
Current research on mitochondria‑associated membranes in cardiovascular diseases (Review)
- Authors:
- Jiaheng Zhang
- Jing Tao
- Zijuan Zhou
- Wanjuan Pei
- Yili Xiao
- Yanghongxu Guo
- Jian Gao
- Chenyv Jiang
- Ling Dai
- Guomin Zhang
- Chao Tan
-
Affiliations: First Clinical College of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China, College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China - Published online on: March 28, 2025 https://doi.org/10.3892/mmr.2025.13506
- Article Number: 141
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Zhang J, Cui J, Zhao F, Yang L, Xu X, Shi Y and Wei B: Cardioprotective effect of MLN4924 on ameliorating autophagic flux impairment in myocardial ischemia-reperfusion injury by Sirt1. Redox Biol. 46:1021142021. View Article : Google Scholar : PubMed/NCBI | |
Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F and Kroemer G: Autophagy in Cardiovascular Aging. Circ Res. 123:803–824. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oakes SA and Papa FR: The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 10:173–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Csordás G, Weaver D and Hajnóczky G: Endoplasmic reticulum-mitochondrial contactology: Structure and signaling functions. Trends Cell Biol. 28:523–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu H, Huang L, Zhou C, Cai X, Fu C, et al: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 54:362–377. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Yang Y and Zheng Z: Summary of'! Chinese cardiovascular disease report 2018. Chin J Circ. 34:209–220. 2019. | |
Yang YD, Li MM, Xu G, Feng L, Zhang EL, Chen J, Chen DW and Gao YQ: Nogo-B receptor directs mitochondria-associated membranes to regulate vascular smooth muscle cell proliferation. Int J Mol Sci. 20:23192019. View Article : Google Scholar : PubMed/NCBI | |
Giacomello M and Pellegrini L: The coming of age of the mitochondria-ER contact: A matter of thickness. Cell Death Differ. 23:1417–1427. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang Q and Cai C: Effects of ischemia-reperfusion on cerebral mitochondrial phospholipids, free fatty acids and respiration. J Stroke Neurol Dis. 14:2–4. 1997. | |
An G, Park J, Song J, Hong T, Song G and Lim W: Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med. 56:40–50. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Zhang Z, Li X, Yang Y and Ding S: FUNDC1: An emerging mitochondrial and MAMs protein for mitochondrial quality control in heart diseases. Int J Mol Sci. 24:91512023. View Article : Google Scholar : PubMed/NCBI | |
Kaye SD, Goyani S and Tomar D: MICU1′s calcium sensing beyond mitochondrial calcium uptake. Biochim Biophys Acta Mol Cell Res. 1871:1197142024. View Article : Google Scholar : PubMed/NCBI | |
Tomasoni D, Adamo M, Lombardi CM and Metra M: Highlights in heart failure. ESC Heart Fail. 6:1105–1127. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kurmani S and Squire I: Acute heart failure: Definition, classification and epidemiology. Curr Heart Fail Rep. 14:385–392. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Siraj S, Zhang R and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W, Wei H, Ta N, Fan Y, Liu Y, et al: Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep. 22:e506292021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Li W, Chen H, Jiang L, Zhu R and Feng D: FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy. Autophagy. 12:1675–1676. 2016. View Article : Google Scholar : PubMed/NCBI | |
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C and Pinton P: Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 69:62–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4 augments er-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Combot Y, Salo VT, Chadeuf G, Hölttä M, Ven K, Pulli I, Ducheix S, Pecqueur C, Renoult O, Lak B, et al: Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes. Cell Rep. 38:1102132022. View Article : Google Scholar : PubMed/NCBI | |
Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, van Veldhuisen DJ, Atar D, Hoes AW, et al: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European society of cardiology. developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European society of intensive care medicine (ESICM). Eur J Heart Fail. 10:933–989. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hao G, Wang X, Chen Z, Zhang L, Zhang Y, Wei B, Zheng C, Kang Y, Jiang L, Zhu Z, et al: Prevalence of heart failure and left ventricular dysfunction in China: The China hypertension survey, 2012–2015. Eur J Heart Fail. 21:1329–1337. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng H, Su C, Luo X, Lu Q, Liao M, et al: CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat Commun. 13:57822022. View Article : Google Scholar : PubMed/NCBI | |
Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rao MJ and Goodman JM: Seipin: Harvesting fat and keeping adipocytes healthy. Trends Cell Biol. 31:912–923. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guyard V, Monteiro-Cardoso VF, Omrane M, Sauvanet C, Houcine A, Boulogne C, Ben Mbarek K, Vitale N, Faklaris O, El Khallouki N, et al: ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER-mitochondria contact sites. J Cell Biol. 221:e2021121072022. View Article : Google Scholar : PubMed/NCBI | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Javadov S, Kozlov AV and Camara AKS: Mitochondria in health and diseases. Cells. 9:11772020. View Article : Google Scholar : PubMed/NCBI | |
Kummer E and Ban N: Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol. 22:307–325. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Konja D, Zhang Y and Wang Y: Communications between mitochondria and endoplasmic reticulum in the regulation of metabolic homeostasis. Cells. 10:21952021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 160:189–200. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chinese Cardiovascular Health and Disease Reporting Group, . Chinese cardiovascular health and disease report 2019 summary. Chin J Circ. 35:833–854. 2020. | |
Huang J: Epidemiological characteristics and prevention strategies of heart failure in China. Chin Heart Rhythm Electron J. 3:2–3. 2015. | |
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J and Liu P: The SIRT3-ATAD3A axis regulates MAM dynamics and mitochondrial calcium homeostasis in cardiac hypertrophy. Int J Biol Sci. 20:831–847. 2024. View Article : Google Scholar : PubMed/NCBI | |
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres S, Fujioka H and Zhu X: The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo. J Cell Sci. 134:jcs2534432021. View Article : Google Scholar : PubMed/NCBI | |
Atakpa-Adaji P, Ivanova A, Kujawa K and Taylor CW: IP3R at ER-mitochondrial contact sites: Beyond the IP3R-GRP75-VDAC1 Ca2+ funnel. Contact. 2:93–101. 2023.PubMed/NCBI | |
Liu Y, Ma X, Fujioka H, Liu J, Chen S and Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proc Natl Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Liu L, Song L, Liu J, Yang L, Chen Q, Wu JY and Zhu L: Integration of FUNDC1-associated mitochondrial protein import and mitochondrial quality control contributes to TDP-43 degradation. Cell Death Dis. 14:7352023. View Article : Google Scholar : PubMed/NCBI | |
Mao H, Chen W, Chen L and Li L: Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases. Biochem Pharmacol. 199:1150112022. View Article : Google Scholar : PubMed/NCBI | |
Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A and Di Lisa F: The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med. 24:6510–6522. 2020. View Article : Google Scholar : PubMed/NCBI | |
Beretta M, Santos CX, Molenaar C, Hafstad AD, Miller CC, Revazian A, Betteridge K, Schröder K, Streckfuß-Bömeke K, Doroshow JH, et al: Nox4 regulates InsP3 receptor-dependent Ca2+ release into mitochondria to promote cell survival. EMBO J. 39:e1035302020. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Wei X, Lu Z, Li L, Hu Y, Sun F, Jiang Y, Ma H, Zheng H, Yang G, et al: Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism. 105:1541822020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang D, Jia L, Shangguan F, Gong S, Lan L, Song Z, Xu J, Yan C, Chen T, et al: LonP1 links mitochondria-ER interaction to regulate heart function. Research (Wash D C). 6:01752023.PubMed/NCBI | |
Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, Perrone M, Ferrarese M, Giorgi C, Pinotti M, et al: Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca2+ levels and tumor growth. EMBO J. 38:e994352019. View Article : Google Scholar : PubMed/NCBI | |
Courchet J, Lewis TL Jr and Polleux F: MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun. 9:49162018. | |
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L and Gao Y: The MAMs structure and its role in cell death. Cells. 10:6572021. View Article : Google Scholar : PubMed/NCBI | |
Sun Z and Feng H: Effects of mitochondria-associated endoplasmic reticulum membrane on mitochondrial function. Chin J Nat. 45:127–138. 2023. | |
