|
1
|
Zhang J, Cui J, Zhao F, Yang L, Xu X, Shi
Y and Wei B: Cardioprotective effect of MLN4924 on ameliorating
autophagic flux impairment in myocardial ischemia-reperfusion
injury by Sirt1. Redox Biol. 46:1021142021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Abdellatif M, Sedej S, Carmona-Gutierrez
D, Madeo F and Kroemer G: Autophagy in Cardiovascular Aging. Circ
Res. 123:803–824. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oakes SA and Papa FR: The role of
endoplasmic reticulum stress in human pathology. Annu Rev Pathol.
10:173–194. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Csordás G, Weaver D and Hajnóczky G:
Endoplasmic reticulum-mitochondrial contactology: Structure and
signaling functions. Trends Cell Biol. 28:523–540. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen G, Han Z, Feng D, Chen Y, Chen L, Wu
H, Huang L, Zhou C, Cai X, Fu C, et al: A regulatory signaling loop
comprising the PGAM5 phosphatase and CK2 controls receptor-mediated
mitophagy. Mol Cell. 54:362–377. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hu S, Yang Y and Zheng Z: Summary of'!
Chinese cardiovascular disease report 2018. Chin J Circ.
34:209–220. 2019.
|
|
7
|
Yang YD, Li MM, Xu G, Feng L, Zhang EL,
Chen J, Chen DW and Gao YQ: Nogo-B receptor directs
mitochondria-associated membranes to regulate vascular smooth
muscle cell proliferation. Int J Mol Sci. 20:23192019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Giacomello M and Pellegrini L: The coming
of age of the mitochondria-ER contact: A matter of thickness. Cell
Death Differ. 23:1417–1427. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li L, Wang Q and Cai C: Effects of
ischemia-reperfusion on cerebral mitochondrial phospholipids, free
fatty acids and respiration. J Stroke Neurol Dis. 14:2–4. 1997.
|
|
10
|
An G, Park J, Song J, Hong T, Song G and
Lim W: Relevance of the endoplasmic reticulum-mitochondria axis in
cancer diagnosis and therapy. Exp Mol Med. 56:40–50. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bai X, Zhang Z, Li X, Yang Y and Ding S:
FUNDC1: An emerging mitochondrial and MAMs protein for
mitochondrial quality control in heart diseases. Int J Mol Sci.
24:91512023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kaye SD, Goyani S and Tomar D: MICU1′s
calcium sensing beyond mitochondrial calcium uptake. Biochim
Biophys Acta Mol Cell Res. 1871:1197142024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tomasoni D, Adamo M, Lombardi CM and Metra
M: Highlights in heart failure. ESC Heart Fail. 6:1105–1127. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kurmani S and Squire I: Acute heart
failure: Definition, classification and epidemiology. Curr Heart
Fail Rep. 14:385–392. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang W, Siraj S, Zhang R and Chen Q:
Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and
protects the heart from I/R injury. Autophagy. 13:1080–1081. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen
Q and Xia B: Structural basis for the phosphorylation of FUNDC1 LIR
as a molecular switch of mitophagy. Autophagy. 12:2363–2373. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu L, Li Y, Wang J, Zhang D, Wu H, Li W,
Wei H, Ta N, Fan Y, Liu Y, et al: Mitophagy receptor FUNDC1 is
regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis.
EMBO Rep. 22:e506292021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li
Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor
FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy.
