|
1
|
WHO, . Cardiovascular Diseases (CVDs).
Fact sheet. WHO; Geneva: 2021
|
|
2
|
Mathers CD and Loncar D: Projections of
global mortality and burden of disease from 2002 to 2030. PLoS Med.
3:e4422006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Takenouchi T, Sekiyama K, Sekigawa A,
Fujita M, Waragai M, Sugama S, Iwamaru Y, Kitani H and Hashimoto M:
P2X7 receptor signaling pathway as a therapeutic target for
neurodegenerative diseases. Arch Immunol Ther Exp (Warsz).
58:91–96. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang WJ, Zhu ZM and Liu ZX: The role and
pharmacological properties of the P2X7 receptor in neuropathic
pain. Brain Res Bull. 155:19–28. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Alves LA, Bezerra RJS, Faria RX, Ferreira
LG and da Silva Frutuoso V: Physiological roles and potential
therapeutic applications of the P2X7 receptor in inflammation and
pain. Molecules. 18:10953–10972. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li Q, Zhu X, Song W, Peng X and Zhao R:
The P2X7 purinergic receptor: A potential therapeutic target for
lung cancer. J Cancer Res Clin Oncol. 146:2731–2741. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang C, Shi S, Su Y, Tong JS and Li L:
P2X7R promotes angiogenesis and tumour-associated macrophage
recruitment by regulating the NF-κB signalling pathway in
colorectal cancer cells. J Cell Mol Med. 24:10830–10841. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Giannuzzo A, Saccomano M, Napp J,
Ellegaard M, Alves F and Novak I: Targeting of the P2X7 receptor in
pancreatic cancer and stellate cells. Int J Cancer Res.
139:2540–2552. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Huang H, He YM, Lin MM, Wang Y, Zhang X,
Liang L and He X: P2X7Rs: New therapeutic targets for osteoporosis.
Purinergic Signal. Feb 2–2022.(Epub ahead of print). View Article : Google Scholar
|
|
10
|
Grygorowicz T, Strużyńska L, Sulkowski G,
Chalimoniuk M and Sulejczak D: Temporal expression of P2X7
purinergic receptor during the course of experimental autoimmune
encephalomyelitis. Neurochem Int. 57:823–829. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Vessey DA, Li L and Kelley M:
Pannexin-I/P2X 7 purinergic receptor channels mediate the release
of cardioprotectants induced by ischemic pre-and postconditioning.
J Cardiovasc Pharmacol Ther. 15:190–195. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zempo H, Sugita Y, Ogawa M, Watanabe R,
Suzuki J and Isobe M: A P2X7 receptor antagonist attenuates
experimental autoimmune myocarditis via suppressed myocardial CD4+
T and macrophage infiltration and NADPH oxidase 2/4 expression in
mice. Heart Vessels. 30:527–533. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gao H, Yin J, Shi Y, Hu H, Li X, Xue M,
Cheng W, Wang Y, Li X, Li Y, et al: Targeted P2X7R shRNA delivery
attenuates sympathetic nerve sprouting and ameliorates cardiac
dysfunction in rats with myocardial infarction. Cardiovasc Ther.
35:2017. View Article : Google Scholar
|
|
14
|
Dos Anjos F, Simões JLB, Assmann CE,
Carvalho FB and Bagatini MD: Potential therapeutic role of
purinergic receptors in cardiovascular disease mediated by
SARS-CoV-2. J Immunol Res. 2020:86320482020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Di Virgilio F, Tang Y, Sarti AC and
Rossato M: A rationale for targeting the P2X7 receptor in
Coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Batista Simões JL, Sobierai LD, Pereira
SM, Rodrigues dos Santos MV and Bagatini MD: Therapeutic potential
of P2X7 purinergic receptor modulation in the main organs affected
by the COVID-19 Cytokine Storm. Curr Pharm Des. 28:1798–1814. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Burnstock G: A basis for distinguishing
two types of purinergic receptor. Cell Membrane Receptors for Drugs
and Hormone: A Multidisciplinary Approach. 107–118. 1978.
|
|
18
|
Burnstock G and Kennedy C: Is there a
basis for distinguishing two types of P2-purinoceptor? Gen
Pharmacol. 16:433–440. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Abbracchio MP and Burnstock G:
Purinoceptors: Are there families of P2X and P2Y purinoceptors?