Rieusset J: Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. Biochem Biophys Res Commun. 500:35–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lan B, He Y, Sun H, Zheng X, Gao Y and Li N: The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life Sci. 231:1165872019. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Yang M and Sun L: Mitochondria-associated endoplasmic reticulum (MAM) calcium transport and regulatory proteins mediate mitochondrial calcium homeostasis. Chin J Cell Biol. 40:585–593. 2018.(In Chinese). | |
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH and Wu X: Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev. 87:1019202023. View Article : Google Scholar : PubMed/NCBI | |
Xian H, Yang Q, Xiao L, Shen HM and Liou YC: Author Correction: STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nat Commun. 12:67822021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao X, Xie W and Zhang Y: Research progress of mitochondria-associated endoplasmic reticulum membranes (MAMs) in aging-related cardiovascular diseases. Acta Physiologica Sinica. 75:799–816. 2023.(In Chinese). PubMed/NCBI | |
Jia GH, Hill MA and Sowers JR: Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ Res. 122:624–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y and Tang Y: The pathogenesis of diabetic cardiomyopathy and the effect of glucagon-like brain 1 receptor agonists on it. Chin J Cardiovasc Dis. 51:440–442. 2023.(In Chinese). | |
Kannel WB, Hjortland M and Castelli WP: Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol. 34:29–34. 1974. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G and Gang X: Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep. 20:2051–2062. 2019.PubMed/NCBI | |
Minciună IA, Hilda Orășan O, Minciună I, Lazar AL, Sitar-Tăut AV, Oltean M, Tomoaia R, Puiu M, Sitar-Tăut DA, Pop D and Cozma A: Assessment of subclinical diabetic cardiomyopathy by speckle - tracking imaging. Eur J Clin Invest. 51:e134752021. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB and Cai L: Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol. 17:585–607. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chong CR, Clarke K and Levelt E: Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res. 113:422–430. 2017. View Article : Google Scholar : PubMed/NCBI | |
Opie LH and Knuuti J: The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 54:1637–1646. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kolwicz SC Jr, Purohit S and Tian R: Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 113:603–616. 2013. View Article : Google Scholar : PubMed/NCBI | |
Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C and Gropler RJ: Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 47:598–604. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tubbs E, Chanon S, Robert M, Bendridi N, Bidaux G, Chauvin MA, Ji-Cao J, Durand C, Gauvrit-Ramette D, Vidal H, et al: Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes. 67:636–650. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thivolet C, Vial G, Cassel R, Rieusset J and Madec AM: Reduction of endoplasmic reticulum-mitochondria interactions in beta cells from patients with type 2 diabetes. PLoS One. 12:e01820272017. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, Mao X, Huang K, Xie Z and Zou MH: Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 139:1913–1936. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Dai X, Wu S, Xu W, Song P, Huang K and Zou MH: FUNDC1-dependent mitochondria-associated endoplasmic reticulum membranes are involved in angiogenesis and neoangiogenesis. Nat Commun. 12:26162021. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, et al: Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 60:1770–1778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F and Pei J: Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res. 65:e124912018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Li L, Yang M, Zeng L and Sun L: PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res. 160:1050802020. View Article : Google Scholar : PubMed/NCBI | |
Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen X and Chang G: β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1. Free Radic Biol Med. 205:25–46. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chang Y, Wang C, Zhu J, Zheng S, Sun S, Wu Y, Jiang X, Li L, Ma R and Li G: SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes. J Transl Med. 21:4942023. View Article : Google Scholar : PubMed/NCBI | |