12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu W, Li W, Chen H, Jiang L, Zhu R and
Feng D: FUNDC1 is a novel mitochondrial-associated-membrane (MAM)
protein required for hypoxia-induced mitochondrial fission and
mitophagy. Autophagy. 12:1675–1676. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Marchi S, Patergnani S, Missiroli S,
Morciano G, Rimessi A, Wieckowski MR, Giorgi C and Pinton P:
Mitochondrial and endoplasmic reticulum calcium homeostasis and
cell death. Cell Calcium. 69:62–72. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Thoudam T, Ha CM, Leem J, Chanda D, Park
JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4
augments er-mitochondria contact to dampen skeletal muscle insulin
signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Combot Y, Salo VT, Chadeuf G, Hölttä M,
Ven K, Pulli I, Ducheix S, Pecqueur C, Renoult O, Lak B, et al:
Seipin localizes at endoplasmic-reticulum-mitochondria contact
sites to control mitochondrial calcium import and metabolism in
adipocytes. Cell Rep. 38:1102132022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dickstein K, Cohen-Solal A, Filippatos G,
McMurray JJ, Ponikowski P, Poole-Wilson PA, Strömberg A, van
Veldhuisen DJ, Atar D, Hoes AW, et al: ESC guidelines for the
diagnosis and treatment of acute and chronic heart failure 2008:
The Task Force for the diagnosis and treatment of acute and chronic
heart failure 2008 of the European society of cardiology. developed
in collaboration with the Heart Failure Association of the ESC
(HFA) and endorsed by the European society of intensive care
medicine (ESICM). Eur J Heart Fail. 10:933–989. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hao G, Wang X, Chen Z, Zhang L, Zhang Y,
Wei B, Zheng C, Kang Y, Jiang L, Zhu Z, et al: Prevalence of heart
failure and left ventricular dysfunction in China: The China
hypertension survey, 2012–2015. Eur J Heart Fail. 21:1329–1337.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang P, Qin H, Li Y, Xiao A, Zheng E, Zeng
H, Su C, Luo X, Lu Q, Liao M, et al: CD36-mediated metabolic
crosstalk between tumor cells and macrophages affects liver
metastasis. Nat Commun. 13:57822022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Olzmann JA and Carvalho P: Dynamics and
functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rao MJ and Goodman JM: Seipin: Harvesting
fat and keeping adipocytes healthy. Trends Cell Biol. 31:912–923.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guyard V, Monteiro-Cardoso VF, Omrane M,
Sauvanet C, Houcine A, Boulogne C, Ben Mbarek K, Vitale N, Faklaris
O, El Khallouki N, et al: ORP5 and ORP8 orchestrate lipid droplet
biogenesis and maintenance at ER-mitochondria contact sites. J Cell
Biol. 221:e2021121072022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bock FJ and Tait SWG: Mitochondria as
multifaceted regulators of cell death. Nat Rev Mol Cell Biol.
21:85–100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Javadov S, Kozlov AV and Camara AKS:
Mitochondria in health and diseases. Cells. 9:11772020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kummer E and Ban N: Mechanisms and
regulation of protein synthesis in mitochondria. Nat Rev Mol Cell
Biol. 22:307–325. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang P, Konja D, Zhang Y and Wang Y:
Communications between mitochondria and endoplasmic reticulum in
the regulation of metabolic homeostasis. Cells. 10:21952021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen H, Detmer SA, Ewald AJ, Griffin EE,
Fraser SE and Chan DC: Mitofusins Mfn1 and Mfn2 coordinately
regulate mitochondrial fusion and are essential for embryonic
development. J Cell Biol. 160:189–200. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chinese Cardiovascular Health and Disease
Reporting Group, . Chinese cardiovascular health and disease report
2019 summary. Chin J Circ. 35:833–854. 2020.
|
|
35
|
Huang J: Epidemiological characteristics
and prevention strategies of heart failure in China. Chin Heart
Rhythm Electron J. 3:2–3. 2015.
|
|
36
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J
and Liu P: The SIRT3-ATAD3A axis regulates MAM dynamics and
mitochondrial calcium homeostasis in cardiac hypertrophy. Int J
Biol Sci. 20:831–847. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres
S, Fujioka H and Zhu X: The role of Mfn2 in the structure and
function of endoplasmic reticulum-mitochondrial tethering in vivo.
