Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2023 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 27 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

P2X7 purinergic receptor: A potential target in heart diseases (Review)

  • Authors:
    • Anfal F. Bin Dayel
    • Asma S. Alonazi
    • Tahani K. Alshammari
    • Nouf M. Alrasheed
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 12371 Riyadh, Kingdom of Saudi Arabia
  • Article Number: 74
    |
    Published online on: February 15, 2023
       https://doi.org/10.3892/mmr.2023.12961
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The P2X7 purinergic receptor (P2X7R) is a non‑selective cation channel activated by high levels of adenosine triphosphate that are commonly present in serious conditions. Activation of this purinergic receptor is closely related to the development of various disease states including inflammatory and neurodegenerative disorders, orthopedic diseases and types of cancer. Accumulating evidence has shown that the P2X7R plays a crucial role in the development of various heart diseases. For example, activation of P2X7Rs may alleviate myocardial ischemia‑reperfusion injury by releasing endogenous cardiac protective substances. In contrast to these findings, activation of P2X7Rs can promote the development of acute myocardial infarction and myocarditis by inducing inflammatory responses. Activation of these receptors can also contribute to the development of different types of cardiomyopathies including diabetic cardiomyopathy, dilated cardiomyopathy and hypertrophic cardiomyopathy by inducing cardiac hypertrophy, fibrosis and apoptosis. Notably, inhibition of P2X7Rs can improve cardiac structure and function abnormalities following acute myocardial infarction, reduction of inflammatory responses following myocarditis and attenuation of the cardiomyopathy process. Furthermore, recent evidence has demonstrated that P2X7Rs are highly active in patients infected with coronavirus disease‑2019 (COVID‑19). Hyperactivation of P2X7Rs in COVID‑19 may induce severe myocardial injury through the activation of several signaling pathways. The present study reviewed the important role of the P2X7R in cardiac dysfunctions and discusses its use as a possible new therapeutic approach for the prevention and treatment of several myocardial diseases.
View Figures

Figure 1

View References

1 

WHO, . Cardiovascular Diseases (CVDs). Fact sheet. WHO; Geneva: 2021

2 

Mathers CD and Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3:e4422006. View Article : Google Scholar : PubMed/NCBI

3 

Takenouchi T, Sekiyama K, Sekigawa A, Fujita M, Waragai M, Sugama S, Iwamaru Y, Kitani H and Hashimoto M: P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz). 58:91–96. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Zhang WJ, Zhu ZM and Liu ZX: The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull. 155:19–28. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Alves LA, Bezerra RJS, Faria RX, Ferreira LG and da Silva Frutuoso V: Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules. 18:10953–10972. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Li Q, Zhu X, Song W, Peng X and Zhao R: The P2X7 purinergic receptor: A potential therapeutic target for lung cancer. J Cancer Res Clin Oncol. 146:2731–2741. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Yang C, Shi S, Su Y, Tong JS and Li L: P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med. 24:10830–10841. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F and Novak I: Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer Res. 139:2540–2552. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L and He X: P2X7Rs: New therapeutic targets for osteoporosis. Purinergic Signal. Feb 2–2022.(Epub ahead of print). View Article : Google Scholar

10 

Grygorowicz T, Strużyńska L, Sulkowski G, Chalimoniuk M and Sulejczak D: Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis. Neurochem Int. 57:823–829. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Vessey DA, Li L and Kelley M: Pannexin-I/P2X 7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre-and postconditioning. J Cardiovasc Pharmacol Ther. 15:190–195. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Zempo H, Sugita Y, Ogawa M, Watanabe R, Suzuki J and Isobe M: A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice. Heart Vessels. 30:527–533. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Gao H, Yin J, Shi Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Li Y, et al: Targeted P2X7R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction. Cardiovasc Ther. 35:2017. View Article : Google Scholar

14 

Dos Anjos F, Simões JLB, Assmann CE, Carvalho FB and Bagatini MD: Potential therapeutic role of purinergic receptors in cardiovascular disease mediated by SARS-CoV-2. J Immunol Res. 2020:86320482020. View Article : Google Scholar : PubMed/NCBI

15 

Di Virgilio F, Tang Y, Sarti AC and Rossato M: A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Batista Simões JL, Sobierai LD, Pereira SM, Rodrigues dos Santos MV and Bagatini MD: Therapeutic potential of P2X7 purinergic receptor modulation in the main organs affected by the COVID-19 Cytokine Storm. Curr Pharm Des. 28:1798–1814. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Burnstock G: A basis for distinguishing two types of purinergic receptor. Cell Membrane Receptors for Drugs and Hormone: A Multidisciplinary Approach. 107–118. 1978.

