Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 31 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)

  • Authors:
    • Victor M. Del Castillo Falconi
    • Jenny A. Godinez Rodriguez
    • Verónica Fragoso‑Ontiveros
    • Laura Contreras‑Espinosa
    • Abraham Pedroza‑Torres
    • José Díaz‑Chávez
    • Luis A. Herrera
  • View Affiliations / Copyright

    Affiliations: Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine ‑ National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico, Celular Biology Department of Science Faculty, UNAM, Mexico City 04510, Mexico, Investigadores por México Program ‑ SECIHTI, Hereditary Cancer Clinic, INCan, Mexico City 14080, Mexico
    Copyright: © Del Castillo Falconi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 144
    |
    Published online on: April 1, 2025
       https://doi.org/10.3892/mmr.2025.13509
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer is the deadliest gynecological cancer globally, with epithelial ovarian cancer (EOC) comprising up to 90% of cases. A molecular characterization linking the histological subtypes with tumor grade in EOC has been suggested. Variations in genetic biomarkers such as BRCA1/2, MSH2, MLH1/6, BRIP1, and RAD51C/D have been studied in EOC. In addition, molecular characteristics, including DNA methylation and RNA transcription, are being explored as potential new biomarkers for the diagnosis and prognosis of this type of neoplasia. The present review focused on the role of DNA methylation and non‑coding RNA expression in the development of ovarian carcinomas and their association with diagnosis, prognosis, and the resistance of cancer cells to radiotherapy and chemotherapy. The present review considered the transition from the DNA structure to the RNA expression in ovarian carcinoma.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Momenimovahed Z, Tiznobaik A, Taheri S and Salehiniya H: Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Luo Y, Huang J, Tang Y, Luo X, Ge L, Sheng X, Sun X, Chen Y and Zhu D: Regional methylome profiling reveals dynamic epigenetic heterogeneity and convergent hypomethylation of stem cell quiescence-associated genes in breast cancer following neoadjuvant chemotherapy. Cell Biosci. 9:162019. View Article : Google Scholar : PubMed/NCBI

4 

Sandhu R, Roll JD, Rivenbark AG and Coleman WB: Dysregulation of the Epigenome in Human Breast Cancer': Contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 185:282–292. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Maire CL, Fuh MM, Kaulich K, Fita KD, Stevic I, Heiland DH, Welsh JA, Jones JC, Görgens A, Ricklefs T, et al: Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro Oncol. 23:1087–1099. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Wang Z, Cui Y, Wang F, Xu L, Yan Y, Tong X and Yan H: DNA methylation-regulated LINC02587 inhibits ferroptosis and promotes the progression of glioma cells through the CoQ-FSP1 pathway. BMC Cancer. 23:9892023. View Article : Google Scholar : PubMed/NCBI

7 

Wielandt AM, Villarroel C, Hurtado C, Simian D, Zamorano D, Martínez M, Castro M, Vial MT, Kronberg U and López-Kostner F: Characterization of patients with sporadic colorectal cancer following the new Consensus Molecular Subtypes (CMS). Rev Méd Chile. 145:419–430. 2017.(In Spanish). View Article : Google Scholar : PubMed/NCBI

8 

Moreno-Ortiz JM, Jiménez-García J, Gutiérrez-Angulo M, Ayala-Madrigal MD, González-Mercado A, González-Villaseñor CO, Flores-López BA, Alvizo-Rodríguez C, Hernández-Sandoval JA, Fernández-Galindo MA, et al: High frequency of MLH1 promoter methylation mediated by gender and age in colorectal tumors from Mexican patients. GMM. 157:638–644. 2021.(In Spanish).

9 

Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J and Herrera LA: DNA methyltransferases: From evolution to clinical applications. Int J Mol Sci. 23:89942022. View Article : Google Scholar : PubMed/NCBI

10 

Li E, Bestor TH and Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69:915–926. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Shih IeM and Kurman RJ: Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 164:1511–1518. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Kurman RJ and Shih IeM: Pathogenesis of ovarian cancer: Lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 27:151–160. 2018.PubMed/NCBI

13 

Kurman RJ and Shih IeM: The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Samuel D, Diaz-Barbe A, Pinto A, Schlumbrecht M and George S: Hereditary ovarian carcinoma: Cancer pathogenesis looking beyond BRCA1 and BRCA2. Cells. 11:5392022. View Article : Google Scholar : PubMed/NCBI

15 

Ramus SJ, Harrington PA, Pye C, DiCioccio RA, Cox MJ, Garlinghouse-Jones K, Oakley-Girvan I, Jacobs IJ, Hardy RM, Whittemore AS, et al: Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat. 28:1207–1215. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Menon U, Karpinskyj C and Gentry-Maharaj A: Ovarian cancer prevention and screening. Obstet Gynecol. 131:909–927. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M and Falzone L: Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol. 60:582022. View Article : Google Scholar : PubMed/NCBI

18 

Kansuttiviwat C, Lertwilaiwittaya P, Roothumnong E, Nakthong P, Dungort P, Meesamarnpong C, Tansa-Nga W, Pongsuktavorn K, Wiboonthanasarn S, Tititumjariya W, et al: Germline mutations of 4567 patients with hereditary breast-ovarian cancer spectrum in Thailand. NPJ Genom Med. 9:92024. View Article : Google Scholar : PubMed/NCBI

19 

Andrikopoulou A, Zografos E, Apostolidou K, Kyriazoglou A, Papatheodoridi AM, Kaparelou M, Koutsoukos K, Liontos M, Dimopoulos MA and Zagouri F: Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis. Front Oncol. 12:10307862022. View Article : Google Scholar : PubMed/NCBI

20 

Ghose A, Bolina A, Mahajan I, Raza SA, Clarke M, Pal A, Sanchez E, Rallis KS and Boussios S: Hereditary ovarian cancer: Towards a cost-effective prevention strategy. Int J Environ Res Public Health. 19:120572022. View Article : Google Scholar : PubMed/NCBI