J Cell Sci. 134:jcs2534432021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Atakpa-Adaji P, Ivanova A, Kujawa K and
Taylor CW: IP3R at ER-mitochondrial contact sites: Beyond the
IP3R-GRP75-VDAC1 Ca2+ funnel. Contact. 2:93–101. 2023.PubMed/NCBI
|
|
39
|
Liu Y, Ma X, Fujioka H, Liu J, Chen S and
Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria
association through interaction with IP3R3-Grp75-VDAC1. Proc Natl
Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ma J, Liu L, Song L, Liu J, Yang L, Chen
Q, Wu JY and Zhu L: Integration of FUNDC1-associated mitochondrial
protein import and mitochondrial quality control contributes to
TDP-43 degradation. Cell Death Dis. 14:7352023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mao H, Chen W, Chen L and Li L: Potential
role of mitochondria-associated endoplasmic reticulum membrane
proteins in diseases. Biochem Pharmacol. 199:1150112022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Andreadou I, Schulz R, Papapetropoulos A,
Turan B, Ytrehus K, Ferdinandy P, Daiber A and Di Lisa F: The role
of mitochondrial reactive oxygen species, NO and H2 S in
ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med.
24:6510–6522. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Beretta M, Santos CX, Molenaar C, Hafstad
AD, Miller CC, Revazian A, Betteridge K, Schröder K,
Streckfuß-Bömeke K, Doroshow JH, et al: Nox4 regulates
InsP3 receptor-dependent Ca2+ release into
mitochondria to promote cell survival. EMBO J. 39:e1035302020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wei X, Wei X, Lu Z, Li L, Hu Y, Sun F,
Jiang Y, Ma H, Zheng H, Yang G, et al: Activation of TRPV1 channel
antagonizes diabetic nephropathy through inhibiting endoplasmic
reticulum-mitochondria contact in podocytes. Metabolism.
105:1541822020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li Y, Huang D, Jia L, Shangguan F, Gong S,
Lan L, Song Z, Xu J, Yan C, Chen T, et al: LonP1 links
mitochondria-ER interaction to regulate heart function. Research
(Wash D C). 6:01752023.PubMed/NCBI
|
|
46
|
Marchi S, Corricelli M, Branchini A, Vitto
VAM, Missiroli S, Morciano G, Perrone M, Ferrarese M, Giorgi C,
Pinotti M, et al: Akt-mediated phosphorylation of MICU1 regulates
mitochondrial Ca2+ levels and tumor growth. EMBO J.
38:e994352019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Courchet J, Lewis TL Jr and Polleux F:
MFF-dependent mitochondrial fission regulates presynaptic release
and axon branching by limiting axonal mitochondria size. Nat
Commun. 9:49162018.
|
|
48
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L
and Gao Y: The MAMs structure and its role in cell death. Cells.
10:6572021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sun Z and Feng H: Effects of
mitochondria-associated endoplasmic reticulum membrane on
mitochondrial function. Chin J Nat. 45:127–138. 2023.
|
|
50
|
Rieusset J: Mitochondria-associated
membranes (MAMs): An emerging platform connecting energy and immune
sensing to metabolic flexibility. Biochem Biophys Res Commun.
500:35–44. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lan B, He Y, Sun H, Zheng X, Gao Y and Li
N: The roles of mitochondria-associated membranes in mitochondrial
quality control under endoplasmic reticulum stress. Life Sci.
231:1165872019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gao P, Yang M and Sun L:
Mitochondria-associated endoplasmic reticulum (MAM) calcium
transport and regulatory proteins mediate mitochondrial calcium
homeostasis. Chin J Cell Biol. 40:585–593. 2018.(In Chinese).
|
|
53
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C,
Barkat MQ, Cai J, Zhu H, Zeng LH and Wu X: Control of
mitochondria-associated endoplasmic reticulum membranes by protein
S-palmitoylation: Novel therapeutic targets for neurodegenerative
diseases. Ageing Res Rev. 87:1019202023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Xian H, Yang Q, Xiao L, Shen HM and Liou
YC: Author Correction: STX17 dynamically regulated by Fis1 induces
mitophagy via hierarchical macroautophagic mechanism. Nat Commun.
