflammation. Front Pharmacol. 12:6881402021. View Article : Google Scholar : PubMed/NCBI

71 

Shah AK, Bhullar SK, Elimban V and Dhalla NS: Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel). 10:9312021. View Article : Google Scholar : PubMed/NCBI

72 

Gai Z, Wang Y, Tian L, Gong G and Zhao J: Whole genome level analysis of the Wnt and DIX gene families in mice and their coordination relationship in regulating cardiac hypertrophy. Front Genet. 12:6089362021. View Article : Google Scholar : PubMed/NCBI

73 

Qin H, Zhang Y, Wang R, Du X, Li L and Du H: Puerarin suppresses Na+-K+-ATPase-mediated systemic inflammation and CD36 expression, and alleviates cardiac lipotoxicity in vitro and in vivo. J Cardiovasc Pharmacol. 68:465–472. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Agostino M and Pohl SÖ: The structural biology of canonical Wnt signalling. Biochem Soc Trans. 48:1765–1780. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Hua Y, Yang Y, Li Q, He X, Zhu W, Wang J and Gan X: Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/β-catenin pathway. J Biol Chem. 293:19710–19724. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Gao C and Chen YG: Dishevelled: The hub of Wnt signaling. Cell Signal. 22:717–727. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Zeng KW, Wang JK, Wang LC, Guo Q, Liu TT, Wang FJ, Feng N, Zhang XW, Liao LX, Zhao MM, et al: Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct Target Ther. 6:712021. View Article : Google Scholar : PubMed/NCBI

79 

Ríos JA, Godoy JA and Inestrosa NC: Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis. Cell Commun Signal. 16:152018. View Article : Google Scholar : PubMed/NCBI

80 

Barker N, Morin PJ and Clevers H: The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res. 77:1–24. 2000. View Article : Google Scholar : PubMed/NCBI

81 

Piazza F, Manni S, Tubi LQ, Montini B, Pavan L, Colpo A, Gnoato M, Cabrelle A, Adami F, Zambello R, et al: Glycogen synthase kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer. 10:5262010. View Article : Google Scholar : PubMed/NCBI

82 

Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T and Lal H: Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol. 110:109–120. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Guan X, He Y, Wei Z, Shi C, Li Y, Zhao R, Pan L, Han Y, Hou T and Yang J: Crosstalk between Wnt/β-catenin signaling and NF-κB signaling contributes to apical periodontitis. Int Immunopharmacol. 98:1078432021. View Article : Google Scholar : PubMed/NCBI

84 

Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, Chi L, Filion LG, Figeys D and Wang L: β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 22:298–310. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Shang S, Hua F and Hu ZW: The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget. 8:33972–33989. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Gitau SC, Li X, Zhao D, Guo Z, Liang H, Qian M, Lv L, Li T, Xu B, Wang Z, et al: Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front Med. 9:444–456. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Olsen NT, Dimaano VL, Fritz-Hansen T, Sogaard P, Chakir K, Eskesen K, Steenbergen C, Kass DA and Abraham TP: Hypertrophy signaling pathways in experimental chronic aortic regurgitation. J Cardiovasc Transl Res. 6:852–860. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Liu JJ, Shentu LM, Ma N, Wang LY, Zhang GM, Sun Y, Wang Y, Li J and Mu YL: Inhibition of NF-κB and Wnt/β-catenin/GSK3β signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced type 1 diabetic rats. Curr Med Sci. 40:35–47. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Ou L, Fang L, Tang H, Qiao H, Zhang X and Wang Z: Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 13:720–730. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Kim S, Song G, Lee T, Kim M, Kim J, Kwon H, Kim J, Jeong W, Lee U, Na C, et al: PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1. Cell Death Differ. 28:2555–2570. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Zhang L, Guo Z, Wang Y, Geng J and Han S: The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res. 80:294–309. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, He K, Ma L, Wu L, Yang Y and Li Y: Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 26: 306, 2022.
APA
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., & Li, Y. (2022). Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Molecular Medicine Reports, 26, 306. https://doi.org/10.3892/mmr.2022.12822
MLA
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., Li, Y."Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway". Molecular Medicine Reports 26.4 (2022): 306.
Chicago
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., Li, Y."Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway". Molecular Medicine Reports 26, no. 4 (2022): 306. https://doi.org/10.3892/mmr.2022.12822
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, He K, Ma L, Wu L, Yang Y and Li Y: Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 26: 306, 2022.
APA
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., & Li, Y. (2022). Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Molecular Medicine Reports, 26, 306. https://doi.org/10.3892/mmr.2022.12822
MLA
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., Li, Y."Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway". Molecular Medicine Reports 26.4 (2022): 306.
Chicago
Wang, X., He, K., Ma, L., Wu, L., Yang, Y., Li, Y."Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway". Molecular Medicine Reports 26, no. 4 (2022): 306. https://doi.org/10.3892/mmr.2022.12822
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team