
Role of m5C methylation in digestive system tumors (Review)
- Authors:
- Li Zhang
- Jianbo Yuan
- Shun Yao
- Guorong Wen
- Jiaxing An
- Hai Jin
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P.R. China - Published online on: March 28, 2025 https://doi.org/10.3892/mmr.2025.13507
- Article Number: 142
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Cao W, Chen HD, Yu YW, Li N and Chen WQ: Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang X, Liu T and Liang G: Emerging roles of N6-methyladenosine demethylases and its interaction with environmental toxicants in digestive system cancers. Cancer Manag Res. 13:7101–7114. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y: Modern epigenetics methods in biological research. Methods. 187:104–113. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Hajkova P and Ecker JR: Dynamic DNA methylation: In the right place at the right time. Science. 361:1336–1340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA and Putlyaeva LV: Studying chromatin epigenetics with fluorescence microscopy. Int J Mol Sci. 23:89882022. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hussain S: The emerging roles of cytosine-5 methylation in mRNAs. Trends Genet. 37:498–500. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dubin DT and Stollar V: Methylation of sindbis virus ‘26S’ messenger RNA. Biochem Biophys Res Commun. 66:1373–1379. 1975. View Article : Google Scholar : PubMed/NCBI | |
Motorin Y, Lyko F and Helm M: 5-methylcytosine in RNA: Detection, enzymatic formation and biological functions. Nucleic Acids Res. 38:1415–1430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Song B, Ma J, Song Y, Zhang SY, Tang Y, Wu X, Wei Z, Chen K, Su J, et al: Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Comput Struct Biotechnol J. 18:1587–1604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao WS, et al: 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27:606–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Song J, Yuan W, Zhang W and Sun Z: Roles of RNA methylation on tumor immunity and clinical implications. Front Immunol. 12:6415072021. View Article : Google Scholar : PubMed/NCBI | |
Zou F, Tu R, Duan B, Yang Z, Ping Z, Song X, Chen S, Price A, Li H, Scott A, et al: Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Proc Natl Acad Sci USA. 117:3603–3609. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su J, Wu G, Ye Y, Zhang J, Zeng L, Huang X, Zheng Y, Bai R, Zhuang L, Li M, et al: NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene. 40:5814–5828. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, Sun X, Chen Z, Shi X, Hu Y, et al: NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 12:8422021. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Xue S, Zhang M, Xu H, Hu X, Chen S, Liu Y, Guo M and Cui H: Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene. 39:6906–6919. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Liu J, Huang Z, Huang W and Lv J: FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in gastric cancer cells. Hum Cell. 34:1755–1764. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li J, Luo M, Zhou C, Shi X, Yang W, Lu Z, Chen Z, Sun N and He J: Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett. 430:57–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mei L, Shen C, Miao R, Wang JZ, Cao MD, Zhang YS, Shi LH, Zhao GH, Wang MH, Wu LS and Wei JF: RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57Kip2 by an m5C-dependent manner. Cell Death Dis. 11:2702020. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Wu LY, Liu HR, Huang Y, Qi Q, Zhong R, Zhu L, Gao CF, Zhou L, Yu J and Wu HG: NSUN5 promotes progression and predicts poor prognosis in hepatocellular carcinoma. Oncol Lett. 24:4392022. View Article : Google Scholar : PubMed/NCBI | |
He Y, Yu X, Li J, Zhang Q, Zheng Q and Guo W: Role of m5C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma. Am J Trans Res. 12:912–922. 2020. | |
Xue C, Gu X, Zheng Q, Shi Q, Yuan X, Su Y, Jia J, Jiang J, Lu J and Li L: ALYREF mediates RNA m5C modification to promote hepatocellular carcinoma progression. Signal Transduct Target Ther. 8:1302023. View Article : Google Scholar : PubMed/NCBI | |