Pharmacol Ther. 64:445–475. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
North RA: Molecular physiology of P2X
receptors. Physiol Rev. 82:1013–1067. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Abbracchio MP, Burnstock G, Boeynaems JM,
Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C,
Jacobson KA and Weisman GA: International Union of Pharmacology
LVIII: Update on the P2Y G protein-coupled nucleotide receptors:
From molecular mechanisms and pathophysiology to therapy. Pharmacol
Rev. 58:281–341. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Burnstock G and Verkhratsky A: Receptors
for purines and pyrimidines. Springer Berlin; Heidelberg: 2012,
View Article : Google Scholar
|
|
23
|
Bodin P and Burnstock G: Purinergic
signalling: ATP release. Neurochem Res. 26:959–969. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dosch M, Gerber J, Jebbawi F and Beldi G:
Mechanisms of ATP release by inflammatory cells. Int J Mol Sci.
19:12222018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sawada K, Echigo N, Juge N, Miyaji T,
Otsuka M, Omote H, Yamamoto A and Moriyama Y: Identification of a
vesicular nucleotide transporter. Proc Natl Acad Sci USA.
105:5683–5686. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Junger WG: Immune cell regulation by
autocrine purinergic signalling. Nat Rev Immunol. 11:201–212. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiong Y, Sun S, Teng S, Jin M and Zhou Z:
Ca2+-dependent and Ca2+-independent ATP
release in astrocytes. Front Mol Neurosci. 11:2242018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Abbracchio MP, Burnstock G, Verkhratsky A
and Zimmermann H: Purinergic signalling in the nervous system: An
overview. Trends Neurosci. 32:19–29. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kuzmin AI, Lakomkin VL, Kapelko VI and
Vassort G: Interstitial ATP level and degradation in control and
postmyocardial infarcted rats. Am J Physiol. 275:C766–C771. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jiang LH, Baldwin JM, Roger S and Baldwin
SA: Insights into the molecular mechanisms underlying mammalian
P2X7 receptor functions and contributions in diseases, revealed by
structural modeling and single nucleotide polymorphisms. Front
Pharmacol. 4:552013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Burnstock G and Kennedy C: P2X receptors
in health and disease. Adv Pharmacol. 61:333–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Adinolfi E, Giuliani AL, De Marchi E,
Pegoraro A, Orioli E and Di Virgilio F: The P2X7 receptor: A main
player in inflammation. Biochem Pharmacol. 151:234–244. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro
DE, Glaser T, Arnaud-Sampaio VF, Lameu C and Ulrich H: The P2X7
receptor: Central hub of brain diseases. Front Mol Neurosci.
13:1242020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Virginio C, MacKenzie A, Rassendren FA,
North RA and Surprenant A: Pore dilation of neuronal P2X receptor
channels. Nat Neurosci. 2:315–321. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wiley JS, Sluyter R, Gu BJ, Stokes L and
Fuller SJ: The human P2X7 receptor and its role in innate immunity.