12:67822021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Zhao X, Xie W and Zhang Y:
Research progress of mitochondria-associated endoplasmic reticulum
membranes (MAMs) in aging-related cardiovascular diseases. Acta
Physiologica Sinica. 75:799–816. 2023.(In Chinese). PubMed/NCBI
|
|
56
|
Jia GH, Hill MA and Sowers JR: Diabetic
cardiomyopathy: An update of mechanisms contributing to this
clinical entity. Circ Res. 122:624–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhou Y and Tang Y: The pathogenesis of
diabetic cardiomyopathy and the effect of glucagon-like brain 1
receptor agonists on it. Chin J Cardiovasc Dis. 51:440–442.
2023.(In Chinese).
|
|
58
|
Kannel WB, Hjortland M and Castelli WP:
Role of diabetes in congestive heart failure: The Framingham study.
Am J Cardiol. 34:29–34. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G
and Gang X: Current advances in the study of diabetic
cardiomyopathy: From clinicopathological features to molecular
therapeutics (Review). Mol Med Rep. 20:2051–2062. 2019.PubMed/NCBI
|
|
60
|
Minciună IA, Hilda Orășan O, Minciună I,
Lazar AL, Sitar-Tăut AV, Oltean M, Tomoaia R, Puiu M, Sitar-Tăut
DA, Pop D and Cozma A: Assessment of subclinical diabetic
cardiomyopathy by speckle - tracking imaging. Eur J Clin Invest.
51:e134752021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA,
Keller BB and Cai L: Mechanisms of diabetic cardiomyopathy and
potential therapeutic strategies: Preclinical and clinical
evidence. Nat Rev Cardiol. 17:585–607. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chong CR, Clarke K and Levelt E: Metabolic
remodeling in diabetic cardiomyopathy. Cardiovasc Res. 113:422–430.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Opie LH and Knuuti J: The adrenergic-fatty
acid load in heart failure. J Am Coll Cardiol. 54:1637–1646. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kolwicz SC Jr, Purohit S and Tian R:
Cardiac metabolism and its interactions with contraction, growth,
and survival of cardiomyocytes. Circ Res. 113:603–616. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Herrero P, Peterson LR, McGill JB, Matthew
S, Lesniak D, Dence C and Gropler RJ: Increased myocardial fatty
acid metabolism in patients with type 1 diabetes mellitus. J Am
Coll Cardiol. 47:598–604. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tubbs E, Chanon S, Robert M, Bendridi N,
Bidaux G, Chauvin MA, Ji-Cao J, Durand C, Gauvrit-Ramette D, Vidal
H, et al: Disruption of mitochondria-associated endoplasmic
reticulum membrane (MAM) integrity contributes to muscle insulin
resistance in mice and humans. Diabetes. 67:636–650. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Thivolet C, Vial G, Cassel R, Rieusset J
and Madec AM: Reduction of endoplasmic reticulum-mitochondria
interactions in beta cells from patients with type 2 diabetes. PLoS
One. 12:e01820272017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P,
Mao X, Huang K, Xie Z and Zou MH: Hyperglycemia-driven inhibition
of AMP-activated protein kinase α2 induces diabetic cardiomyopathy
by promoting mitochondria-associated endoplasmic reticulum
membranes in vivo. Circulation. 139:1913–1936. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang C, Dai X, Wu S, Xu W, Song P, Huang K
and Zou MH: FUNDC1-dependent mitochondria-associated endoplasmic
reticulum membranes are involved in angiogenesis and
neoangiogenesis. Nat Commun. 12:26162021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xie Z, Lau K, Eby B, Lozano P, He C,
Pennington B, Li H, Rathi S, Dong Y, Tian R, et al: Improvement of
cardiac functions by chronic metformin treatment is associated with
enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes.