21 

McCluggage WG: Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology. 43:420–432. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Andrews L and Mutch DG: Hereditary ovarian cancer and risk reduction. Best Pract Res Clin Obstet Gynaecol. 41:31–48. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Lynch HT and Lynch JF: Hereditary nonpolyposis colorectal cancer. Semin Surg Oncol. 18:305–313. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Wu H, Shang X, Shi Y, Yang Z, Zhao J, Yang M, Li Y and Xu S: Genetic variants of lncRNA HOTAIR and risk of epithelial ovarian cancer among Chinese women. Oncotarget. 7:41047–41052. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Bronder D, Tighe A, Wangsa D, Zong D, Meyer TJ, Wardenaar R, Minshall P, Hirsch D, Heselmeyer-Haddad K, Nelson L, et al: TP53 loss initiates chromosomal instability in fallopian tube epithelial cells. Dis Model Mech. 14:dmm0490012021. View Article : Google Scholar : PubMed/NCBI

26 

Goff BA, Mandel L, Muntz HG and Melancon CH: Ovarian carcinoma diagnosis. Cancer. 89:2068–2075. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, Steppan I, Mueller-Holzner E, Ehrlich M and Marth C: DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecol Oncol. 121:24–31. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW and Ehrlich M: DNA hypomethylation and ovarian cancer biology. Cancer Res. 64:4472–4480. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y and Bast RC Jr: Imprinted tumor suppressor genesARHI andPEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 112:1489–1502. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Link PA, Zhang W, Odunsi K and Karpf AR: BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun. 13:62013.PubMed/NCBI

31 

Wang YQ, Yan Q, Zhang JR, Li SD, Yang YX and Wan XP: Epigenetic inactivation of BRCA1 through promoter hypermethylation in ovarian cancer progression. J Obstet Gynaecol Res. 39:549–554. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Abou-Zeid AA, Azzam AZ and Kamel NA: Methylation status of the gene promoter of cyclin-dependent kinase inhibitor 2A (CDKN2A) in ovarian cancer. Scand J Clin Lab Invest. 71:542–547. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Bhagat R, Kumar SS, Vaderhobli S, Premalata CS, Pallavi VR, Ramesh G and Krishnamoorthy L: Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol. 35:9069–9078. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Yang G, Zhang H, Liu Y, Zhou J, He W, Quick CM, Xie D, Smoller BR and Fan CY: Epigenetic and immunohistochemical characterization of the Clusterin gene in ovarian tumors. Arch Gynecol Obstet. 287:989–995. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K and Karpf AR: DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics. 10:736–748. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Wang B, Yu L, Luo X, Huang L, Li QS, Shao XS, Liu Y, Fan Y and Yang GZ: Detection of OPCML methylation, a possible epigenetic marker, from free serum circulating DNA to improve the diagnosis of early-stage ovarian epithelial cancer. Oncol Lett. 14:217–223. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Kaur M, Singh A, Singh K, Gupta S and Sachan M: Development of a multiplex MethyLight assay for the detection of DAPK1 and SOX1 methylation in epithelial ovarian cancer in a north Indian population. Genes Genet Syst. 91:175–181. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Rattanapan Y, Korkiatsakul V, Kongruang A, Chareonsirisuthigul T, Rerkamnuaychoke B, Wongkularb A and Wilailak S: EGFL7 and RASSF1 promoter hypermethylation in epithelial ovarian cancer. Cancer Genet. 224–225. 37–40. 2018.PubMed/NCBI

39 

da Conceição Braga C, Silva LM, Piedade JB, Traiman P and da Silva Filho AL: Epigenetic and expression analysis of TRAIL-R2 and BCL2: On the TRAIL to knowledge of apoptosis in ovarian tumors. Arch Gynecol Obstet. 289:1061–1069. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S and Serman L: Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Suzuki F, Akahira J, Miura I, Suzuki T, Ito K, Hayashi S, Sasano H and Yaegashi N: Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5′-untranslated region in human epithelial ovarian carcinoma. Cancer Sci. 99:2365–2372. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Baranova I, Kovarikova H, Laco J, Dvorak O, Sedlakova I, Palicka V and Chmelarova M: Aberrant methylation of PCDH17 gene in high-grade serous ovarian carcinoma. Cancer Biomark. 23:125–133. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Ding JJ, Wang G, Shi WX, Zhou HH and Zhao EF: Promoter hypermethylation of FANCF and susceptibility and prognosis of epithelial ovarian cancer. Reprod Sci. 23:24–30. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Gozzi G, Chelbi ST, Manni P, Alberti L, Fonda S, Saponaro S, Fabbiani L, Rivasi F, Benhattar J and Losi L: Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma. Oncol Lett. 12:2811–2819. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Choi YL, Kang SY, Shin YK, Choi JS, Kim SH, Lee SJ, Bae DS and Ahn G: Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas. Virchows Archiv. 448:331–336. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Häfner N, Steinbach D, Jansen L, Diebolder H, Dürst M and Runnebaum IB: RUNX3 and CAMK2N1 hypermethylation as prognostic marker for epithelial ovarian cancer. Int J Cancer. 138:217–228. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Jin P, Song Y and Yu G: The role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer: A clinical and experimental study. Anal Cell Pathol (Amst). 2018:65670812018.PubMed/NCBI

49 

Khodadadi E, Fahmideh L, Khodadadi E, Dao S, Yousefi M, Taghizadeh S, Asgharzadeh M, Yousefi B and Kafil HS: Current advances in DNA methylation analysis methods. Biomed Res Int. 2021:88275162021. View Article : Google Scholar : PubMed/NCBI

50 

Gattuso G, Lavoro A, Caltabiano R, Madonna G, Capone M, Ascierto PA, Falzone L, Libra M and Candido S: Methylation-sensitive restriction enzyme-droplet digital PCR assay for the one-step highly sensitive analysis of DNA methylation hotspots. Int J Mol Med. 53:422024. View Article : Google Scholar : PubMed/NCBI

