|
1
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ:
Changing profiles of cancer burden worldwide and in China: A
secondary analysis of the global cancer statistics 2020. Chin Med J
(Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang
X, Liu T and Liang G: Emerging roles of N6-methyladenosine
demethylases and its interaction with environmental toxicants in
digestive system cancers. Cancer Manag Res. 13:7101–7114. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li Y: Modern epigenetics methods in
biological research. Methods. 187:104–113. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Luo C, Hajkova P and Ecker JR: Dynamic DNA
methylation: In the right place at the right time. Science.
361:1336–1340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stepanov AI, Besedovskaia ZV, Moshareva
MA, Lukyanov KA and Putlyaeva LV: Studying chromatin epigenetics
with fluorescence microscopy. Int J Mol Sci. 23:89882022.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Roundtree IA, Evans ME, Pan T and He C:
Dynamic RNA modifications in gene expression regulation. Cell.
169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hussain S: The emerging roles of
cytosine-5 methylation in mRNAs. Trends Genet. 37:498–500. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Dubin DT and Stollar V: Methylation of
sindbis virus ‘26S’ messenger RNA. Biochem Biophys Res Commun.
66:1373–1379. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Motorin Y, Lyko F and Helm M:
5-methylcytosine in RNA: Detection, enzymatic formation and
biological functions. Nucleic Acids Res. 38:1415–1430. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu L, Song B, Ma J, Song Y, Zhang SY,
Tang Y, Wu X, Wei Z, Chen K, Su J, et al: Bioinformatics approaches
for deciphering the epitranscriptome: Recent progress and emerging
topics. Comput Struct Biotechnol J. 18:1587–1604. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Yang X, Yang Y, Sun BF, Chen YS, Xu JW,
Lai WY, Li A, Wang X, Bhattarai DP, Xiao WS, et al:
5-methylcytosine promotes mRNA export-NSUN2 as the
methyltransferase and ALYREF as an m5C reader. Cell Res.
27:606–625. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang M, Song J, Yuan W, Zhang W and Sun
Z: Roles of RNA methylation on tumor immunity and clinical
implications. Front Immunol. 12:6415072021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zou F, Tu R, Duan B, Yang Z, Ping Z, Song
X, Chen S, Price A, Li H, Scott A, et al: Drosophila YBX1 homolog
YPS promotes ovarian germ line stem cell development by
preferentially recognizing 5-methylcytosine RNAs. Proc Natl Acad
Sci USA. 117:3603–3609. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Su J, Wu G, Ye Y, Zhang J, Zeng L, Huang
X, Zheng Y, Bai R, Zhuang L, Li M, et al: NSUN2-mediated RNA
5-methylcytosine promotes esophageal squamous cell carcinoma
progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene.
40:5814–5828. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B,
Sun X, Chen Z, Shi X, Hu Y, et al: NSUN2 modified by SUMO-2/3
promotes gastric cancer progression and regulates mRNA m5C
methylation. Cell Death Dis. 12:8422021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sun Z, Xue S, Zhang M, Xu H, Hu X, Chen S,
Liu Y, Guo M and Cui H: Aberrant NSUN2-mediated m5C
modification of H19 lncRNA is associated with poor differentiation
of hepatocellular carcinoma. Oncogene. 39:6906–6919. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yan J, Liu J, Huang Z, Huang W and Lv J:
FOXC2-AS1 stabilizes FOXC2 mRNA via association with NSUN2 in
gastric cancer cells. Hum Cell. 34:1755–1764. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li Y, Li J, Luo M, Zhou C, Shi X, Yang W,
Lu Z, Chen Z, Sun N and He J: Novel long noncoding RNA NMR promotes
tumor progression via NSUN2 and BPTF in esophageal squamous cell
carcinoma. Cancer Lett. 430:57–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mei L, Shen C, Miao R, Wang JZ, Cao MD,
Zhang YS, Shi LH, Zhao GH, Wang MH, Wu LS and Wei JF: RNA
methyltransferase NSUN2 promotes gastric cancer cell proliferation
by repressing p57Kip2 by an m5C-dependent
manner. Cell Death Dis. 11:2702020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang XW, Wu LY, Liu HR, Huang Y, Qi Q,
Zhong R, Zhu L, Gao CF, Zhou L, Yu J and Wu HG: NSUN5 promotes
progression and predicts poor prognosis in hepatocellular
carcinoma. Oncol Lett. 24:4392022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
He Y, Yu X, Li J, Zhang Q, Zheng Q and Guo
W: Role of m5C-related regulatory genes in the diagnosis
and prognosis of hepatocellular carcinoma. Am J Trans Res.