60:1770–1778. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ding M, Feng N, Tang D, Feng J, Li Z, Jia
M, Liu Z, Gu X, Wang Y, Fu F and Pei J: Melatonin prevents
Drp1-mediated mitochondrial fission in diabetic hearts through
SIRT1-PGC1α pathway. J Pineal Res. 65:e124912018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li C, Li L, Yang M, Zeng L and Sun L:
PACS-2: A key regulator of mitochondria-associated membranes
(MAMs). Pharmacol Res. 160:1050802020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Meng M, Jiang Y, Wang Y, Huo R, Ma N, Shen
X and Chang G: β-carotene targets IP3R/GRP75/VDAC1-MCU axis to
renovate LPS-induced mitochondrial oxidative damage by regulating
STIM1. Free Radic Biol Med. 205:25–46. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chang Y, Wang C, Zhu J, Zheng S, Sun S, Wu
Y, Jiang X, Li L, Ma R and Li G: SIRT3 ameliorates
diabetes-associated cognitive dysfunction via regulating
mitochondria-associated ER membranes. J Transl Med. 21:4942023.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Salin Raj P, Nair A, Preetha Rani MR,
Rajankutty K, Ranjith S and Raghu KG: Ferulic acid attenuates high
glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1
pathway activating proapoptotic proteins and ameliorates
cardiomyopathy in diabetic rats. Int J Cardiol. 372:101–109. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang
Y, Qian Z, Hou X and Zou J: Bmal1 downregulation leads to diabetic
cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial
Ca2+ overload. Redox Biol. 64:1027882023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Herrington W, Lacey B, Sherliker P,
Armitage J and Lewington S: Epidemiology of atherosclerosis and the
potential to reduce the global burden of atherothrombotic disease.
Circ Res. 118:535–546. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cheng J, Huang H, Chen Y and Wu R:
Nanomedicine for diagnosis and treatment of atherosclerosis. Adv
Sci (Weinh). 10:e23042942023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Newman CB, Preiss D, Tobert JA, Jacobson
TA, Page RL II, Goldstein LB, Chin C, Tannock LR, Miller M,
Raghuveer G, et al: Statin safety and Associated adverse events: A
scientific statement from the American heart association.
Arterioscler Thromb Vasc Biol. 39:e38–e81. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han
X, Tang D and Chen R: Research progress on the relationship between
atherosclerosis and inflammation. Biomolecules. 8:802018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sanchez-Rodriguez E, Egea-Zorrilla A,
Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L
and Abadia-Molina F: The gut microbiota and its implication in the
development of atherosclerosis and related cardiovascular diseases.
Nutrients. 12:6052020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Moulis M, Grousset E, Faccini J, Richetin
K, Thomas G and Vindis C: The multifunctional sorting protein
PACS-2 controls mitophagosome formation in human vascular smooth
muscle cells through mitochondria-ER contact sites. Cells.
8:6382019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang Z, Sun W, Zhang K, Ke X and Wang Z:
New insights into the relationship of mitochondrial metabolism and
atherosclerosis. Cell Signal. 127:1115802025. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen C, Dong X, Zhang W, Chang X and Gao
W: Dialogue between mitochondria and endoplasmic
reticulum-potential therapeutic targets for age-related
cardiovascular diseases. Front Pharmacol. 15:13892022024.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen X, Yang Y, Zhou Z, Yu H, Zhang S,
Huang S, Wei Z, Ren K and Jin Y: Unraveling the complex interplay
between mitochondria-associated membranes (MAMs) and cardiovascular
Inflammation: Molecular mechanisms and therapeutic implications.
