
Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review)
- Authors:
- Victor M. Del Castillo Falconi
- Jenny A. Godinez Rodriguez
- Verónica Fragoso‑Ontiveros
- Laura Contreras‑Espinosa
- Abraham Pedroza‑Torres
- José Díaz‑Chávez
- Luis A. Herrera
-
Affiliations: Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine ‑ National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico, Celular Biology Department of Science Faculty, UNAM, Mexico City 04510, Mexico, Investigadores por México Program ‑ SECIHTI, Hereditary Cancer Clinic, INCan, Mexico City 14080, Mexico - Published online on: April 1, 2025 https://doi.org/10.3892/mmr.2025.13509
- Article Number: 144
-
Copyright: © Del Castillo Falconi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Momenimovahed Z, Tiznobaik A, Taheri S and Salehiniya H: Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health. 11:287–299. 2019. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Huang J, Tang Y, Luo X, Ge L, Sheng X, Sun X, Chen Y and Zhu D: Regional methylome profiling reveals dynamic epigenetic heterogeneity and convergent hypomethylation of stem cell quiescence-associated genes in breast cancer following neoadjuvant chemotherapy. Cell Biosci. 9:162019. View Article : Google Scholar : PubMed/NCBI | |
Sandhu R, Roll JD, Rivenbark AG and Coleman WB: Dysregulation of the Epigenome in Human Breast Cancer': Contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 185:282–292. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maire CL, Fuh MM, Kaulich K, Fita KD, Stevic I, Heiland DH, Welsh JA, Jones JC, Görgens A, Ricklefs T, et al: Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro Oncol. 23:1087–1099. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Cui Y, Wang F, Xu L, Yan Y, Tong X and Yan H: DNA methylation-regulated LINC02587 inhibits ferroptosis and promotes the progression of glioma cells through the CoQ-FSP1 pathway. BMC Cancer. 23:9892023. View Article : Google Scholar : PubMed/NCBI | |
Wielandt AM, Villarroel C, Hurtado C, Simian D, Zamorano D, Martínez M, Castro M, Vial MT, Kronberg U and López-Kostner F: Characterization of patients with sporadic colorectal cancer following the new Consensus Molecular Subtypes (CMS). Rev Méd Chile. 145:419–430. 2017.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
Moreno-Ortiz JM, Jiménez-García J, Gutiérrez-Angulo M, Ayala-Madrigal MD, González-Mercado A, González-Villaseñor CO, Flores-López BA, Alvizo-Rodríguez C, Hernández-Sandoval JA, Fernández-Galindo MA, et al: High frequency of MLH1 promoter methylation mediated by gender and age in colorectal tumors from Mexican patients. GMM. 157:638–644. 2021.(In Spanish). | |
Del Castillo Falconi VM, Torres-Arciga K, Matus-Ortega G, Díaz-Chávez J and Herrera LA: DNA methyltransferases: From evolution to clinical applications. Int J Mol Sci. 23:89942022. View Article : Google Scholar : PubMed/NCBI | |
Li E, Bestor TH and Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69:915–926. 1992. View Article : Google Scholar : PubMed/NCBI | |
Shih IeM and Kurman RJ: Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am J Pathol. 164:1511–1518. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kurman RJ and Shih IeM: Pathogenesis of ovarian cancer: Lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol. 27:151–160. 2018.PubMed/NCBI | |
Kurman RJ and Shih IeM: The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI | |
Samuel D, Diaz-Barbe A, Pinto A, Schlumbrecht M and George S: Hereditary ovarian carcinoma: Cancer pathogenesis looking beyond BRCA1 and BRCA2. Cells. 11:5392022. View Article : Google Scholar : PubMed/NCBI | |
Ramus SJ, Harrington PA, Pye C, DiCioccio RA, Cox MJ, Garlinghouse-Jones K, Oakley-Girvan I, Jacobs IJ, Hardy RM, Whittemore AS, et al: Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat. 28:1207–1215. 2007. View Article : Google Scholar : PubMed/NCBI | |
Menon U, Karpinskyj C and Gentry-Maharaj A: Ovarian cancer prevention and screening. Obstet Gynecol. 131:909–927. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M and Falzone L: Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol. 60:582022. View Article : Google Scholar : PubMed/NCBI | |
Kansuttiviwat C, Lertwilaiwittaya P, Roothumnong E, Nakthong P, Dungort P, Meesamarnpong C, Tansa-Nga W, Pongsuktavorn K, Wiboonthanasarn S, Tititumjariya W, et al: Germline mutations of 4567 patients with hereditary breast-ovarian cancer spectrum in Thailand. NPJ Genom Med. 9:92024. View Article : Google Scholar : PubMed/NCBI | |