51 

Falzone L, Salemi R, Travali S, Scalisi A, McCubrey JA, Candido S and Libra M: MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging (Albany NY). 8:933–944. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Singer M, Kosti I, Pachter L and Mandel-Gutfreund Y: A diverse epigenetic landscape at human exons with implication for expression. Nucleic Acids Res. 43:3498–3508. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Davidson B, Tropé CG and Reich R: The clinical and diagnostic role of microRNAs in ovarian carcinoma. Gynecol Oncol. 133:640–646. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Sheng X and Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y and Li J: Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep. 32:277–285. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Loginov VI, Pronina IV, Burdennyy AM, Filippova EA, Kazubskaya TP, Kushlinsky DN, Utkin DO, Khodyrev DS, Kushlinskii NE, Dmitriev AA and Braga EA: Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662:28–36. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Filippov-Levy N, Cohen-Schussheim H, Tropé CG, Hetland Falkenthal TE, Smith Y, Davidson B and Reich R: Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 148:559–566. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Liu X, Dai C, Jia G, Xu S, Fu Z, Xu J, Li Q, Ruan H and Xu P: Microarray analysis reveals differentially expressed lncRNAs in benign epithelial ovarian cysts and normal ovaries. Oncol Rep. 38:799–808. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Lu YM, Wang Y, Liu SQ, Zhou MY and Guo YR: Profile and validation of dysregulated long non-coding RNAs and mRNAs in ovarian cancer. Oncol Rep. 40:2964–2976. 2018.PubMed/NCBI

59 

Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, Lv M, Gu Y, Zhang J, Hua X, et al: LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep. 6:389832016. View Article : Google Scholar : PubMed/NCBI

60 

Boyd C and McCluggage WG: Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: Report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 36:368–375. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Pisanic TR II, Cope LM, Lin SF, Yen TT, Athamanolap P, Asaka R, Nakayama K, Fader AN, Wang TH, Shih IM and Wang TL: Methylomic analysis of ovarian cancers identifies tumor-specific alterations readily detectable in early precursor lesions. Clin Cancer Res. 24:6536–6547. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Klinkebiel D, Zhang W, Akers SN, Odunsi K and Karpf AR: DNA Methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 14:787–794. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, et al: miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun. 9:10562018. View Article : Google Scholar : PubMed/NCBI

64 

Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C, Bu H, Yu H, Dongol S and Kong B: FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int J Oncol. 52:2130–2142. 2018.PubMed/NCBI

65 

Ma H, Tian T, Liang S, Liu X, Shen H, Xia M, Liu X, Zhang W, Wang L, Chen S and Yu L: Estrogen receptor-mediated miR-486-5p regulation of OLFM4 expression in ovarian cancer. Oncotarget. 7:10594–1605. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Nymoen DA, Slipicevic A, Holth A, Emilsen E, Hetland Falkenthal TE, Tropé CG, Reich R, Flørenes VA and Davidson B: MiR-29a is a candidate biomarker of better survival in metastatic high-grade serous carcinoma. Hum Pathol. 54:74–81. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Arts FA, Keogh L, Smyth P, O'Toole S, Ta R, Gleeson N, O'Leary JJ, Flavin R and Sheils O: miR-223 potentially targets SWI/SNF complex protein SMARCD1 in atypical proliferative serous tumor and high-grade ovarian serous carcinoma. Hum Pathol. 70:98–104. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, et al: Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep. 15:1493–1504. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Zhao H, Liu S, Wang G, Wu X, Ding Y, Guo G, Jiang J and Cui S: Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol Rep. 33:591–598. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Kuznetsov VA, Tang Z and Ivshina AV: Identification of common oncogenic and early developmental pathways in the ovarian carcinomas controlling by distinct prognostically significant microRNA subsets. BMC Genomics. 18 (Suppl 6):6922017. View Article : Google Scholar : PubMed/NCBI

71 

Zhang X, Guo G, Wang G, Zhao J, Wang B, Yu X and Ding Y: Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma. Mol Med Rep. 12:8021–8031. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Yanaihara N, Noguchi Y, Saito M, Takenaka M, Takakura S, Yamada K and Okamoto A: MicroRNA gene expression signature driven by miR-9 overexpression in ovarian clear cell carcinoma. PLoS One. 11:e01625842016. View Article : Google Scholar : PubMed/NCBI

73 

Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C and Riva C: The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 12:3329–3336. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Niskakoski A, Pasanen A, Porkka N, Eldfors S, Lassus H, Renkonen-Sinisalo L, Kaur S, Mecklin JP, Bützow R and Peltomäki P: Converging endometrial and ovarian tumorigenesis in Lynch syndrome: Shared origin of synchronous carcinomas. Gynecol Oncol. 150:92–98. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Kolbe DL, DeLoia JA, Porter-Gill P, Strange M, Petrykowska HM, Guirguis A, Krivak TC, Brody LC and Elnitski L: Differential analysis of ovarian and endometrial cancers identifies a methylator phenotype. PLoS One. 7:e329412012. View Article : Google Scholar : PubMed/NCBI

76 

Guo C, Ren F, Wang D, Li Y, Liu K, Liu S and Chen P: RUNX3 is inactivated by promoter hypermethylation in malignant transformation of ovarian endometriosis. Oncol Rep. 32:2580–2588. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Liew PL, Huang RL, Weng YC, Fang CL, Hui-Ming Huang T and Lai HC: Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors: Methylation profile of MuOC and PSMB8. Int J Cancer. 143:355–367. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Agostini A, Brunetti M, Davidson B, Tropé CG, Eriksson AGZ, Heim S, Panagopoulos I and Micci F: The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci Rep. 8:110692018. View Article : Google Scholar : PubMed/NCBI

79 

Vang R, Shih IeM and Kurman RJ: Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 16:267–282. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Bowtell DD: The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 10:803–808. 2010. View Article : Google Scholar : PubMed/NCBI