Int Immunopharmacol. 141:1129302024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Baik SH, Ramanujan VK, Becker C, Fett S,
Underhill DM and Wolf AJ: Hexokinase dissociation from mitochondria
promotes oligomerization of VDAC that facilitates NLRP3
inflammasome assembly and activation. Sci Immunol. 8:eade76522023.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang WB, Feng SY, Xiao ZX, Qi YF, Zeng ZF
and Chen H: Down-regulating of MFN2 promotes vascular calcification
via regulating RAS-RAF-ERK1/2 pathway. Int J Cardiol. 366:11–18.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kong Z, Sun P, Lu Y, Yang Y, Min DY, Zheng
SC, Yang Y, Zhang Z, Yang GL and Jiang JW: Yi Mai granule improve
energy supply of endothelial cells in atherosclerosis via
miRNA-125a-5p regulating mitochondrial autophagy through
Pink1-Mfn2-Parkin pathway. J Ethnopharmacol. 319:1171142024.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Feng S, Gao L, Zhang D, Tian X, Kong L,
Shi H, Wu L, Huang Z, Du B, Liang C, et al: MiR-93 regulates
vascular smooth muscle cell proliferation, and neointimal formation
through targeting Mfn2. Int J Biol Sci. 15:2615–2626. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang Y, Li JJ, Xu R, Wang XP, Zhao XY,
Fang Y, Chen YP, Ma S, Di XH, Wu W, et al: Nogo-B mediates
endothelial oxidative stress and inflammation to promote coronary
atherosclerosis in pressure-overloaded mouse hearts. Redox Biol.
68:1029442023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yoon SS, Kwon HW, Shin JH, Rhee MH, Park
CE and Lee DH: Anti-thrombotic effects of artesunate through
regulation of cAMP and PI3K/MAPK pathway on human platelets. Int J
Mol Sci. 23:15862022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang ZY, Cheng J, Liu B, Xie F, Li CL,
Qiao W, Lu QH, Wang Y and Zhang MX: Protein deglycase DJ-1
deficiency induces phenotypic switching in vascular smooth muscle
cells and exacerbates atherosclerotic plaque instability. J Cell
Mol Med. 25:2816–2827. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li B, Liu P and Liu C: Research progress
on the relationship between mitochondrial dysfunction and heart
failure. Transformative Med. 9:126–129. 2020.
|
|
94
|
Zhou H, Zhu P, Wang J, Toan S and Ren J:
DNA-PKcs promotes alcohol-related liver disease by activating
Drp1-related mitochondrial fission and repressing FUNDC1-required
mitophagy. Signal Transduct Target Ther. 4:562019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang JP, Chi RF, Liu J, Deng YZ, Han XB,
Qin FZ and Li B: The role of endogenous reactive oxygen species in
cardiac myocyte autophagy. Physiol Res. 67:31–40. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xu X, Su YL, Shi JY, Lu Q and Chen C:
MicroRNA-17-5p promotes cardiac hypertrophy by targeting Mfn2 to
inhibit autophagy. Cardiovasc Toxicol. 21:759–771. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hu Q, Zhang H, Gutiérrez Cortés N, Wu D,
Wang P, Zhang J, Mattison JA, Smith E, Bettcher LF, Wang M, et al:
Increased Drp1 acetylation by lipid overload induces cardiomyocyte
death and heart dysfunction. Circ Res. 126:456–470. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dong X, Chen Z, Jiang J, Lin Z, Guan Z, Li
X, Wang L, Fang H and Xian S: Effect and mechanism of Nuanxinkang
on cardiac function in mice with heart failure based on
mitochondrial dynamics. CJTCMP. 37:3538–3542. 2022.(In
Chinese).
|
|
99
|
Jiang X, Li G, Zhu B, Yang J, Cui S, Jiang
R and Wang B: p20BAP31 induces autophagy in colorectal cancer cells
by promoting PERK-Mediated ER stress. Int J Mol Sci. 25:51012024.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q,
Liu Y, Ren G and Ma X: Mitochondria-associated endoplasmic
reticulum membranes as a therapeutic target for cardiovascular
diseases. Front Pharmacol. 15:13983812024. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang XL, Feng ST, Wang YT, Yuan YH, Li ZP,
Chen NH, Wang ZZ and Zhang Y: Mitophagy, a form of selective
autophagy, plays an essential role in mitochondrial dynamics of
Parkinson's disease. Cell Mol Neurobiol. 42:1321–1339. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gong Y, Luo Y, Liu S, Ma J, Liu F, Fang Y,
Cao F, Wang L, Pei Z and Ren J: Pentacyclic triterpene oleanolic
acid protects against cardiac aging through regulation of mitophagy
and mitochondrial integrity. Biochim Biophys Acta Mol Basis Dis.