Andrikopoulou A, Zografos E, Apostolidou K, Kyriazoglou A, Papatheodoridi AM, Kaparelou M, Koutsoukos K, Liontos M, Dimopoulos MA and Zagouri F: Germline and somatic variants in ovarian carcinoma: A next-generation sequencing (NGS) analysis. Front Oncol. 12:10307862022. View Article : Google Scholar : PubMed/NCBI | |
Ghose A, Bolina A, Mahajan I, Raza SA, Clarke M, Pal A, Sanchez E, Rallis KS and Boussios S: Hereditary ovarian cancer: Towards a cost-effective prevention strategy. Int J Environ Res Public Health. 19:120572022. View Article : Google Scholar : PubMed/NCBI | |
McCluggage WG: Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology. 43:420–432. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andrews L and Mutch DG: Hereditary ovarian cancer and risk reduction. Best Pract Res Clin Obstet Gynaecol. 41:31–48. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lynch HT and Lynch JF: Hereditary nonpolyposis colorectal cancer. Semin Surg Oncol. 18:305–313. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Shang X, Shi Y, Yang Z, Zhao J, Yang M, Li Y and Xu S: Genetic variants of lncRNA HOTAIR and risk of epithelial ovarian cancer among Chinese women. Oncotarget. 7:41047–41052. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bronder D, Tighe A, Wangsa D, Zong D, Meyer TJ, Wardenaar R, Minshall P, Hirsch D, Heselmeyer-Haddad K, Nelson L, et al: TP53 loss initiates chromosomal instability in fallopian tube epithelial cells. Dis Model Mech. 14:dmm0490012021. View Article : Google Scholar : PubMed/NCBI | |
Goff BA, Mandel L, Muntz HG and Melancon CH: Ovarian carcinoma diagnosis. Cancer. 89:2068–2075. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, Steppan I, Mueller-Holzner E, Ehrlich M and Marth C: DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecol Oncol. 121:24–31. 2011. View Article : Google Scholar : PubMed/NCBI | |
Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, Marth C, Müller-Holzner E, Zeimet AG, Laird PW and Ehrlich M: DNA hypomethylation and ovarian cancer biology. Cancer Res. 64:4472–4480. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feng W, Marquez RT, Lu Z, Liu J, Lu KH, Issa JP, Fishman DM, Yu Y and Bast RC Jr: Imprinted tumor suppressor genesARHI andPEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 112:1489–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Link PA, Zhang W, Odunsi K and Karpf AR: BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer. Cancer Immun. 13:62013.PubMed/NCBI | |
Wang YQ, Yan Q, Zhang JR, Li SD, Yang YX and Wan XP: Epigenetic inactivation of BRCA1 through promoter hypermethylation in ovarian cancer progression. J Obstet Gynaecol Res. 39:549–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abou-Zeid AA, Azzam AZ and Kamel NA: Methylation status of the gene promoter of cyclin-dependent kinase inhibitor 2A (CDKN2A) in ovarian cancer. Scand J Clin Lab Invest. 71:542–547. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhagat R, Kumar SS, Vaderhobli S, Premalata CS, Pallavi VR, Ramesh G and Krishnamoorthy L: Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol. 35:9069–9078. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Zhang H, Liu Y, Zhou J, He W, Quick CM, Xie D, Smoller BR and Fan CY: Epigenetic and immunohistochemical characterization of the Clusterin gene in ovarian tumors. Arch Gynecol Obstet. 287:989–995. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K and Karpf AR: DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics. 10:736–748. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Yu L, Luo X, Huang L, Li QS, Shao XS, Liu Y, Fan Y and Yang GZ: Detection of OPCML methylation, a possible epigenetic marker, from free serum circulating DNA to improve the diagnosis of early-stage ovarian epithelial cancer. Oncol Lett. 14:217–223. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaur M, Singh A, Singh K, Gupta S and Sachan M: Development of a multiplex MethyLight assay for the detection of DAPK1 and SOX1 methylation in epithelial ovarian cancer in a north Indian population. Genes Genet Syst. 91:175–181. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rattanapan Y, Korkiatsakul V, Kongruang A, Chareonsirisuthigul T, Rerkamnuaychoke B, Wongkularb A and Wilailak S: EGFL7 and RASSF1 promoter hypermethylation in epithelial ovarian cancer. Cancer Genet. 224–225. 37–40. 2018.PubMed/NCBI | |