81 

O'Shea AS: Clinical staging of ovarian cancer. Methods Mol Biol. 2424:3–10. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Richards EJ, Permuth-Wey J, Li Y, Chen YA, Coppola D, Reid BM, Lin HY, Teer JK, Berchuck A, Birrer MJ, et al: A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer. Oncotarget. 6:34745–34757. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Zhang T, Wu D, Deng S, Han R, Liu T, Li J and Xu Y: Integrated analysis reveals that long non-coding RNA TUBA4B can be used as a prognostic biomarker in various cancers. Cell Physiol Biochem. 49:530–544. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Meryet-Figuière M, Lambert B, Gauduchon P, Vigneron N, Brotin E, Poulain L and Denoyelle C: An overview of long non-coding RNAs in ovarian cancers. Oncotarget. 7:44719–44734. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Zhong Y, Gao D, He S, Shuai C and Peng S: Dysregulated expression of long noncoding RNAs in ovarian cancer. Int J Gynecol Cancer. 26:1564–1570. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Ma Y, Lu Y and Lu B: MicroRNA and Long Non-Coding RNA in ovarian carcinoma: Translational insights and potential clinical applications. Cancer Invest. 34:465–476. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Lin X, Qiu J and Hua K: Long non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in gynecologic cancers. Biosci Trends. 12:342–353. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Micheel J, Safrastyan A and Wollny D: Advances in non-coding RNA sequencing. Noncoding RNA. 7:702021.PubMed/NCBI

89 

Zhang N, Hu G, Myers TG and Williamson PR: Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol. 126:e782019. View Article : Google Scholar : PubMed/NCBI

90 

Zhang S, Leng T, Zhang Q, Zhao Q, Nie X and Yang L: Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother. 102:302–308. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, Zhang Y, Li Q and Hua KQ: Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Xi J, Feng J and Zeng S: Long noncoding RNA lncBRM facilitates the proliferation, migration and invasion of ovarian cancer cells via upregulation of Sox4. Am J Cancer Res. 7:2180–2189. 2017.PubMed/NCBI

93 

Zhang Y, Dun Y, Zhou S and Huang XH: LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Liu Y, Wang Y, Yao D and Cui D: LncSOX4 serves an oncogenic role in the tumorigenesis of epithelial ovarian cancer by promoting cell proliferation and inhibiting apoptosis. Mol Med Rep. 17:8282–8288. 2018.PubMed/NCBI

95 

Yan H, Li H, Li P, Li X, Lin J, Zhu L, Silva MA, Wang X, Wang P and Zhang Z: Long noncoding RNA MLK7-AS1 promotes ovarian cancer cells progression by modulating miR-375/YAP1 axis. J Exp Clin Cancer Res. 37:2372018. View Article : Google Scholar : PubMed/NCBI

96 

Li T, Chen Y, Zhang J and Liu S: LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells. Medicine (Baltimore). 97:e121312018. View Article : Google Scholar : PubMed/NCBI

97 

Wang YS, Ma LN, Sun JX, Liu N and Wang H: Long non-coding CPS1-IT1 is a positive prognostic factor and inhibits epithelial ovarian cancer tumorigenesis. Eur Rev Med Pharmacol Sci. 21:3169–3175. 2017.PubMed/NCBI

98 

Zhu FF, Zheng FY, Wang HO, Zheng JJ and Zhang Q: Downregulation of lncRNA TUBA4B is associated with poor prognosis for epithelial ovarian cancer. Pathol Oncol Res. 24:419–425. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Ying X, Wei K, Lin Z, Cui Y, Ding J, Chen Y and Xu B: MicroRNA-125b suppresses ovarian cancer progression via suppression of the epithelial-mesenchymal transition pathway by targeting the SET protein. Cell Physiol Biochem. 39:501–510. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P and Wang S: A pilot study of circulating MicroRNA-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer. 27:3–10. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W and Li X: MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 6:40799–40814. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Cao Q, Lu K, Dai S, Hu Y and Fan W: Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int J Clin Exp Pathol. 7:2392–2401. 2014.PubMed/NCBI

103 

Kapetanakis NI, Uzan C, Jimenez-Pailhes AS, Gouy S, Bentivegna E, Morice P, Caron O, Gourzones-Dmitriev C, Le Teuff G and Busson P: Plasma miR-200b in ovarian carcinoma patients: Distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget. 6:36815–36824. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K and Schwarzenbach H: Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 7:16923–16935. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Du Z and Sha X: Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a. Tumour Biol. 39:10104283176943022017. View Article : Google Scholar : PubMed/NCBI

106 

Chen S, Chen X, Xiu YL, Sun KX and Zhao Y: MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett. 362:122–130. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Shuang T, Wang M, Shi C, Zhou Y and Wang D: Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells. FEBS Lett. 589:3154–3164. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Zou YT, Gao JY, Wang HL, Wang Y, Wang H and Li PL: Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet Mol Res. 14:8766–8777. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Zhang H and Li W: Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 36:3605–3610. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Zhang W, Zeng Q, Ban Z, Cao J, Chu T, Lei D, Liu C, Guo W and Zeng X: Effects of let-7c on the proliferation of ovarian carcinoma cells by targeted regulation of CDC25a gene expression. Oncol Lett. 16:5543–5550. 2018.PubMed/NCBI

111 

Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY and Chan DW: Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 5:944–958. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 11:812018. View Article : Google Scholar : PubMed/NCBI

113 

Zhao H, Bi T, Qu Z, Jiang J, Cui S and Wang Y: Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol Rep. 32:1003–1012. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Chen Y, Chen Q, Liu Q and Gao F: Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer. Tumour Biol. 37:8359–8365. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Li L, Huang K, You Y, Fu X, Hu L, Song L and Meng Y: Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol. 44:2111–2120. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, Liu Y, Zhao P, Xu Y, Li M, et al: IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget. 8:39154–39166. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, Li Q and Huang J: Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol. 8:4132–4137. 2015.PubMed/NCBI

118 

Koukourakis MI, Kontomanolis E, Sotiropoulou M, Mitrakas A, Dafa E, Pouliliou S, Sivridis E and Giatromanolaki A: Increased soluble PD-L1 levels in the plasma of patients with epithelial ovarian cancer correlate with plasma levels of miR34a and miR200. Anticancer Res. 38:5739–5745. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Liu J, Dou Y and Sheng M: Inhibition of microRNA-383 has tumor suppressive effect in human epithelial ovarian cancer through the action on caspase-2 gene. Biomed Pharmacother. 83:1286–1294. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Dai F, Zhang Y and Chen Y: Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Hum Pathol. 45:1285–1293. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, Huang B, Jin D and Wang Z: Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 10:242017. View Article : Google Scholar : PubMed/NCBI