Tissue Antigens. 78:321–332. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alves LA, de Melo Reis RA, de Souza CA, de
Freitas MS, Teixeira PC, Neto Moreira Ferreira D and Xavier RF: The
P2X7 receptor: Shifting from a low-to a high-conductance channel-an
enigmatic phenomenon? Biochim Biophys Acta. 1838:2578–2587. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bartlett R, Stokes L and Sluyter R: The
P2X7 receptor channel: Recent developments and the use of P2X7
antagonists in models of disease. Pharmacol Rev. 66:638–675. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Artlett CM: The role of the NLRP3
inflammasome in fibrosis. Open Rheumatol J. 6:80–86. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli
VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes
pyroptosis by forming membrane pores. Nature. 535:153–158. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ferrari D, Wesselborg S, Bauer MK and
Schulze-Osthoff K: Extracellular ATP activates transcription factor
NF-kappaB through the P2Z purinoreceptor by selectively targeting
NF-kappaB p65 (RelA). J Cell Biol. 139:1635–1643. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ferrari D, Stroh C and Schulze-Osthoff K:
P2X7/P2Z purinoreceptor-mediated activation of transcription factor
NFAT in microglial cells. J Biol Chem. 274:13205–13210. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yip L, Woehrle T, Corriden R, Hirsh M,
Chen Y, Inoue Y, Ferrari V, Insel PA and Junger WG: Autocrine
regulation of T-cell activation by ATP release and P2X7 receptors.
FASEB J. 23:1685–1693. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang Y, Cheng H, Li W, Wu H and Yang Y:
Highly-expressed P2X7 receptor promotes growth and metastasis of
human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and
mTOR/HIF1α/VEGF signaling. Int J Cancer. 145:1068–1082. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Langhner E, Taghavi P, Chiles K, Mahon PC
and Semenza GL: HEER2 (neu) signaling increase the rate of hypoxia
inducible factor 1-alpha (HIF-1-alpha) synthesis: Novel mechanism
for HIF-mediated vascular endothelial growth factor expression. Mol
Cell Bioi. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Amoroso F, Capece M, Rotondo A, Cangelosi
D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L
and Adinolfi E: The P2X7 receptor is a key modulator of the
PI3K/GSK3β/VEGF signaling network: Evidence in experimental
neuroblastoma. Oncogene. 34:5240–5251. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hill LM, Gavala ML, Lenertz LY and Bertics
PJ: Extracellular ATP may contribute to tissue repair by rapidly
stimulating purinergic receptor X7-dependent vascular endothelial
growth factor release from primary human monocytes. J Immunol.
185:3028–3034. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tafani M, Schito L, Pellegrini L,
Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci
B and Russo MA: Hypoxia-increased RAGE and P2X7R expression
regulates tumor cell invasion through phosphorylation of Erk1/2 and
Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis.
32:1167–1175. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ji Z, Xie Y, Guan Y, Zhang Y, Cho KS, Ji M
and You Y: Involvement of P2X7 receptor in proliferation and
migration of human glioma cells. Biomed Res Int. 2018:85913972018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bartlett R, Yerbury JJ and Sluyter R: P2X7
receptor activation induces reactive oxygen species formation and
cell death in murine EOC13 microglia. Mediators Inflamm.
2013:2718132013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mazrouei S, Sharifpanah F, Bekhite MM,
Figulla HR, Sauer H and Wartenberg M: Cardiomyogenesis of embryonic
stem cells upon purinergic receptor activation by ADP and ATP.
Purinergic Signal. 11:491–506. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hesse J, Leberling S, Boden E, Friebe D,
Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, et
al: CD73-derived adenosine and tenascin-C control cytokine
production by epicardium-derived cells formed after myocardial
infarction. FASEB J. 31:3040–3053. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Musa H, Tellez JO, Chandler NJ, Greener
ID, Mączewski M, Mackiewicz U, Beresewicz A, Molenaar P, Boyett MR
and Dobrzynski H: P2 purinergic receptor mRNA in rat and human
sinoatrial node and other heart regions. Naunyn Schmiedebergs Arch
Pharmacol. 379:541–549. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Barth K, Pfleger C, Linge A, Sim JA,
Surprenant A, Steinbronn N, Strasser RH and Kasper M: Increased
P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient
mice. Histochem. Cell Biol. 134:31–38. 2010.PubMed/NCBI
|
|
54
|
Gentile D, Natale M, Lazzerini PE,
Capecchi PL and Laghi-Pasini F: The role of P2X7 receptors in
tissue fibrosis: A brief review. Purinergic Signal. 11:435–440.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Thygesen K, Alpert JS, Jaffe AS, Simoons
ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for
Universal Definition of Myocardial Infarction; Authors/Task Force
Members Chairpersons, ; Thygesen K, Alpert JS, et al: Third
universal definition of myocardial infarction. J Am Coll Cardiol.