18 

Burnstock G and Kennedy C: Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 16:433–440. 1985. View Article : Google Scholar : PubMed/NCBI

19 

Abbracchio MP and Burnstock G: Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 64:445–475. 1994. View Article : Google Scholar : PubMed/NCBI

20 

North RA: Molecular physiology of P2X receptors. Physiol Rev. 82:1013–1067. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA and Weisman GA: International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 58:281–341. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Burnstock G and Verkhratsky A: Receptors for purines and pyrimidines. Springer Berlin; Heidelberg: 2012, View Article : Google Scholar

23 

Bodin P and Burnstock G: Purinergic signalling: ATP release. Neurochem Res. 26:959–969. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Dosch M, Gerber J, Jebbawi F and Beldi G: Mechanisms of ATP release by inflammatory cells. Int J Mol Sci. 19:12222018. View Article : Google Scholar : PubMed/NCBI

25 

Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A and Moriyama Y: Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA. 105:5683–5686. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Junger WG: Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 11:201–212. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Xiong Y, Sun S, Teng S, Jin M and Zhou Z: Ca2+-dependent and Ca2+-independent ATP release in astrocytes. Front Mol Neurosci. 11:2242018. View Article : Google Scholar : PubMed/NCBI

28 

Abbracchio MP, Burnstock G, Verkhratsky A and Zimmermann H: Purinergic signalling in the nervous system: An overview. Trends Neurosci. 32:19–29. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Kuzmin AI, Lakomkin VL, Kapelko VI and Vassort G: Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol. 275:C766–C771. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Jiang LH, Baldwin JM, Roger S and Baldwin SA: Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front Pharmacol. 4:552013. View Article : Google Scholar : PubMed/NCBI

31 

Burnstock G and Kennedy C: P2X receptors in health and disease. Adv Pharmacol. 61:333–372. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E and Di Virgilio F: The P2X7 receptor: A main player in inflammation. Biochem Pharmacol. 151:234–244. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C and Ulrich H: The P2X7 receptor: Central hub of brain diseases. Front Mol Neurosci. 13:1242020. View Article : Google Scholar : PubMed/NCBI

34 

Virginio C, MacKenzie A, Rassendren FA, North RA and Surprenant A: Pore dilation of neuronal P2X receptor channels. Nat Neurosci. 2:315–321. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Wiley JS, Sluyter R, Gu BJ, Stokes L and Fuller SJ: The human P2X7 receptor and its role in innate immunity. Tissue Antigens. 78:321–332. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Alves LA, de Melo Reis RA, de Souza CA, de Freitas MS, Teixeira PC, Neto Moreira Ferreira D and Xavier RF: The P2X7 receptor: Shifting from a low-to a high-conductance channel-an enigmatic phenomenon? Biochim Biophys Acta. 1838:2578–2587. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Bartlett R, Stokes L and Sluyter R: The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 66:638–675. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Artlett CM: The role of the NLRP3 inflammasome in fibrosis. Open Rheumatol J. 6:80–86. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Ferrari D, Wesselborg S, Bauer MK and Schulze-Osthoff K: Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65 (RelA). J Cell Biol. 139:1635–1643. 1997. View Article : Google Scholar : PubMed/NCBI

41 

Ferrari D, Stroh C and Schulze-Osthoff K: P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem. 274:13205–13210. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA and Junger WG: Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J. 23:1685–1693. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Y, Cheng H, Li W, Wu H and Yang Y: Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer. 145:1068–1082. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Langhner E, Taghavi P, Chiles K, Mahon PC and Semenza GL: HEER2 (neu) signaling increase the rate of hypoxia inducible factor 1-alpha (HIF-1-alpha) synthesis: Novel mechanism for HIF-mediated vascular endothelial growth factor expression. Mol Cell Bioi. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L and Adinolfi E: The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: Evidence in experimental neuroblastoma. Oncogene. 34:5240–5251. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Hill LM, Gavala ML, Lenertz LY and Bertics PJ: Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 185:3028–3034. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B and Russo MA: Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis. 32:1167–1175. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Ji Z, Xie Y, Guan Y, Zhang Y, Cho KS, Ji M and You Y: Involvement of P2X7 receptor in proliferation and migration of human glioma cells. Biomed Res Int. 2018:85913972018. View Article : Google Scholar : PubMed/NCBI