122 

Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X and Cheng X: Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15:5092015. View Article : Google Scholar : PubMed/NCBI

123 

Paudel D, Zhou W, Ouyang Y, Dong S, Huang Q, Giri R, Wang J and Tong X: MicroRNA-130b functions as a tumor suppressor by regulating RUNX3 in epithelial ovarian cancer. Gene. 586:48–55. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, Zhang W and Chen C: MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Biomed Pharmacother. 107:712–720. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Chen X, Dong C, Law PT, Chan MT, Su Z, Wang S, Wu WK and Xu H: MicroRNA-145 targets TRIM2 and exerts tumor-suppressing functions in epithelial ovarian cancer. Gynecol Oncol. 139:513–519. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Qin CZ, Lou XY, Lv QL, Cheng L, Wu NY, Hu L and Zhou HH: MicroRNA-184 acts as a potential diagnostic and prognostic marker in epithelial ovarian cancer and regualtes cell proliferation, apoptosis and inflammation. Pharmazie. 70:668–673. 2015.PubMed/NCBI

127 

Liang T, Li L, Cheng Y, Ren C and Zhang G: MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12. Onco Targets Ther. 9:4307–4315. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Wei C, Zhang X, He S, Liu B, Han H and Sun X: MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/β-catenin signaling pathway. Gene. 637:25–32. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Fu X, Li Y, Alvero A, Li J, Wu Q, Xiao Q, Peng Y, Hu Y, Li X, Yan W, et al: MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget. 7:80633–80654. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Wu X, Ruan Y, Jiang H and Xu C: MicroRNA-424 inhibits cell migration, invasion, and epithelial mesenchymal transition by downregulating doublecortin-like kinase 1 in ovarian clear cell carcinoma. Int J Biochem Cell Biol. 85:66–74. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Zhang J, Liu L, Sun Y, Xiang J, Zhou D, Wang L, Xu H, Yang X, Du N, Zhang M, et al: MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget. 7:26516–26534. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Zhang L, Li Z, Gai F and Wang Y: MicroRNA-137 suppresses tumor growth in epithelial ovarian cancer in vitro and in vivo. Mol Med Rep. 12:3107–3114. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Liu J, Jin S and Wang R: MicroRNA-139 suppressed tumor cell proliferation, migration and invasion by directly targeting HDGF in epithelial ovarian cancer. Mol Med Rep. 16:3379–3386. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Xu L, Li H, Su L, Lu Q and Liu Z: MicroRNA-455 inhibits cell proliferation and invasion of epithelial ovarian cancer by directly targeting Notch1. Mol Med Rep. 16:9777–9785. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Yan J, Jiang J, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI

136 

Lin J, Zhang L, Huang H, Huang Y, Huang L, Wang J, Huang S, He L, Zhou Y, Jia W, et al: MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4. Oncotarget. 6:23793–23806. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Xu J, Jiang N, Shi H, Zhao S, Yao S and Shen H: miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol. 50:1383–1391. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong R, Li Y, Li J, Zhang Z, Li X, et al: miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ. 24:2089–2100. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Wang L, He J, Xu H, Xu L and Li N: MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer. Am J Transl Res. 8:2716–2726. 2016.PubMed/NCBI

140 

Dong M, Yang P and Hua F: miR-191 modulates malignant transformation of endometriosis through regulating TIMP3. Med Sci Monit. 21:915–920. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Niu K, Shen W, Zhang Y, Zhao Y and Lu Y: MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene. 574:330–336. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Dai C, Xie Y, Zhuang X and Yuan Z: MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother. 104:763–770. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Xia B, Yang S, Liu T and Lou G: miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 14:572015. View Article : Google Scholar : PubMed/NCBI

144 

Wu Q, Ren X, Zhang Y, Fu X, Li Y, Peng Y, Xiao Q, Li T, Ouyang C, Hu Y, et al: MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun. 497:1162–1170. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Cao L, Wan Q, Li F and Tang C: MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep. 51:456–461. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Xia B, Li H, Yang S, Liu T and Lou G: MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 37:9157–9167. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Yuan J, Wang K and Xi M: MiR-494 inhibits epithelial ovarian cancer growth by targeting c-Myc. Med Sci Monit. 22:617–624. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Li N, Zhao X, Wang L, Zhang S, Cui M and He J: miR-494 suppresses tumor growth of epithelial ovarian carcinoma by targeting IGF1R. Tumour Biol. 37:7767–7776. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Zhou QH, Zhao YM, JIA LL and Zhang Y: Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 21:4278–4282. 2017.PubMed/NCBI

150 

Zhang S, Zhang JY, Lu LJ, Wang CH and Wang LH: MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci. 21:4542–4547. 217.PubMed/NCBI

151 

Shi C and Zhang Z: miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma. Tumour Biol. 37:5437–5443. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Xie X, Huang Y, Chen L and Wang J: miR-221 regulates proliferation and apoptosis of ovarian cancer cells by targeting BMF. Oncol Lett. 16:6697–6704. 2018.PubMed/NCBI

153 

Wen C, Liu X, Ma H, Zhang W and Li H: miR-338-3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. Int J Oncol. 46:2277–2285. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, et al: miR-590-3p promotes ovarian cancer growth and metastasis via a Novel FOXA2-versican pathway. Cancer Res. 78:4175–4190. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Lin Z, Zhao J, Wang X, Zhu X and Gong L: Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 36:2101–2107. 2016. View Article : Google Scholar : PubMed/NCBI

156 

Lin M, Xia B, Qin L, Chen H and Lou G: S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA Cell Biol. 37:491–500. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Chen JL, Chen F, Zhang TT and Liu NF: Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med. 37:1601–1610. 2016. View Article : Google Scholar : PubMed/NCBI