60:1581–1598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liehn EA, Postea O, Curaj A and Marx N:
Repair after myocardial infarction, between fantasy and reality:
The role of chemokines. J Am Coll Cardiol. 58:2357–2362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Forte E, Furtado MB and Rosenthal N: The
interstitium in cardiac repair: Role of the immune-stromal cell
interplay. Nat Rev Cardiol. 15:601–616. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ferrini A, Stevens MM, Sattler S and
Rosenthal N: Toward regeneration of the heart: Bioengineering
strategies for immunomodulation. Front Cardiovasc Med. 6:262019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W,
Wang Y, Li X, Yang N, Shi Y and Yan S: P2X7 receptor inhibition
attenuated sympathetic nerve sprouting after myocardial infarction
via the NLRP3/IL-1β pathway. J Cell Mol Med. 21:2695–2710. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cheng W, Sun Y, Wu Q, Ooi K, Feng Y, Xia C
and Zhu D: Paraventricular nucleus P2X7 receptors aggravate acute
myocardial infarction injury via ROS-induced vasopressin-V1b
activation in rats. Neurosci Bull. 37:641–656. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shi XX, Zheng KC, Shan PR, Zhang L, Wu SJ
and Huang ZQ: Elevated circulating level of P2X7 receptor is
related to severity of coronary artery stenosis and prognosis of
acute myocardial infarction. Cardiol J. 28:453–459. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mezzaroma E, Toldo S, Farkas D, Seropian
IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and
Abbate A: The inflammasome promotes adverse cardiac remodeling
following acute myocardial infarction in the mouse. Proc Natl Acad
Sci USA. 108:19725–19730. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Frank A, Bonney M, Bonney S, Weitzel L,
Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From
basic science to clinical bedside. Semin Cardiothorac Vasc Anesth.
16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Gu M, Zheng AB, Jin J, Cui Y, Zhang N, Che
ZP, Wang Y, Zhan J and Tu WJ: Cardioprotective effects of genistin
in rat myocardial ischemia-reperfusion injury studies by regulation
of P2X7/NF-κB pathway. Evid Based Complement Alternat Med.
2016:53812902016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S,
Xue Y, Zhang C, Yi Z, Zhang X, et al: Long noncoding NONRATT021972
siRNA normalized abnormal sympathetic activity mediated by the
upregulation of P2X7 receptor in superior cervical ganglia after
myocardial ischemia. Purinergic Signal. 12:521–535. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vessey DA, Li L and Kelley M: Ischemic
preconditioning requires opening of pannexin-1/P2X7 channels not
only during preconditioning but again after index ischemia at full
reperfusion. Mol Cell Biochem. 351:77–84. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang Y: Mitogen-activated protein kinases
in heart development and diseases. Circulation. 116:1413–1423.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Magnani JW and Dec GW: Myocarditis:
Current trends in diagnosis and treatment. Circulation.
113:876–890. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fung G, Luo H, Qiu Y, Yang D and McManus
B: Myocarditis. Circ Res. 118:496–514. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Amoah BP, Yang H, Zhang P, Su Z and Xu H:
Immunopathogenesis of myocarditis: The interplay between cardiac
fibroblast cells, dendritic cells, macrophages and CD 4+ T cells.
Scand J Immunol. 82:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Martinez CG, Zamith-Miranda D, Da Silva
MG, Ribeiro KC, Brandão IT, Silva CL, Diaz BL, Bellio M, Persechini
PM and Kurtenbach E: P2×7 purinergic signaling in dilated
cardiomyopathy induced by auto-immunity against muscarinic M2
receptors: Autoantibody levels, heart functionality and cytokine
expression. Sci Rep. 5:169402015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Maron BJ, Towbin JA, Thiene G,
Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB;
American Heart Association, ; et al: Contemporary definitions and
classification of the cardiomyopathies: An American Heart
Association Scientific Statement from the Council on Clinical
Cardiology, Heart Failure and Transplantation Committee; Quality of
Care and Outcomes Research and Functional Genomics and
Translational Biology Interdisciplinary Working Groups; and Council
on Epidemiology and Prevention. Circulation. 113:1807–1816. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Eijgenraam TR, Silljé HHW and de Boer RA:
Current understanding of fibrosis in genetic cardiomyopathies.