Chen SY, Chen KL, Ding LY, Yu CH, Wu HY, Chou YY, Chang CJ, Chang CH, Wu YN, Wu SR, et al: RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene. 41:3162–3176. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Liang X, Wang H, Guo M, Shen H, Shi Y, Liu Q, Sun Y, Yang L and Zhan M: The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine. 63:1031952021. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wang Z, Zhu Y, Zhu Q, Yang Y, Jin Y, Zhang F, Jiang L, Ye Y, Li H, et al: NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 110:3510–3519. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Zhu M, Li W, Zhou Z and Wan X: m5C and m6A modification of long noncoding NKILA accelerates cholangiocarcinoma progression via the miR-582-3p-YAP1 axis. Liver Int. 42:1144–1157. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Huang Z, Niu S, Ming L, Jiang H, Gu L, Huang W, Xie J, He Y and Zhang C: 5-Methylcytosine (m5C) modification in peripheral blood immune cells is a novel non-invasive biomarker for colorectal cancer diagnosis. Front Immunol. 13:9679212022. View Article : Google Scholar : PubMed/NCBI | |
Zin'kovskaia GG, Berdyshev GD and Vaniushin BF: Tissue-specific decrease and change in the character of DNA methylation in cattle with aging. Biokhimiia. 43:1883–1892. 1978.(In Russian). PubMed/NCBI | |
Deng X, Qing Y, Horne D, Huang H and Chen J: The roles and implications of RNA m6A modification in cancer. Nat Rev Clin Oncol. 20:507–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Rauch S, Dai Q, Cui X, Zhang Z, Nachtergaele S, Sepich C, He C and Dickinson BC: Evolution of a reverse transcriptase to map N1-methyladenosine in human messenger RNA. Nat Methods. 16:1281–1288. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang H and Wang H: N1-methyladenosine modification in cancer biology: Current status and future perspectives. Comput Struct Biotechnol J. 20:6578–6585. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Lin H, Miao L and He J: Role of N7-methylguanosine (m7G) in cancer. Trends Cell Biol. 32:819–824. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, Murat P, Mach P, Brandi R, Robson SC, et al: METTL1 Promotes let-7 MicroRNA processing via m7G Methylation. Mol Cell. 74:1278–1290. e92019. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW and Gregory RI: Mettl1/Wdr4-Mediated m7G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 71:244–255. e52018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, Zhang Z and Zhang B: The role of RNA m5C modification in cancer metastasis. Int J Biol Sci. 17:3369–3380. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z and Chen X: 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 20:2142022. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Ding L, Lin Y, Luo W, Xu Z, Li W, Lu Y, Zhu Z, Lu Z, Li F, et al: The quiet giant: Identification, effectors, molecular mechanism, physiological and pathological function in mRNA 5-methylcytosine modification. Int J Biol Sci. 20:6241–6254. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nombela P, Miguel-Lopez B and Blanco S: The role of m6A, m5C and ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer. 20:182021. View Article : Google Scholar : PubMed/NCBI | |
Huang ZX, Li J, Xiong QP, Li H, Wang ED and Liu RJ: Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 49:13045–13061. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y, Qin M and Dai H: New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol. 18:2531–2545. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bohnsack KE, Hobartner C and Bohnsack MT: Eukaryotic 5-methylcytosine (m5C) RNA Methyltransferases: Mechanisms, cellular functions, and links to disease. Genes (Basel). 10:1022019. View Article : Google Scholar : PubMed/NCBI | |
Kong W, Biswas A, Zhou D, Fiches G, Fujinaga K, Santoso N and Zhu J: Nucleolar protein NOP2/NSUN1 suppresses HIV-1 transcription and promotes viral latency by competing with Tat for TAR binding and methylation. PLoS Pathog. 16:e10084302020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, Chen RX, Wei WS, Liu Y, Gao CC, et al: 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 21:978–990. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hong B, Brockenbrough JS, Wu P and Aris JP: Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol Cell Biol. 17:378–388. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T and Tatsuka M: Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell. 18:1107–1117. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xing J, Yi J, Cai X, Tang H, Liu Z, Zhang X, Martindale JL, Yang X, Jiang B, Gorospe M and Wang W: NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation. Mol Cell Biol. 35:4043–4052. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z, Yang Y, Ouyang J and Cui H: Effects of NSUN2 deficiency on the mRNA 5-methylcytosine modification and gene expression profile in HEK293 cells. Epigenomics. 11:439–453. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sajini AA, Choudhury NR, Wagner RE, Bornelov S, Selmi T, Spanos C, Dietmann S, Rappsilber J, Michlewski G and Frye M: Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 10:25502019. View Article : Google Scholar : PubMed/NCBI | |
Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai Z, Lawrenson K, Lindstrom S, Ramus SJ, Thompson DJ, et al: Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new susceptibility loci shared by at least two cancer types. Cancer Discov. 6:1052–1067. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li H, Jiang H, Huang Z, Chen Z and Chen N: Prognostic value of an m5C RNA methylation regulator-related signature for clear cell renal cell carcinoma. Cancer Manag Res. 13:6673–6687. 2021. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Hirata S, Sato S, Koga S, Fujii M, Qi G, Ogawa I, Takata T, Shimamoto F and Tatsuka M: Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol. 31:660–671. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liao H, Gaur A, McConie H, Shekar A, Wang K, Chang JT, Breton G and Denicourt C: Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 50:10695–10716. 2022. View Article : Google Scholar : PubMed/NCBI | |
Delaunay S, Pascual G, Feng B, Klann K, Behm M, Hotz-Wagenblatt A, Richter K, Zaoui K, Herpel E, Münch C, et al: Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature. 607:593–603. 2022. View Article : Google Scholar : PubMed/NCBI | |
Paramasivam A, Meena AK, Venkatapathi C, Pitceathly RDS and Thangaraj K: Novel biallelic NSUN3 variants cause early-onset mitochondrial encephalomyopathy and seizures. J Mol Neurosci. 70:1962–1965. 2020. View Article : Google Scholar : PubMed/NCBI | |
Metodiev MD, Spahr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG and Ruzzenente B: NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10:e10041102014. View Article : Google Scholar : PubMed/NCBI | |
Heissenberger C, Liendl L, Nagelreiter F, Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S, Kreil DP, et al: Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res. 47:11807–11825. 2019. View Article : Google Scholar : PubMed/NCBI | |
Selmi T, Hussain S, Dietmann S, Heiß M, Borland K, Flad S, Carter JM, Dennison R, Huang YL, Kellner S, et al: Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 49:1006–1022. 2021. View Article : Google Scholar : PubMed/NCBI | |
Haag S, Warda AS, Kretschmer J, Gunnigmann MA, Hobartner C and Bohnsack MT: NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA. 21:1532–1543. 2015. View Article : Google Scholar : PubMed/NCBI | |
Aguilo F, Li S, Balasubramaniyan N, Sancho A, Benko S, Zhang F, Vashisht A, Rengasamy M, Andino B, Chen CH, et al: Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Rep. 14:479–492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khosronezhad N, Hosseinzadeh Colagar A and Mortazavi SM: The Nsun7 (A11337)-deletion mutation, causes reduction of its protein rate and associated with sperm motility defect in infertile men. J Assist Reprod Genet. 32:807–815. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sato K, Tahata K and Akimoto K: Five genes associated with survival in patients with lower-grade gliomas were identified by information-theoretical analysis. Anticancer Res. 40:2777–2785. 2020. View Article : Google Scholar : PubMed/NCBI | |
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333:1303–1307. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L and Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324:930–935. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C and Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 333:1300–1303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao LY, Song J, Liu Y, Song CX and Yi C: Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shen H, Ontiveros RJ, Owens MC, Liu MY, Ghanty U, Kohli RM and Liu KF: TET-mediated 5-methylcytosine oxidation in tRNA promotes translation. J Biol Chem. 296:1000872021. View Article : Google Scholar : PubMed/NCBI | |