158 

Zuberi M, Khan I, Gandhi G, Ray PC and Saxena A: The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol. 37:11259–11266. 2016. View Article : Google Scholar : PubMed/NCBI

159 

Guan X, Zong ZH, Chen S, Sang XB, Wu DD, Wang LL, Liu Y and Zhao Y: The role of miR-372 in ovarian carcinoma cell proliferation. Gene. 624:14–20. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Li J, Li D and Zhang W: Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncol Rep. 35:1671–1679. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Zhang X, Liu J, Zang D, Wu S, Liu A, Zhu J, Wu G, Li J and Jiang L: Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression. Oncotarget. 6:15180–15193. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Zhou J, Gong G, Tan H, Dai F, Zhu X, Chen Y, Wang J, Liu Y, Chen P, Wu X and Wen J: Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 33:2915–2923. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Zhang X, Li S, Dong C, Xie X and Zhang Y: Knockdown of long noncoding RNA NR_026689 inhibits proliferation and invasion and increases apoptosis in ovarian carcinoma HO-8910PM cells. Oncol Res. 25:259–265. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Zhu L, Guo Q, Lu X, Zhao J, Shi J, Wang Z and Zhou X: CTD-2020K17.1, a novel long non-coding RNA, promotes migration, invasion, and proliferation of serous ovarian cancer cells in vitro. Med Sci Monit. 24:1329–1339. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Qiu JJ, Zhang XD, Tang XY, Zheng TT, Zhang Y and Hua KQ: ElncRNA1, a long non-coding RNA that is transcriptionally induced by oestrogen, promotes epithelial ovarian cancer cell proliferation. Int J Oncol. 51:507–514. 2017. View Article : Google Scholar : PubMed/NCBI

166 

Gao Y, Meng H, Liu S, Hu J, Zhang Y, Jiao T, Liu Y, Ou J, Wang D, Yao L, et al: LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 24:841–852. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Wang Y, Wang H, Song T, Zou Y, Jiang J, Fang L and Li P: HOTAIR is a potential target for the treatment of cisplatin-resistant ovarian cancer. Mol Med Rep. 12:2211–2216. 2015. View Article : Google Scholar : PubMed/NCBI

168 

Lu CW, Zhou DD, Xie T, Hao JL, Pant OP, Lu CB and Liu XF: HOXA11 antisense long noncoding RNA (HOXA11-AS): A promising lncRNA in human cancers. Cancer Med. 7:3792–3799. 2018. View Article : Google Scholar : PubMed/NCBI

169 

Du W, Feng Z and Sun Q: LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun. 507:198–202. 2018. View Article : Google Scholar : PubMed/NCBI

170 

Shu C, Yan D, Mo Y, Gu J, Shah N and He J: Long noncoding RNA lncARSR promotes epithelial ovarian cancer cell proliferation and invasion by association with HuR and miR-200 family. Am J Cancer Res. 8:981–992. 2018.PubMed/NCBI

171 

Chen S, Wu DD, Sang XB, Wang LL, Zong ZH, Sun KX, Liu BL and Zhao Y: The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis. 8:e31182017. View Article : Google Scholar : PubMed/NCBI

172 

Qnbo L, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI

173 

Lin Q, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI

174 

Yan C, Jiang Y, Wan Y, Zhang L, Liu J, Zhou S and Cheng W: Long noncoding RNA NBAT-1 suppresses tumorigenesis and predicts favorable prognosis in ovarian cancer. Onco Targets Ther. 10:1993–2002. 2017. View Article : Google Scholar : PubMed/NCBI

175 

Liu Y, Wang Y, Fu X and Lu Z: Long non-coding RNA NEAT1 promoted ovarian cancer cells' metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci. 109:2188–2198. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Chen S, Wang LL, Sun KX, Liu Y, Guan X, Zong ZH and Zhao Y: LncRNA PCGEM1 induces ovarian carcinoma tumorigenesis and progression through RhoA pathway. Cell Physiol Biochem. 47:1578–1588. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Huang K, Geng J and Wang J: Long non-coding RNA RP11-552M11.4 promotes cells proliferation, migration and invasion by targeting BRCA2 in ovarian cancer. Cancer Sci. 109:1428–1446. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Li H, Liu C, Lu Z, Chen L, Wang J, Li Y and Ma H: Upregulation of the long non-coding RNA SPRY4-IT1 indicates a poor prognosis and promotes tumorigenesis in ovarian cancer. Biomed Pharmacother. 88:529–534. 2017. View Article : Google Scholar : PubMed/NCBI

179 

Li TH, Zhang JJ, Liu SX and Chen Y: Long non-coding RNA taurine-upregulated gene 1 predicts unfavorable prognosis, promotes cells proliferation, and inhibits cells apoptosis in epithelial ovarian cancer. Medicine (Baltimore). 97:e05752018. View Article : Google Scholar : PubMed/NCBI

180 

Hong HH, Hou LK, Pan X, Wu CY, Huang H, Li B and Nie W: Long non-coding RNA UCA1 is a predictive biomarker of cancer. Oncotarget. 7:44442–44447. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Zhang L, Cao X, Zhang L, Zhang X, Sheng H and Tao K: UCA1 overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy. Cancer Chemother Pharmacol. 77:629–634. 2016. View Article : Google Scholar : PubMed/NCBI

182 

Qiu JJ, Wang Y, Liu YL, Zhang Y, Ding JX and Hua KQ: The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget. 7:32478–32492. 2016. View Article : Google Scholar : PubMed/NCBI

183 

Cao Y, Shi H, Ren F, Jia Y and Zhang R: Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res. 359:185–194. 2017. View Article : Google Scholar : PubMed/NCBI

184 

Hua F, Li CH, Chen XG and Liu XP: Long Noncoding RNA CCAT2 knockdown suppresses tumorous progression by sponging miR-424 in epithelial ovarian cancer. Oncol Res. 26:241–247. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Yim GW, Kim HJ, Kim LK, Kim SW, Kim S, Nam EJ and Kim YT: Long Non-coding RNA HOXA11 antisense promotes cell proliferation and invasion and predicts patient prognosis in serous ovarian cancer. Cancer Res Treat. 49:656–668. 2017. View Article : Google Scholar : PubMed/NCBI