49 

Bartlett R, Yerbury JJ and Sluyter R: P2X7 receptor activation induces reactive oxygen species formation and cell death in murine EOC13 microglia. Mediators Inflamm. 2013:2718132013. View Article : Google Scholar : PubMed/NCBI

50 

Mazrouei S, Sharifpanah F, Bekhite MM, Figulla HR, Sauer H and Wartenberg M: Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signal. 11:491–506. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Hesse J, Leberling S, Boden E, Friebe D, Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, et al: CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J. 31:3040–3053. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Musa H, Tellez JO, Chandler NJ, Greener ID, Mączewski M, Mackiewicz U, Beresewicz A, Molenaar P, Boyett MR and Dobrzynski H: P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. Naunyn Schmiedebergs Arch Pharmacol. 379:541–549. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Barth K, Pfleger C, Linge A, Sim JA, Surprenant A, Steinbronn N, Strasser RH and Kasper M: Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice. Histochem. Cell Biol. 134:31–38. 2010.PubMed/NCBI

54 

Gentile D, Natale M, Lazzerini PE, Capecchi PL and Laghi-Pasini F: The role of P2X7 receptors in tissue fibrosis: A brief review. Purinergic Signal. 11:435–440. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for Universal Definition of Myocardial Infarction; Authors/Task Force Members Chairpersons, ; Thygesen K, Alpert JS, et al: Third universal definition of myocardial infarction. J Am Coll Cardiol. 60:1581–1598. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Liehn EA, Postea O, Curaj A and Marx N: Repair after myocardial infarction, between fantasy and reality: The role of chemokines. J Am Coll Cardiol. 58:2357–2362. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Forte E, Furtado MB and Rosenthal N: The interstitium in cardiac repair: Role of the immune-stromal cell interplay. Nat Rev Cardiol. 15:601–616. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Ferrini A, Stevens MM, Sattler S and Rosenthal N: Toward regeneration of the heart: Bioengineering strategies for immunomodulation. Front Cardiovasc Med. 6:262019. View Article : Google Scholar : PubMed/NCBI

59 

Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Yang N, Shi Y and Yan S: P2X7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway. J Cell Mol Med. 21:2695–2710. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Cheng W, Sun Y, Wu Q, Ooi K, Feng Y, Xia C and Zhu D: Paraventricular nucleus P2X7 receptors aggravate acute myocardial infarction injury via ROS-induced vasopressin-V1b activation in rats. Neurosci Bull. 37:641–656. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Shi XX, Zheng KC, Shan PR, Zhang L, Wu SJ and Huang ZQ: Elevated circulating level of P2X7 receptor is related to severity of coronary artery stenosis and prognosis of acute myocardial infarction. Cardiol J. 28:453–459. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA. 108:19725–19730. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Gu M, Zheng AB, Jin J, Cui Y, Zhang N, Che ZP, Wang Y, Zhan J and Tu WJ: Cardioprotective effects of genistin in rat myocardial ischemia-reperfusion injury studies by regulation of P2X7/NF-κB pathway. Evid Based Complement Alternat Med. 2016:53812902016. View Article : Google Scholar : PubMed/NCBI

65 

Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, et al: Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal. 12:521–535. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Vessey DA, Li L and Kelley M: Ischemic preconditioning requires opening of pannexin-1/P2X7 channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem. 351:77–84. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Wang Y: Mitogen-activated protein kinases in heart development and diseases. Circulation. 116:1413–1423. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Magnani JW and Dec GW: Myocarditis: Current trends in diagnosis and treatment. Circulation. 113:876–890. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Fung G, Luo H, Qiu Y, Yang D and McManus B: Myocarditis. Circ Res. 118:496–514. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Amoah BP, Yang H, Zhang P, Su Z and Xu H: Immunopathogenesis of myocarditis: The interplay between cardiac fibroblast cells, dendritic cells, macrophages and CD 4+ T cells. Scand J Immunol. 82:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Martinez CG, Zamith-Miranda D, Da Silva MG, Ribeiro KC, Brandão IT, Silva CL, Diaz BL, Bellio M, Persechini PM and Kurtenbach E: P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: Autoantibody levels, heart functionality and cytokine expression. Sci Rep. 5:169402015. View Article : Google Scholar : PubMed/NCBI

72 

Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB; American Heart Association, ; et al: Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 113:1807–1816. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Eijgenraam TR, Silljé HHW and de Boer RA: Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med. 30:353–361. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Zhou J, Tian G, Quan Y, Li J, Wang X, Wu W, Li M and Liu X: Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway. Oxid Med Cell Longev. 2020:79562742020. View Article : Google Scholar : PubMed/NCBI