Yin X and Xu Y: Structure and function of TET enzymes. Adv Exp Med Biol. 945:275–302. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lyabin DN, Eliseeva IA and Ovchinnikov LP: YB-1 protein: Functions and regulation. Wiley Interdiscip Rev RNA. 5:95–110. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Lee TA, Ra EA, Lee E, Choi Hj, Lee S and Park B: Differential control of interleukin-6 mRNA levels by cellular distribution of YB-1. PLoS One. 9:e1127542014. View Article : Google Scholar : PubMed/NCBI | |
Coles LS, Bartley MA, Bert A, Hunter J, Polyak S, Diamond P, Vadas MA and Goodall GJ: A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur J Biochem. 271:648–660. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bates M, Boland A, McDermott N and Marignol L: YB-1: The key to personalised prostate cancer management? Cancer Lett. 490:66–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, Yu H, Yuan WB, Li PC, Tao J, et al: The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 41:560–575. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, Sun BF, Li A, Xia J, Chen J, et al: RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 75:1188–1202. e112019. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Chai P, Jia R and Fan X: Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer. 19:782020. View Article : Google Scholar : PubMed/NCBI | |
Trixl L and Lusser A: The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 10:e15102019. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang H, Zhu X, Yadav T, Ouyang J, Truesdell SS, Tan J, Wang Y, Duan M, Wei L, et al: m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun. 11:28342020. View Article : Google Scholar : PubMed/NCBI | |
Xue S, Xu H, Sun Z, Shen H, Chen S, Ouyang J, Zhou Q, Hu X and Cui H: Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem Biophys Res Commun. 520:60–66. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xue C, Zhao Y and Li L: Advances in RNA cytosine-5 methylation: Detection, regulatory mechanisms, biological functions and links to cancer. Biomark Res. 8:432020. View Article : Google Scholar : PubMed/NCBI | |
Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: the global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658. e22022. View Article : Google Scholar : PubMed/NCBI | |
Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P and Cunningham D: Oesophageal cancer. Nat Rev Dis Primers. 3:170482017. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Chen Y, Zhang T, Cui G, Wang W, Zhang G, Li J, Zhang Y, Wang Y, Zou Y, et al: YBX1 promotes esophageal squamous cell carcinoma progression via m5C-dependent SMOX mRNA stabilization. Adv Sci (Weinh). 11:e23023792024. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiang S, Ma Y, Shen J, Zhao Y, Wu X, Li M, Yang X, Kaboli PJ, Du F, Ji H, et al: m5C RNA methylation primarily affects the ErbB and PI3K-Akt signaling pathways in gastrointestinal cancer. Front Mol Biosci. 7:5993402020. View Article : Google Scholar : PubMed/NCBI | |
Zhang E, He X, Yin D, Han L, Qiu M, Xu T, Xia R, Xu L, Yin R and De W: Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis. 7:e21092016. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Huang H, Lv J, Chen Z, Lu C, Jiang T, Xu P, Li Y, Wang S, Li B, et al: m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis. 14:5202023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Xia Y, Jiang T, Chen Z, Shen Y, Lin J, Xie L, Gu C, Lv J, Lu C, et al: Long noncoding RNA DIAPH2-AS1 promotes neural invasion of gastric cancer via stabilizing NSUN2 to enhance the m5C modification of NTN1. Cell Death Dis. 14:2602023. View Article : Google Scholar : PubMed/NCBI | |
Song D, An K, Zhai W, Feng L, Xu Y, Sun R, Wang Y, Yang YG, Kan Q and Tian X: NSUN2-mediated mRNA m5C modification regulates the progression of hepatocellular carcinoma. Genomics Proteomics Bioinformatics. 21:823–833. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sharma A, Sharma KL, Gupta A, Yadav A and Kumar A: Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol. 23:3978–3998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Misra S, Chaturvedi A, Misra NC and Sharma ID: Carcinoma of the gallbladder. Lancet Oncol. 4:167–176. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, Liu C, Shen B, Wang XA, Wu W, et al: Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet. 46:872–876. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maurya SK, Tewari M, Mishra RR and Shukla HS: Genetic aberrations in gallbladder cancer. Surg Oncol. 21:37–43. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bai D, Zhang J, Xiao W and Zheng X: Regulation of the HDM2-p53 pathway by ribosomal protein L6 in response to ribosomal stress. Nucleic Acids Res. 42:1799–1811. 2014. View Article : Google Scholar : PubMed/NCBI | |