186 

Koutsaki M, Spandidos DA and Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: Prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett. 351:173–181. 2014. View Article : Google Scholar : PubMed/NCBI

187 

Sulaiman SA, Ab Mutalib NS and Jamal R: miR-200c regulation of metastases in ovarian cancer: Potential role in epithelial and mesenchymal transition. Front Pharmacol. 7:2712016. View Article : Google Scholar : PubMed/NCBI

188 

Teng Y, Su X, Zhang X, Zhang Y, Li C, Niu W, Liu C and Qu K: miRNA-200a/c as potential biomarker in epithelial ovarian cancer (EOC): Evidence based on miRNA meta-signature and clinical investigations. Oncotarget. 7:81621–81633. 2016. View Article : Google Scholar : PubMed/NCBI

189 

Muralidhar G and Barbolina M: The miR-200 Family: Versatile players in epithelial ovarian cancer. Int J Mol Sci. 16:16833–16847. 2015. View Article : Google Scholar : PubMed/NCBI

190 

Zuberi M, Khan I, Mir R, Gandhi G, Ray PC and Saxena A: Utility of serum miR-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One. 11:e01539022016. View Article : Google Scholar : PubMed/NCBI

191 

Faul C, Gerszten K, Edwards R, Land S, D'Angelo G, Kelley J III and Price F: A phase I/II study of hypofractionated whole abdominal radiation therapy in patients with chemoresistant ovarian carcinoma: Karnofsky score determines treatment outcome. Int J Radiat Oncol Biol Phys. 47:749–754. 2000. View Article : Google Scholar : PubMed/NCBI

192 

Iorio GC, Martini S, Arcadipane F, Ricardi U and Franco P: The role of radiotherapy in epithelial ovarian cancer: A literature overview. Med Oncol. 36:642019. View Article : Google Scholar : PubMed/NCBI

193 

Sorbe B: Consolidation treatment of advanced ovarian carcinoma with radiotherapy after induction chemotherapy. Int J Gynecol Cancer. 13 (Suppl 2):S192–S195. 2003. View Article : Google Scholar

194 

Pang L and Guo Z: Differences in characteristics and outcomes between large-cell neuroendocrine carcinoma of the ovary and high-grade serous ovarian cancer: A retrospective observational cohort study. Front Oncol. 12:8916992022. View Article : Google Scholar : PubMed/NCBI

195 

Patel SC, Frandsen J, Bhatia S and Gaffney D: Impact on survival with adjuvant radiotherapy for clear cell, mucinous, and endometriod ovarian cancer: The SEER experience from 2004 to 2011. J Gynecol Oncol. 27:e452016. View Article : Google Scholar : PubMed/NCBI

196 

Pestell KE, Medlow CJ, Titley JC, Kelland LR and Walton MI: Characterisation Of The P53 Status, Bcl-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines. Int J Cancer. 77:913–918. 1998. View Article : Google Scholar : PubMed/NCBI

197 

Zielske SP: Epigenetic DNA methylation in radiation biology: On the field or on the sidelines? J Cell Biochem. 116:212–217. 2015. View Article : Google Scholar : PubMed/NCBI

198 

Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY and Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-Mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 27:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI

199 

Liu WJ, Huang YX, Wang W, Zhang Y, Liu BJ, Qiu JG, Jiang BH and Liu LZ: NOX4 signaling mediates cancer development and therapeutic resistance through HER3 in ovarian cancer cells. Cells. 10:16472021. View Article : Google Scholar : PubMed/NCBI

200 

Chen J, Jia Y, Jia ZH, Zhu Y and Jin YM: Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol. 53:2180–2190. 2018.PubMed/NCBI

201 

Zhao Y, Liu S, Wen Y and Zhong L: Effect of MicroRNA-210 on the growth of ovarian cancer cells and the efficacy of radiotherapy. Gynecol Obstet Invest. 86:71–80. 2021. View Article : Google Scholar : PubMed/NCBI

202 

Xing Y, Cui D, Wang S, Wang P, Xing X and Li H: Oleuropein represses the radiation resistance of ovarian cancer by inhibiting hypoxia and microRNA-299-targetted heparanase expression. Food Funct. 8:2857–2864. 2017. View Article : Google Scholar : PubMed/NCBI

203 

Marques C, Ferreira da Silva F, Sousa I and Nave M: Chemotherapy-free treatment of recurrent advanced ovarian cancer: Myth or reality? Int J Gynecol Cancer. 33:607–618. 2023. View Article : Google Scholar : PubMed/NCBI

204 

Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G and Fagotti A: Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol. 77:144–166. 2021. View Article : Google Scholar : PubMed/NCBI

205 

Falzone L, Bordonaro R and Libra M: SnapShot: Cancer chemotherapy. Cell. 186:1816–1816.e1. 2023. View Article : Google Scholar

206 

Raab M, Sanhaji M, Zhou S, Rödel F, El-Balat A, Becker S and Strebhardt K: Blocking mitotic exit of ovarian cancer cells by pharmaceutical inhibition of the anaphase-promoting complex reduces chromosomal instability. Neoplasia. 21:363–375. 2019. View Article : Google Scholar : PubMed/NCBI

207 

Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q, Hardcastle T, Lee A, Roy R, East P and Kschischo M: Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 106:8671–8676. 2009. View Article : Google Scholar : PubMed/NCBI

208 

Pradhan M, Risberg BÅ, Tropé CG, van de Rijn M, Gilks CB and Lee CH: Gross genomic alterations and gene expression profiles of high-grade serous carcinoma of the ovary with and without BRCA1 inactivation. BMC Cancer. 10:4932010. View Article : Google Scholar : PubMed/NCBI

209 

Tang Z, Yang J, Wang X, Zeng M, Wang J, Wang A, Zhao M, Guo L, Liu C, Li D and Chen J: Active DNA end processing in micronuclei of ovarian cancer cells. BMC Cancer. 18:4262018. View Article : Google Scholar : PubMed/NCBI