12:912–922. 2020.
|
|
23
|
Xue C, Gu X, Zheng Q, Shi Q, Yuan X, Su Y,
Jia J, Jiang J, Lu J and Li L: ALYREF mediates RNA m5C
modification to promote hepatocellular carcinoma progression.
Signal Transduct Target Ther. 8:1302023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen SY, Chen KL, Ding LY, Yu CH, Wu HY,
Chou YY, Chang CJ, Chang CH, Wu YN, Wu SR, et al: RNA bisulfite
sequencing reveals NSUN2-mediated suppression of epithelial
differentiation in pancreatic cancer. Oncogene. 41:3162–3176. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang R, Liang X, Wang H, Guo M, Shen H,
Shi Y, Liu Q, Sun Y, Yang L and Zhan M: The RNA methyltransferase
NSUN6 suppresses pancreatic cancer development by regulating cell
proliferation. EBioMedicine. 63:1031952021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gao Y, Wang Z, Zhu Y, Zhu Q, Yang Y, Jin
Y, Zhang F, Jiang L, Ye Y, Li H, et al: NOP2/Sun RNA
methyltransferase 2 promotes tumor progression via its interacting
partner RPL6 in gallbladder carcinoma. Cancer Sci. 110:3510–3519.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zheng H, Zhu M, Li W, Zhou Z and Wan X:
m5C and m6A modification of long noncoding
NKILA accelerates cholangiocarcinoma progression via the
miR-582-3p-YAP1 axis. Liver Int. 42:1144–1157. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yin H, Huang Z, Niu S, Ming L, Jiang H, Gu
L, Huang W, Xie J, He Y and Zhang C: 5-Methylcytosine
(m5C) modification in peripheral blood immune cells is a
novel non-invasive biomarker for colorectal cancer diagnosis. Front
Immunol. 13:9679212022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zin'kovskaia GG, Berdyshev GD and
Vaniushin BF: Tissue-specific decrease and change in the character
of DNA methylation in cattle with aging. Biokhimiia. 43:1883–1892.
1978.(In Russian). PubMed/NCBI
|
|
30
|
Deng X, Qing Y, Horne D, Huang H and Chen
J: The roles and implications of RNA m6A modification in
cancer. Nat Rev Clin Oncol. 20:507–526. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhou H, Rauch S, Dai Q, Cui X, Zhang Z,
Nachtergaele S, Sepich C, He C and Dickinson BC: Evolution of a
reverse transcriptase to map N1-methyladenosine in human
messenger RNA. Nat Methods. 16:1281–1288. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li J, Zhang H and Wang H:
N1-methyladenosine modification in cancer biology:
Current status and future perspectives. Comput Struct Biotechnol J.
20:6578–6585. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Chen Y, Lin H, Miao L and He J: Role of
N7-methylguanosine (m7G) in cancer. Trends Cell Biol.
32:819–824. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pandolfini L, Barbieri I, Bannister AJ,
Hendrick A, Andrews B, Webster N, Murat P, Mach P, Brandi R, Robson
SC, et al: METTL1 Promotes let-7 MicroRNA processing via m7G
Methylation. Mol Cell. 74:1278–1290. e92019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak
JW and Gregory RI: Mettl1/Wdr4-Mediated m7G tRNA
methylome is required for normal mRNA translation and embryonic
stem cell self-renewal and differentiation. Mol Cell. 71:244–255.
e52018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang Q, Liu F, Chen W, Miao H, Liang H,
Liao Z, Zhang Z and Zhang B: The role of RNA m5C
modification in cancer metastasis. Int J Biol Sci. 17:3369–3380.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z
and Chen X: 5-methylcytosine RNA methyltransferases and their
potential roles in cancer. J Transl Med. 20:2142022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang R, Ding L, Lin Y, Luo W, Xu Z, Li W,
Lu Y, Zhu Z, Lu Z, Li F, et al: The quiet giant: Identification,
effectors, molecular mechanism, physiological and pathological
function in mRNA 5-methylcytosine modification. Int J Biol Sci.
20:6241–6254. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nombela P, Miguel-Lopez B and Blanco S:
The role of m6A, m5C and ψ RNA modifications
in cancer: Novel therapeutic opportunities. Mol Cancer. 20:182021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Huang ZX, Li J, Xiong QP, Li H, Wang ED
and Liu RJ: Position 34 of tRNA is a discriminative element for
m5C38 modification by human DNMT2. Nucleic Acids Res.