Trends Cardiovasc Med. 30:353–361. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhou J, Tian G, Quan Y, Li J, Wang X, Wu
W, Li M and Liu X: Inhibition of P2X7 purinergic receptor
ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway.
Oxid Med Cell Longev. 2020:79562742020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang S, Wang W, Li L, Wang T, Zhao Y, Lin
Y, Huang W, Wang Y and Huang Z: P2X7 receptor deficiency
ameliorates STZ-induced cardiac damage and remodeling through PKCβ
and ERK. Front Cell Dev Biol. 9:6920282021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Biswas A, Raza A, Das S, Kapoor M,
Jayarajan R, Verma A, Shamsudheen KV, Murry B, Seth S, Bhargava B,
et al: Loss of function mutation in the P2X7, a ligand-gated ion
channel gene associated with hypertrophic cardiomyopathy.
Purinergic Signal. 15:205–210. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Whitworth J: COVID-19: A fast evolving
pandemic. Trans R Soc Trop Med Hyg. 114:241–248. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Siripanthong B, Nazarian S, Muser D, Deo
R, Santangeli P, Khanji MY, Cooper LT Jr and Chahal CAA:
Recognizing COVID-19-related myocarditis: The possible
pathophysiology and proposed guideline for diagnosis and
management. Heart Rhythm. 17:1463–1471. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kang Y, Chen T, Mui D, Ferrari V, Jagasia
D, Scherrer-Crosbie M, Chen Y and Han Y: Cardiovascular
manifestations and treatment considerations in COVID-19. Heart.
106:1132–1141. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Guzik TJ, Mohiddin SA, Dimarco A, Patel V,
Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P,
D'Acquisto F, et al: COVID-19 and the cardiovascular system:
Implications for risk assessment, diagnosis, and treatment options.
Cardiovasc Res. 116:1666–1687. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ribeiro DE, Oliveira-Giacomelli Á, Glaser
T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C,
Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a
culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jiang F, Yang J, Zhang Y, Dong M, Wang S,
Zhang Q, Liu FF, Zhang K and Zhang C: Angiotensin-converting enzyme
2 and angiotensin 1–7: Novel therapeutic targets. Nat Rev Cardiol.
11:413–426. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo
L, Guo R, Chen T, Hu J, et al: Characterization of spike
glycoprotein of SARS-CoV-2 on virus entry and its immune
cross-reactivity with SARS-CoV. Nat Commun. 11:16202020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nishiga M, Wang DW, Han Y, Lewis DB and Wu
JC: COVID-19 and cardiovascular disease: From basic mechanisms to
clinical perspectives. Nat Rev Cardiol. 17:543–558. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
De Mello WC and Danser AH: Angiotensin II
and the heart: On the intracrine renin-angiotensin system.
Hypertension. 35:1183–1188. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wernly B and Zhou Z: More purinergic
receptors deserve attention as therapeutic targets for the
treatment of cardiovascular disease. Am J Physiol Heart Circ
Physiol. 319:H723–H729. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wagner JA and Kelly RB: Topological
organization of proteins in an intracellular secretory organelle:
The synaptic vesicle. Proc Natl Acad Sci USA. 76:4126–4130. 1979.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bours MJ, Swennen EL, Di Virgilio F,
Cronstein BN and Dagnelie PC: Adenosine 5′-triphosphate and
adenosine as endogenous signaling molecules in immunity and
inflammation. Pharmacol Ther. 112:358–404. 2006. View Article : Google Scholar : PubMed/NCBI
|