210 

Morden CR, Farrell AC, Sliwowski M, Lichtensztejn Z, Altman AD, Nachtigal MW and McManus KJ: Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol Oncol. 161:769–778. 2021. View Article : Google Scholar : PubMed/NCBI

211 

Gorringe KL, Chin SF, Pharoah P, Staines JM, Oliveira C, Edwards PA and Caldas C: Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis. 26:923–930. 2005. View Article : Google Scholar : PubMed/NCBI

212 

Bayani J, Paderova J, Murphy J, Rosen B, Zielenska M and Squire JA: Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia. 10:1057–1065. 2008. View Article : Google Scholar : PubMed/NCBI

213 

Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P, Tan IB, Richardson AL, Szallasi Z and Swanton C: Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71:3447–3452. 2011. View Article : Google Scholar : PubMed/NCBI

214 

Hille S, Rein DT, Riffelmann M, Neumann R, Sartorius J, Pfützner A, Kurbacher CM, Schöndorf T and Breidenbach M: Anticancer drugs induce mdr1 gene expression in recurrent ovarian cancer. Anticancer Drugs. 17:1041–1044. 2006. View Article : Google Scholar : PubMed/NCBI

215 

Zhang C, Wang M, Shi C, Shi F and Pei C: Long non-coding RNA Linc00312 modulates the sensitivity of ovarian cancer to cisplatin via the Bcl-2/Caspase-3 signaling pathway. Biosci Trends. 12:309–316. 2018. View Article : Google Scholar : PubMed/NCBI

216 

Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P and Wang Z: ZEB1 Promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy. 63:262–271. 2018. View Article : Google Scholar : PubMed/NCBI

217 

Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E and Sidransky D: Np63 confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res. 71:1167–1176. 2011. View Article : Google Scholar : PubMed/NCBI

218 

Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK and Kakar SS: MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res. 4:172011. View Article : Google Scholar : PubMed/NCBI

219 

Leung AWY, Veinotte CJ, Melong N, Melong N, Oh MH, Chen K, Enfield KSS, Backstrom I, Warburton C, Yapp D, et al: In vivo validation of PAPSS1 (3′-phosphoadenosine 5′-phosphosulfate synthase 1) as a cisplatin-sensitizing therapeutic target. Clin Cancer Res. 23:6555–6566. 2017. View Article : Google Scholar : PubMed/NCBI

220 

Kritsch D, Hoffmann F, Steinbach D, Jansen L, Mary Photini S, Gajda M, Mosig AS, Sonnemann J, Peters S, Melnikova M, et al: Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int J Cancer. 141:1600–1614. 2017. View Article : Google Scholar : PubMed/NCBI

221 

Nam EJ, Kim S, Lee TS, Kim HJ, Lee JY, Kim SW, Kim JH and Kim YT: Primary and recurrent ovarian high-grade serous carcinomas display similar microRNA expression patterns relative to those of normal ovarian tissue. Oncotarget. 7:70524–70534. 2016. View Article : Google Scholar : PubMed/NCBI

222 

Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Lee YS and Cho Y: Differential MicroRNA expression profiles in primary and recurrent epithelial ovarian cancer. Anticancer Res. 7:2611–2617. 2015.

223 

Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Park HJ, Lee YS and Cho YL: Overexpression of microRNA-196b accelerates invasiveness of cancer cells in recurrent epithelial ovarian cancer through regulation of homeobox A9. Cancer Genomics Proteomics. 14:137–142. 2017. View Article : Google Scholar : PubMed/NCBI

224 

Zhou Y, Wang M, Wu J, Jie Z, Chang S and Shuang T: The clinicopathological significance of miR-1307 in chemotherapy resistant epithelial ovarian cancer. J Ovarian Res. 8:232015. View Article : Google Scholar : PubMed/NCBI

225 

Chen C, Hu Y and Li L: NRP1 is targeted by miR-130a and miR-130b, and is associated with multidrug resistance in epithelial ovarian cancer based on integrated gene network analysis. Mol Med Rep. 13:188–196. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Del Castillo Falconi VM, Godinez Rodriguez JA, Fragoso‑Ontiveros V, Contreras‑Espinosa L, Pedroza‑Torres A, Díaz‑Chávez J and Herrera LA: Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Mol Med Rep 31: 144, 2025.
APA
Del Castillo Falconi, V.M., Godinez Rodriguez, J.A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., & Herrera, L.A. (2025). Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Molecular Medicine Reports, 31, 144. https://doi.org/10.3892/mmr.2025.13509
MLA
Del Castillo Falconi, V. M., Godinez Rodriguez, J. A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., Herrera, L. A."Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)". Molecular Medicine Reports 31.6 (2025): 144.
Chicago
Del Castillo Falconi, V. M., Godinez Rodriguez, J. A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., Herrera, L. A."Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)". Molecular Medicine Reports 31, no. 6 (2025): 144. https://doi.org/10.3892/mmr.2025.13509
Copy and paste a formatted citation
x
Spandidos Publications style
Del Castillo Falconi VM, Godinez Rodriguez JA, Fragoso‑Ontiveros V, Contreras‑Espinosa L, Pedroza‑Torres A, Díaz‑Chávez J and Herrera LA: Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Mol Med Rep 31: 144, 2025.
APA
Del Castillo Falconi, V.M., Godinez Rodriguez, J.A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., & Herrera, L.A. (2025). Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Molecular Medicine Reports, 31, 144. https://doi.org/10.3892/mmr.2025.13509
MLA
Del Castillo Falconi, V. M., Godinez Rodriguez, J. A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., Herrera, L. A."Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)". Molecular Medicine Reports 31.6 (2025): 144.
Chicago
Del Castillo Falconi, V. M., Godinez Rodriguez, J. A., Fragoso‑Ontiveros, V., Contreras‑Espinosa, L., Pedroza‑Torres, A., Díaz‑Chávez, J., Herrera, L. A."Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)". Molecular Medicine Reports 31, no. 6 (2025): 144. https://doi.org/10.3892/mmr.2025.13509
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team