Salin Raj P, Nair A, Preetha Rani MR, Rajankutty K, Ranjith S and Raghu KG: Ferulic acid attenuates high glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1 pathway activating proapoptotic proteins and ameliorates cardiomyopathy in diabetic rats. Int J Cardiol. 372:101–109. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, Qian Z, Hou X and Zou J: Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial Ca2+ overload. Redox Biol. 64:1027882023. View Article : Google Scholar : PubMed/NCBI | |
Herrington W, Lacey B, Sherliker P, Armitage J and Lewington S: Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 118:535–546. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng J, Huang H, Chen Y and Wu R: Nanomedicine for diagnosis and treatment of atherosclerosis. Adv Sci (Weinh). 10:e23042942023. View Article : Google Scholar : PubMed/NCBI | |
Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL II, Goldstein LB, Chin C, Tannock LR, Miller M, Raghuveer G, et al: Statin safety and Associated adverse events: A scientific statement from the American heart association. Arterioscler Thromb Vasc Biol. 39:e38–e81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D and Chen R: Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 8:802018. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L and Abadia-Molina F: The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients. 12:6052020. View Article : Google Scholar : PubMed/NCBI | |
Moulis M, Grousset E, Faccini J, Richetin K, Thomas G and Vindis C: The multifunctional sorting protein PACS-2 controls mitophagosome formation in human vascular smooth muscle cells through mitochondria-ER contact sites. Cells. 8:6382019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Sun W, Zhang K, Ke X and Wang Z: New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal. 127:1115802025. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Dong X, Zhang W, Chang X and Gao W: Dialogue between mitochondria and endoplasmic reticulum-potential therapeutic targets for age-related cardiovascular diseases. Front Pharmacol. 15:13892022024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yang Y, Zhou Z, Yu H, Zhang S, Huang S, Wei Z, Ren K and Jin Y: Unraveling the complex interplay between mitochondria-associated membranes (MAMs) and cardiovascular Inflammation: Molecular mechanisms and therapeutic implications. Int Immunopharmacol. 141:1129302024. View Article : Google Scholar : PubMed/NCBI | |
Baik SH, Ramanujan VK, Becker C, Fett S, Underhill DM and Wolf AJ: Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation. Sci Immunol. 8:eade76522023. View Article : Google Scholar : PubMed/NCBI | |
Zhang WB, Feng SY, Xiao ZX, Qi YF, Zeng ZF and Chen H: Down-regulating of MFN2 promotes vascular calcification via regulating RAS-RAF-ERK1/2 pathway. Int J Cardiol. 366:11–18. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kong Z, Sun P, Lu Y, Yang Y, Min DY, Zheng SC, Yang Y, Zhang Z, Yang GL and Jiang JW: Yi Mai granule improve energy supply of endothelial cells in atherosclerosis via miRNA-125a-5p regulating mitochondrial autophagy through Pink1-Mfn2-Parkin pathway. J Ethnopharmacol. 319:1171142024. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, et al: MiR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci. 15:2615–2626. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li JJ, Xu R, Wang XP, Zhao XY, Fang Y, Chen YP, Ma S, Di XH, Wu W, et al: Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts. Redox Biol. 68:1029442023. View Article : Google Scholar : PubMed/NCBI | |
Yoon SS, Kwon HW, Shin JH, Rhee MH, Park CE and Lee DH: Anti-thrombotic effects of artesunate through regulation of cAMP and PI3K/MAPK pathway on human platelets. Int J Mol Sci. 23:15862022. View Article : Google Scholar : PubMed/NCBI | |
Wang ZY, Cheng J, Liu B, Xie F, Li CL, Qiao W, Lu QH, Wang Y and Zhang MX: Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med. 25:2816–2827. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Liu P and Liu C: Research progress on the relationship between mitochondrial dysfunction and heart failure. Transformative Med. 9:126–129. 2020. | |
Zhou H, Zhu P, Wang J, Toan S and Ren J: DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther. 4:562019. View Article : Google Scholar : PubMed/NCBI | |