49:13045–13061. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y,
Qin M and Dai H: New substrates and determinants for tRNA
recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol.
18:2531–2545. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bohnsack KE, Hobartner C and Bohnsack MT:
Eukaryotic 5-methylcytosine (m5C) RNA
Methyltransferases: Mechanisms, cellular functions, and links to
disease. Genes (Basel). 10:1022019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kong W, Biswas A, Zhou D, Fiches G,
Fujinaga K, Santoso N and Zhu J: Nucleolar protein NOP2/NSUN1
suppresses HIV-1 transcription and promotes viral latency by
competing with Tat for TAR binding and methylation. PLoS Pathog.
16:e10084302020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan
X, Chen RX, Wei WS, Liu Y, Gao CC, et al: 5-methylcytosine promotes
pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell
Biol. 21:978–990. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hong B, Brockenbrough JS, Wu P and Aris
JP: Nop2p is required for pre-rRNA processing and 60S ribosome
subunit synthesis in yeast. Mol Cell Biol. 17:378–388. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sakita-Suto S, Kanda A, Suzuki F, Sato S,
Takata T and Tatsuka M: Aurora-B regulates RNA methyltransferase
NSUN2. Mol Biol Cell. 18:1107–1117. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xing J, Yi J, Cai X, Tang H, Liu Z, Zhang
X, Martindale JL, Yang X, Jiang B, Gorospe M and Wang W: NSun2
promotes cell growth via elevating cyclin-dependent kinase 1
translation. Mol Cell Biol. 35:4043–4052. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z,
Yang Y, Ouyang J and Cui H: Effects of NSUN2 deficiency on the mRNA
5-methylcytosine modification and gene expression profile in HEK293
cells. Epigenomics. 11:439–453. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sajini AA, Choudhury NR, Wagner RE,
Bornelov S, Selmi T, Spanos C, Dietmann S, Rappsilber J, Michlewski
G and Frye M: Loss of 5-methylcytosine alters the biogenesis of
vault-derived small RNAs to coordinate epidermal differentiation.
Nat Commun. 10:25502019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kar SP, Beesley J, Amin Al Olama A,
Michailidou K, Tyrer J, Kote-Jarai Z, Lawrenson K, Lindstrom S,
Ramus SJ, Thompson DJ, et al: Genome-wide meta-analyses of breast,
ovarian, and prostate cancer association studies identify multiple
new susceptibility loci shared by at least two cancer types. Cancer
Discov. 6:1052–1067. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Li H, Jiang H, Huang Z, Chen Z and Chen N:
Prognostic value of an m5C RNA methylation
regulator-related signature for clear cell renal cell carcinoma.
Cancer Manag Res. 13:6673–6687. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Okamoto M, Hirata S, Sato S, Koga S, Fujii
M, Qi G, Ogawa I, Takata T, Shimamoto F and Tatsuka M: Frequent
increased gene copy number and high protein expression of tRNA
(cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell
Biol. 31:660–671. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liao H, Gaur A, McConie H, Shekar A, Wang
K, Chang JT, Breton G and Denicourt C: Human NOP2/NSUN1 regulates
ribosome biogenesis through non-catalytic complex formation with
box C/D snoRNPs. Nucleic Acids Res. 50:10695–10716. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Delaunay S, Pascual G, Feng B, Klann K,
Behm M, Hotz-Wagenblatt A, Richter K, Zaoui K, Herpel E, Münch C,
et al: Mitochondrial RNA modifications shape metabolic plasticity
in metastasis. Nature. 607:593–603. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Paramasivam A, Meena AK, Venkatapathi C,
Pitceathly RDS and Thangaraj K: Novel biallelic NSUN3 variants
cause early-onset mitochondrial encephalomyopathy and seizures. J
Mol Neurosci. 70:1962–1965. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Metodiev MD, Spahr H, Loguercio Polosa P,
Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG and
Ruzzenente B: NSUN4 is a dual function mitochondrial protein
required for both methylation of 12S rRNA and coordination of
mitoribosomal assembly. PLoS Genet. 10:e10041102014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Heissenberger C, Liendl L, Nagelreiter F,
Gonskikh Y, Yang G, Stelzer EM, Krammer TL, Micutkova L, Vogt S,
Kreil DP, et al: Loss of the ribosomal RNA methyltransferase NSUN5
impairs global protein synthesis and normal growth. Nucleic Acids
Res. 47:11807–11825. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Selmi T, Hussain S, Dietmann S, Heiß M,
Borland K, Flad S, Carter JM, Dennison R, Huang YL, Kellner S, et
al: Sequence- and structure-specific cytosine-5 mRNA methylation by
NSUN6. Nucleic Acids Res. 49:1006–1022. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Haag S, Warda AS, Kretschmer J, Gunnigmann
MA, Hobartner C and Bohnsack MT: NSUN6 is a human RNA
methyltransferase that catalyzes formation of m5C72 in specific
tRNAs. RNA. 21:1532–1543. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Aguilo F, Li S, Balasubramaniyan N, Sancho
A, Benko S, Zhang F, Vashisht A, Rengasamy M, Andino B, Chen CH, et
al: Deposition of 5-methylcytosine on enhancer RNAs enables the
coactivator function of PGC-1α. Cell Rep. 14:479–492. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Khosronezhad N, Hosseinzadeh Colagar A and
Mortazavi SM: The Nsun7 (A11337)-deletion mutation, causes
reduction of its protein rate and associated with sperm motility
defect in infertile men. J Assist Reprod Genet. 32:807–815. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sato K, Tahata K and Akimoto K: Five genes
associated with survival in patients with lower-grade gliomas were
identified by information-theoretical analysis. Anticancer Res.