75 

Huang S, Wang W, Li L, Wang T, Zhao Y, Lin Y, Huang W, Wang Y and Huang Z: P2X7 receptor deficiency ameliorates STZ-induced cardiac damage and remodeling through PKCβ and ERK. Front Cell Dev Biol. 9:6920282021. View Article : Google Scholar : PubMed/NCBI

76 

Biswas A, Raza A, Das S, Kapoor M, Jayarajan R, Verma A, Shamsudheen KV, Murry B, Seth S, Bhargava B, et al: Loss of function mutation in the P2X7, a ligand-gated ion channel gene associated with hypertrophic cardiomyopathy. Purinergic Signal. 15:205–210. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Whitworth J: COVID-19: A fast evolving pandemic. Trans R Soc Trop Med Hyg. 114:241–248. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, Cooper LT Jr and Chahal CAA: Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 17:1463–1471. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Kang Y, Chen T, Mui D, Ferrari V, Jagasia D, Scherrer-Crosbie M, Chen Y and Han Y: Cardiovascular manifestations and treatment considerations in COVID-19. Heart. 106:1132–1141. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P, D'Acquisto F, et al: COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 116:1666–1687. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K and Zhang C: Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat Rev Cardiol. 11:413–426. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 11:16202020. View Article : Google Scholar : PubMed/NCBI

84 

Nishiga M, Wang DW, Han Y, Lewis DB and Wu JC: COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol. 17:543–558. 2020. View Article : Google Scholar : PubMed/NCBI

85 

De Mello WC and Danser AH: Angiotensin II and the heart: On the intracrine renin-angiotensin system. Hypertension. 35:1183–1188. 2000. View Article : Google Scholar : PubMed/NCBI

86 

Wernly B and Zhou Z: More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol. 319:H723–H729. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Wagner JA and Kelly RB: Topological organization of proteins in an intracellular secretory organelle: The synaptic vesicle. Proc Natl Acad Sci USA. 76:4126–4130. 1979. View Article : Google Scholar : PubMed/NCBI

88 

Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN and Dagnelie PC: Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 112:358–404. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bin Dayel AF, Alonazi AS, Alshammari TK and Alrasheed NM: P2X7 purinergic receptor: A potential target in heart diseases (Review). Mol Med Rep 27: 74, 2023.
APA
Bin Dayel, A.F., Alonazi, A.S., Alshammari, T.K., & Alrasheed, N.M. (2023). P2X7 purinergic receptor: A potential target in heart diseases (Review). Molecular Medicine Reports, 27, 74. https://doi.org/10.3892/mmr.2023.12961
MLA
Bin Dayel, A. F., Alonazi, A. S., Alshammari, T. K., Alrasheed, N. M."P2X7 purinergic receptor: A potential target in heart diseases (Review)". Molecular Medicine Reports 27.3 (2023): 74.
Chicago
Bin Dayel, A. F., Alonazi, A. S., Alshammari, T. K., Alrasheed, N. M."P2X7 purinergic receptor: A potential target in heart diseases (Review)". Molecular Medicine Reports 27, no. 3 (2023): 74. https://doi.org/10.3892/mmr.2023.12961
Copy and paste a formatted citation
x
Spandidos Publications style
Bin Dayel AF, Alonazi AS, Alshammari TK and Alrasheed NM: P2X7 purinergic receptor: A potential target in heart diseases (Review). Mol Med Rep 27: 74, 2023.
APA
Bin Dayel, A.F., Alonazi, A.S., Alshammari, T.K., & Alrasheed, N.M. (2023). P2X7 purinergic receptor: A potential target in heart diseases (Review). Molecular Medicine Reports, 27, 74. https://doi.org/10.3892/mmr.2023.12961
MLA
Bin Dayel, A. F., Alonazi, A. S., Alshammari, T. K., Alrasheed, N. M."P2X7 purinergic receptor: A potential target in heart diseases (Review)". Molecular Medicine Reports 27.3 (2023): 74.
Chicago
Bin Dayel, A. F., Alonazi, A. S., Alshammari, T. K., Alrasheed, N. M."P2X7 purinergic receptor: A potential target in heart diseases (Review)". Molecular Medicine Reports 27, no. 3 (2023): 74. https://doi.org/10.3892/mmr.2023.12961
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team