1868:1664022022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li W, Yin L, Sun X, Wu J, Dong Z, Hu K,
Sun A and Ge J: Alpha-lipoic acid protects against pressure
overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1
signaling. Cell Death Dis. 11:5992020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu
S, Ren J and Chen Y: NR4A1 aggravates the cardiac microvascular
ischemia reperfusion injury through suppressing FUNDC1-mediated
mitophagy and promoting Mff-required mitochondrial fission by CK2α.
Basic Res Cardiol. 113:232018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhao Y, Jia WW, Ren S, Xiao W, Li GW, Jin
L and Lin Y: Difluoromethylornithine attenuates
isoproterenol-induced cardiac hypertrophy by regulating apoptosis,
autophagy and the mitochondria-associated membranes pathway. Exp
Ther Med. 22:8702021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Luan Y, Guo G, Luan Y, Yang Y and Yuan R:
Single-cell transcriptional profiling of hearts during cardiac
hypertrophy reveals the role of MAMs in cardiomyocyte subtype
switching. Sci Rep. 13:83392023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
GBD 2021 Causes of Death Collaborators, .
Global burden of 288 causes of death and life expectancy
decomposition in 204 countries and territories and 811 subnational
locations, 1990–2021: A systematic analysis for the Global Burden
of Disease Study 2021. Lancet. 403:2100–2132. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Khan MA, Hashim MJ, Mustafa H, Baniyas MY,
Al Suwaidi SKBM, AlKatheeri R, Alblooshi FMK, Almatrooshi MEAH,
Alzaabi MEH, Al Darmaki RS and Lootah SNAH: Global epidemiology of
ischemic heart disease: Results from the global burden of disease
study. Cureus. 12:e93492020.PubMed/NCBI
|
|
109
|
Sánchez-Hernández CD, Torres-Alarcón LA,
González-Cortés A and Peón AN: Ischemia/reperfusion injury:
Pathophysiology, current clinical management, and potential
preventive approaches. Mediators Inflamm. 2020:84053702020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wu Q, Xu R, Zhang K, Sun R, Yang M, Li K,
Liu H, Xue Y, Xu H and Guo Y: Characterization of early myocardial
inflammation in ischemia-reperfusion injury. Front Immunol.
13:10817192023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Huang KY, Que JQ, Hu ZS, Yu YW, Zhou YY,
Wang L, Xue YJ, Ji KT and Zhang XM: Metformin suppresses
inflammation and apoptosis of myocardiocytes by inhibiting
autophagy in a model of ischemia-reperfusion injury. Int J Biol
Sci. 16:2559–2579. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Gong Y, Lin J, Ma Z, Yu M, Wang M, Lai D
and Fu G: Mitochondria-associated membrane-modulated
Ca2+ transfer: A potential treatment target in cardiac
ischemia reperfusion injury and heart failure. Life Sci.
278:1195112021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gomez L, Thiebaut PA, Paillard M, Ducreux
S, Abrial M, Crola Da Silva C, Durand A, Alam MR, Van Coppenolle F,
Sheu SS and Ovize M: The SR/ER-mitochondria calcium crosstalk is
regulated by GSK3β during reperfusion injury. Cell Death Differ.
22:18902015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kirshenbaum LA, Dhingra R, Bravo-Sagua R
and Lavandero S: IAPH1-MFN2 interaction decreases the endoplasmic
reticulum-mitochondrial distance and promotes cardiac injury
following myocardial ischemia. Nat Commun. 15:14692024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ponnalagu D, Hamilton S, Sanghvi S, Antelo
D, Schwieterman N, Hansra I, Xu X, Gao E, Edwards JC, Bansal SS, et
al: CLIC4 localizes to mitochondrial-associated membranes and
mediates cardioprotection. Sci Adv. 8:eabo12442022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J,
Cao T, Wang K, Shi N, Zhou H, et al: Empagliflozin attenuates
cardiac microvascular ischemia/reperfusion through activating the
AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 63:1027382022.
View Article : Google Scholar : PubMed/NCBI
|