40:2777–2785. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q,
Ding J, Jia Y, Chen Z, Li L, et al: Tet-mediated formation of
5-carboxylcytosine and its excision by TDG in mammalian DNA.
Science. 333:1303–1307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tahiliani M, Koh KP, Shen Y, Pastor WA,
Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L and
Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in
mammalian DNA by MLL partner TET1. Science. 324:930–935. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ito S, Shen L, Dai Q, Wu SC, Collins LB,
Swenberg JA, He C and Zhang Y: Tet proteins can convert
5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
Science. 333:1300–1303. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao LY, Song J, Liu Y, Song CX and Yi C:
Mapping the epigenetic modifications of DNA and RNA. Protein Cell.
11:792–808. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shen H, Ontiveros RJ, Owens MC, Liu MY,
Ghanty U, Kohli RM and Liu KF: TET-mediated 5-methylcytosine
oxidation in tRNA promotes translation. J Biol Chem.
296:1000872021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yin X and Xu Y: Structure and function of
TET enzymes. Adv Exp Med Biol. 945:275–302. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lyabin DN, Eliseeva IA and Ovchinnikov LP:
YB-1 protein: Functions and regulation. Wiley Interdiscip Rev RNA.
5:95–110. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kang S, Lee TA, Ra EA, Lee E, Choi Hj, Lee
S and Park B: Differential control of interleukin-6 mRNA levels by
cellular distribution of YB-1. PLoS One. 9:e1127542014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Coles LS, Bartley MA, Bert A, Hunter J,
Polyak S, Diamond P, Vadas MA and Goodall GJ: A multi-protein
complex containing cold shock domain (Y-box) and polypyrimidine
tract binding proteins forms on the vascular endothelial growth
factor mRNA. Potential role in mRNA stabilization. Eur J Biochem.
271:648–660. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bates M, Boland A, McDermott N and
Marignol L: YB-1: The key to personalised prostate cancer
management? Cancer Lett. 490:66–75. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu
HC, Yu H, Yuan WB, Li PC, Tao J, et al: The role of the
HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder
cancer. Cancer Commun (Lond). 41:560–575. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yang Y, Wang L, Han X, Yang WL, Zhang M,
Ma HL, Sun BF, Li A, Xia J, Chen J, et al: RNA 5-methylcytosine
facilitates the maternal-to-zygotic transition by preventing
maternal mRNA decay. Mol Cell. 75:1188–1202. e112019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shi H, Chai P, Jia R and Fan X: Novel
insight into the regulatory roles of diverse RNA modifications:
Re-defining the bridge between transcription and translation. Mol
Cancer. 19:782020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Trixl L and Lusser A: The dynamic RNA
modification 5-methylcytosine and its emerging role as an
epitranscriptomic mark. Wiley Interdiscip Rev RNA. 10:e15102019.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen H, Yang H, Zhu X, Yadav T, Ouyang J,
Truesdell SS, Tan J, Wang Y, Duan M, Wei L, et al: m5C
modification of mRNA serves a DNA damage code to promote homologous
recombination. Nat Commun. 11:28342020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xue S, Xu H, Sun Z, Shen H, Chen S, Ouyang
J, Zhou Q, Hu X and Cui H: Depletion of TRDMT1 affects
5-methylcytosine modification of mRNA and inhibits HEK293 cell
proliferation and migration. Biochem Biophys Res Commun. 520:60–66.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xue C, Zhao Y and Li L: Advances in RNA
cytosine-5 methylation: Detection, regulatory mechanisms,
biological functions and links to cancer. Biomark Res. 8:432020.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Morgan E, Soerjomataram I, Rumgay H,
Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold
M: the global landscape of esophageal squamous cell carcinoma and
esophageal adenocarcinoma incidence and mortality in 2020 and
projections to 2040: New estimates from GLOBOCAN 2020.