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 17:557–588. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ramirez-Merino N, Aix SP and Cortes-Funes H: Chemotherapy for cholangiocarcinoma: An update. World J Gastrointest Oncol. 5:171–176. 2013. View Article : Google Scholar : PubMed/NCBI | |
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, et al: Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 13:261–280. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li Z, Chen X and Zhang S: Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B. 11:340–354. 2021. View Article : Google Scholar : PubMed/NCBI | |
GBD 2017 Pancreatic Cancer Collaborators, . The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 4:934–947. 2019. View Article : Google Scholar : PubMed/NCBI | |
McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG and McCain RS: Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 24:4846–4861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Liu L, Li J, Chen Y, Wang Y, Zhang Y, Dong Z, Xue W, Sun R and Cui G: NSUN2 stimulates tumor progression via enhancing TIAM2 mRNA stability in pancreatic cancer. Cell Death Discov. 9:2192023. View Article : Google Scholar : PubMed/NCBI | |
Chen JS, Su IJ, Leu YW, Young KC and Sun HS: Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer. 130:1302–1313. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cooke M, Kreider-Letterman G, Baker MJ, Zhang S, Sullivan NT, Eruslanov E, Abba MC, Goicoechea SM, García-Mata R and Kazanietz MG: FARP1, ARHGEF39, and TIAM2 are essential receptor tyrosine kinase effectors for Rac1-dependent cell motility in human lung adenocarcinoma. Cell Rep. 37:1099052021. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Zhou L, Lu J, Wang Y, Liu C, Zhou W and Guo J: Elevated TIAM2 expression promotes tumor progression and is associated with unfavorable prognosis in pancreatic cancer. Scand J Gastroenterol. 56:59–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, et al: Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 97:1407–1427. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yun D, Yang Z, Zhang S, Yang H, Liu D, Grutzmann R, Pilarsky C and Britzen-Laurent N: An m5C methylation regulator-associated signature predicts prognosis and therapy response in pancreatic cancer. Front Cell Dev Biol. 10:9756842022. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Liu J, Zhao L, Wu P, Chen G, Chen Q, Shen P, Yang T, Fan S, Xiao B and Jiang K: Prognostic risk model and tumor immune environment modulation of m5C-Related LncRNAs in pancreatic ductal adenocarcinoma. Front Immunol. 12:8002682021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang D, Han S, Wang F, Zang J, Xu C and Dong X: Signature of m5C-Related lncRNA for prognostic prediction and immune responses in pancreatic cancer. J Oncol. 2022:74677972022.PubMed/NCBI | |
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI | |
Deheuninck J and Luo K: Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res. 19:47–57. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pan D, Zhu Q and Luo K: SnoN functions as a tumour suppressor by inducing premature senescence. EMBO J. 28:3500–3513. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schaefer M, Hagemann S, Hanna K and Lyko F: Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 69:8127–8132. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Segovia C, San Jose-Eneriz E, Munera-Maravilla E, Martinez-Fernandez M, Garate L, Miranda E, Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, et al: Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med. 25:1073–1081. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, Holland EC and Stephan MT: Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 10:39742019. View Article : Google Scholar : PubMed/NCBI | |
He R, Man C, Huang J, He L, Wang X, Lang Y and Fan Y: Identification of RNA methylation-related lncRNAs signature for predicting hot and cold tumors and prognosis in colon cancer. Front Genet. 13:8709452022. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Hong Y, Zhai X, Deng Y, Hu H, Tian S, Zhang Y, Ren X, Zhao J and Jiang C: m6A and m5C modification of GPX4 facilitates anticancer immunity via STING activation. Cell Death Dis. 14:8092023. View Article : Google Scholar : PubMed/NCBI |