Wang JP, Chi RF, Liu J, Deng YZ, Han XB, Qin FZ and Li B: The role of endogenous reactive oxygen species in cardiac myocyte autophagy. Physiol Res. 67:31–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Su YL, Shi JY, Lu Q and Chen C: MicroRNA-17-5p promotes cardiac hypertrophy by targeting Mfn2 to inhibit autophagy. Cardiovasc Toxicol. 21:759–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Zhang H, Gutiérrez Cortés N, Wu D, Wang P, Zhang J, Mattison JA, Smith E, Bettcher LF, Wang M, et al: Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res. 126:456–470. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Chen Z, Jiang J, Lin Z, Guan Z, Li X, Wang L, Fang H and Xian S: Effect and mechanism of Nuanxinkang on cardiac function in mice with heart failure based on mitochondrial dynamics. CJTCMP. 37:3538–3542. 2022.(In Chinese). | |
Jiang X, Li G, Zhu B, Yang J, Cui S, Jiang R and Wang B: p20BAP31 induces autophagy in colorectal cancer cells by promoting PERK-Mediated ER stress. Int J Mol Sci. 25:51012024. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G and Ma X: Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol. 15:13983812024. View Article : Google Scholar : PubMed/NCBI | |
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP, Chen NH, Wang ZZ and Zhang Y: Mitophagy, a form of selective autophagy, plays an essential role in mitochondrial dynamics of Parkinson's disease. Cell Mol Neurobiol. 42:1321–1339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y, Cao F, Wang L, Pei Z and Ren J: Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis. 1868:1664022022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Yin L, Sun X, Wu J, Dong Z, Hu K, Sun A and Ge J: Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 11:5992020. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α. Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jia WW, Ren S, Xiao W, Li GW, Jin L and Lin Y: Difluoromethylornithine attenuates isoproterenol-induced cardiac hypertrophy by regulating apoptosis, autophagy and the mitochondria-associated membranes pathway. Exp Ther Med. 22:8702021. View Article : Google Scholar : PubMed/NCBI | |
Luan Y, Guo G, Luan Y, Yang Y and Yuan R: Single-cell transcriptional profiling of hearts during cardiac hypertrophy reveals the role of MAMs in cardiomyocyte subtype switching. Sci Rep. 13:83392023. View Article : Google Scholar : PubMed/NCBI | |
GBD 2021 Causes of Death Collaborators, . Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 403:2100–2132. 2024. View Article : Google Scholar : PubMed/NCBI | |
Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, Alblooshi FMK, Almatrooshi MEAH, Alzaabi MEH, Al Darmaki RS and Lootah SNAH: Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus. 12:e93492020.PubMed/NCBI | |
Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A and Peón AN: Ischemia/reperfusion injury: Pathophysiology, current clinical management, and potential preventive approaches. Mediators Inflamm. 2020:84053702020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Xu R, Zhang K, Sun R, Yang M, Li K, Liu H, Xue Y, Xu H and Guo Y: Characterization of early myocardial inflammation in ischemia-reperfusion injury. Front Immunol. 13:10817192023. View Article : Google Scholar : PubMed/NCBI | |
Huang KY, Que JQ, Hu ZS, Yu YW, Zhou YY, Wang L, Xue YJ, Ji KT and Zhang XM: Metformin suppresses inflammation and apoptosis of myocardiocytes by inhibiting autophagy in a model of ischemia-reperfusion injury. Int J Biol Sci. 16:2559–2579. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gong Y, Lin J, Ma Z, Yu M, Wang M, Lai D and Fu G: Mitochondria-associated membrane-modulated Ca2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci. 278:1195112021. View Article : Google Scholar : PubMed/NCBI | |
Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, Crola Da Silva C, Durand A, Alam MR, Van Coppenolle F, Sheu SS and Ovize M: The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ. 22:18902015. View Article : Google Scholar : PubMed/NCBI | |
Kirshenbaum LA, Dhingra R, Bravo-Sagua R and Lavandero S: IAPH1-MFN2 interaction decreases the endoplasmic reticulum-mitochondrial distance and promotes cardiac injury following myocardial ischemia. Nat Commun. 15:14692024. View Article : Google Scholar : PubMed/NCBI | |
Ponnalagu D, Hamilton S, Sanghvi S, Antelo D, Schwieterman N, Hansra I, Xu X, Gao E, Edwards JC, Bansal SS, et al: CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection. Sci Adv. 8:eabo12442022. View Article : Google Scholar : PubMed/NCBI | |
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, et al: Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 63:1027382022. View Article : Google Scholar : PubMed/NCBI |