Gastroenterology. 163:649–658. e22022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Smyth EC, Lagergren J, Fitzgerald RC,
Lordick F, Shah MA, Lagergren P and Cunningham D: Oesophageal
cancer. Nat Rev Dis Primers. 3:170482017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liu L, Chen Y, Zhang T, Cui G, Wang W,
Zhang G, Li J, Zhang Y, Wang Y, Zou Y, et al: YBX1 promotes
esophageal squamous cell carcinoma progression via m5C-dependent
SMOX mRNA stabilization. Adv Sci (Weinh). 11:e23023792024.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xiang S, Ma Y, Shen J, Zhao Y, Wu X, Li M,
Yang X, Kaboli PJ, Du F, Ji H, et al: m5C RNA
methylation primarily affects the ErbB and PI3K-Akt signaling
pathways in gastrointestinal cancer. Front Mol Biosci.
7:5993402020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang E, He X, Yin D, Han L, Qiu M, Xu T,
Xia R, Xu L, Yin R and De W: Increased expression of long noncoding
RNA TUG1 predicts a poor prognosis of gastric cancer and regulates
cell proliferation by epigenetically silencing of p57. Cell Death
Dis. 7:e21092016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fang L, Huang H, Lv J, Chen Z, Lu C, Jiang
T, Xu P, Li Y, Wang S, Li B, et al: m5C-methylated lncRNA NR_033928
promotes gastric cancer proliferation by stabilizing GLS mRNA to
promote glutamine metabolism reprogramming. Cell Death Dis.
14:5202023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li Y, Xia Y, Jiang T, Chen Z, Shen Y, Lin
J, Xie L, Gu C, Lv J, Lu C, et al: Long noncoding RNA DIAPH2-AS1
promotes neural invasion of gastric cancer via stabilizing NSUN2 to
enhance the m5C modification of NTN1. Cell Death Dis. 14:2602023.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Song D, An K, Zhai W, Feng L, Xu Y, Sun R,
Wang Y, Yang YG, Kan Q and Tian X: NSUN2-mediated mRNA
m5C modification regulates the progression of
hepatocellular carcinoma. Genomics Proteomics Bioinformatics.
21:823–833. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sharma A, Sharma KL, Gupta A, Yadav A and
Kumar A: Gallbladder cancer epidemiology, pathogenesis and
molecular genetics: Recent update. World J Gastroenterol.
23:3978–3998. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Misra S, Chaturvedi A, Misra NC and Sharma
ID: Carcinoma of the gallbladder. Lancet Oncol. 4:167–176. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z,
Liu C, Shen B, Wang XA, Wu W, et al: Whole-exome and targeted gene
sequencing of gallbladder carcinoma identifies recurrent mutations
in the ErbB pathway. Nat Genet. 46:872–876. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Maurya SK, Tewari M, Mishra RR and Shukla
HS: Genetic aberrations in gallbladder cancer. Surg Oncol.
21:37–43. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bai D, Zhang J, Xiao W and Zheng X:
Regulation of the HDM2-p53 pathway by ribosomal protein L6 in
response to ribosomal stress. Nucleic Acids Res. 42:1799–1811.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Banales JM, Marin JJG, Lamarca A,
Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen
JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in
mechanisms and management. Nat Rev Gastroenterol Hepatol.
17:557–588. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ramirez-Merino N, Aix SP and Cortes-Funes
H: Chemotherapy for cholangiocarcinoma: An update. World J
Gastrointest Oncol. 5:171–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Banales JM, Cardinale V, Carpino G,
Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes
SJ, Fouassier L, et al: Expert consensus document:
Cholangiocarcinoma: Current knowledge and future perspectives
consensus statement from the European Network for the Study of
Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol.
13:261–280. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen Y, Li Z, Chen X and Zhang S: Long
non-coding RNAs: From disease code to drug role. Acta Pharm Sin B.
11:340–354. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
GBD 2017 Pancreatic Cancer Collaborators,
. The global, regional, and national burden of pancreatic cancer
and its attributable risk factors in 195 countries and territories,
1990–2017: A systematic analysis for the Global Burden of Disease
Study 2017. Lancet Gastroenterol Hepatol. 4:934–947. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
McGuigan A, Kelly P, Turkington RC, Jones
C, Coleman HG and McCain RS: Pancreatic cancer: A review of
clinical diagnosis, epidemiology, treatment and outcomes. World J
Gastroenterol. 24:4846–4861. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang G, Liu L, Li J, Chen Y, Wang Y,
Zhang Y, Dong Z, Xue W, Sun R and Cui G: NSUN2 stimulates tumor
progression via enhancing TIAM2 mRNA stability in pancreatic
cancer. Cell Death Discov. 9:2192023. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen JS, Su IJ, Leu YW, Young KC and Sun
HS: Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2)
promotes proliferation and invasion of liver cancer. Int J Cancer.
130:1302–1313. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cooke M, Kreider-Letterman G, Baker MJ,
Zhang S, Sullivan NT, Eruslanov E, Abba MC, Goicoechea SM,
García-Mata R and Kazanietz MG: FARP1, ARHGEF39, and TIAM2 are
essential receptor tyrosine kinase effectors for Rac1-dependent
cell motility in human lung adenocarcinoma. Cell Rep.
37:1099052021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, Zhou
W and Guo J: Elevated TIAM2 expression promotes tumor progression
and is associated with unfavorable prognosis in pancreatic cancer.
Scand J Gastroenterol. 56:59–67. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Edwards BK, Brown ML, Wingo PA, Howe HL,
Ward E, Ries LA, Schrag D, Jamison PM, Jemal A, Wu XC, et al:
Annual report to the nation on the status of cancer, 1975–2002,
featuring population-based trends in cancer treatment. J Natl
Cancer Inst. 97:1407–1427. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yun D, Yang Z, Zhang S, Yang H, Liu D,
Grutzmann R, Pilarsky C and Britzen-Laurent N: An m5C methylation
regulator-associated signature predicts prognosis and therapy
response in pancreatic cancer. Front Cell Dev Biol. 10:9756842022.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yuan H, Liu J, Zhao L, Wu P, Chen G, Chen
Q, Shen P, Yang T, Fan S, Xiao B and Jiang K: Prognostic risk model
and tumor immune environment modulation of m5C-Related LncRNAs in
pancreatic ductal adenocarcinoma. Front Immunol. 12:8002682021.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu X, Wang D, Han S, Wang F, Zang J, Xu C
and Dong X: Signature of m5C-Related lncRNA for prognostic
prediction and immune responses in pancreatic cancer. J Oncol.
2022:74677972022.PubMed/NCBI
|
|
109
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu
M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic
role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Deheuninck J and Luo K: Ski and SnoN,
potent negative regulators of TGF-beta signaling. Cell Res.
19:47–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Pan D, Zhu Q and Luo K: SnoN functions as
a tumour suppressor by inducing premature senescence. EMBO J.
28:3500–3513. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Schaefer M, Hagemann S, Hanna K and Lyko
F: Azacytidine inhibits RNA methylation at DNMT2 target sites in
human cancer cell lines. Cancer Res. 69:8127–8132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang Y and Zhang Z: The history and
advances in cancer immunotherapy: Understanding the characteristics
of tumor-infiltrating immune cells and their therapeutic
implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Segovia C, San Jose-Eneriz E,
Munera-Maravilla E, Martinez-Fernandez M, Garate L, Miranda E,
Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, et al:
Inhibition of a G9a/DNMT network triggers immune-mediated bladder
cancer regression. Nat Med. 25:1073–1081. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang F, Parayath NN, Ene CI, Stephan SB,
Koehne AL, Coon ME, Holland EC and Stephan MT: Genetic programming
of macrophages to perform anti-tumor functions using targeted mRNA
nanocarriers. Nat Commun. 10:39742019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
He R, Man C, Huang J, He L, Wang X, Lang Y
and Fan Y: Identification of RNA methylation-related lncRNAs
signature for predicting hot and cold tumors and prognosis in colon
cancer. Front Genet. 13:8709452022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen B, Hong Y, Zhai X, Deng Y, Hu H, Tian
S, Zhang Y, Ren X, Zhao J and Jiang C: m6A and m5C modification of
GPX4 facilitates anticancer immunity via STING activation. Cell
Death Dis. 14:8092023. View Article : Google Scholar : PubMed/NCBI
|