da Conceição Braga C, Silva LM, Piedade JB, Traiman P and da Silva Filho AL: Epigenetic and expression analysis of TRAIL-R2 and BCL2: On the TRAIL to knowledge of apoptosis in ovarian tumors. Arch Gynecol Obstet. 289:1061–1069. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bonito NA, Borley J, Wilhelm-Benartzi CS, Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox gene MSX1 associates with platinum-resistant disease in high-grade serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S and Serman L: Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki F, Akahira J, Miura I, Suzuki T, Ito K, Hayashi S, Sasano H and Yaegashi N: Loss of estrogen receptor beta isoform expression and its correlation with aberrant DNA methylation of the 5′-untranslated region in human epithelial ovarian carcinoma. Cancer Sci. 99:2365–2372. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baranova I, Kovarikova H, Laco J, Dvorak O, Sedlakova I, Palicka V and Chmelarova M: Aberrant methylation of PCDH17 gene in high-grade serous ovarian carcinoma. Cancer Biomark. 23:125–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ding JJ, Wang G, Shi WX, Zhou HH and Zhao EF: Promoter hypermethylation of FANCF and susceptibility and prognosis of epithelial ovarian cancer. Reprod Sci. 23:24–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gozzi G, Chelbi ST, Manni P, Alberti L, Fonda S, Saponaro S, Fabbiani L, Rivasi F, Benhattar J and Losi L: Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma. Oncol Lett. 12:2811–2819. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi YL, Kang SY, Shin YK, Choi JS, Kim SH, Lee SJ, Bae DS and Ahn G: Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas. Virchows Archiv. 448:331–336. 2006. View Article : Google Scholar : PubMed/NCBI | |
Häfner N, Steinbach D, Jansen L, Diebolder H, Dürst M and Runnebaum IB: RUNX3 and CAMK2N1 hypermethylation as prognostic marker for epithelial ovarian cancer. Int J Cancer. 138:217–228. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jin P, Song Y and Yu G: The role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer: A clinical and experimental study. Anal Cell Pathol (Amst). 2018:65670812018.PubMed/NCBI | |
Khodadadi E, Fahmideh L, Khodadadi E, Dao S, Yousefi M, Taghizadeh S, Asgharzadeh M, Yousefi B and Kafil HS: Current advances in DNA methylation analysis methods. Biomed Res Int. 2021:88275162021. View Article : Google Scholar : PubMed/NCBI | |
Gattuso G, Lavoro A, Caltabiano R, Madonna G, Capone M, Ascierto PA, Falzone L, Libra M and Candido S: Methylation-sensitive restriction enzyme-droplet digital PCR assay for the one-step highly sensitive analysis of DNA methylation hotspots. Int J Mol Med. 53:422024. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Salemi R, Travali S, Scalisi A, McCubrey JA, Candido S and Libra M: MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging (Albany NY). 8:933–944. 2016. View Article : Google Scholar : PubMed/NCBI | |
Singer M, Kosti I, Pachter L and Mandel-Gutfreund Y: A diverse epigenetic landscape at human exons with implication for expression. Nucleic Acids Res. 43:3498–3508. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davidson B, Tropé CG and Reich R: The clinical and diagnostic role of microRNAs in ovarian carcinoma. Gynecol Oncol. 133:640–646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sheng X and Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y and Li J: Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep. 32:277–285. 2014. View Article : Google Scholar : PubMed/NCBI | |
Loginov VI, Pronina IV, Burdennyy AM, Filippova EA, Kazubskaya TP, Kushlinsky DN, Utkin DO, Khodyrev DS, Kushlinskii NE, Dmitriev AA and Braga EA: Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662:28–36. 2018. View Article : Google Scholar : PubMed/NCBI | |
Filippov-Levy N, Cohen-Schussheim H, Tropé CG, Hetland Falkenthal TE, Smith Y, Davidson B and Reich R: Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 148:559–566. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Dai C, Jia G, Xu S, Fu Z, Xu J, Li Q, Ruan H and Xu P: Microarray analysis reveals differentially expressed lncRNAs in benign epithelial ovarian cysts and normal ovaries. Oncol Rep. 38:799–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu YM, Wang Y, Liu SQ, Zhou MY and Guo YR: Profile and validation of dysregulated long non-coding RNAs and mRNAs in ovarian cancer. Oncol Rep. 40:2964–2976. 2018.PubMed/NCBI | |
Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, Lv M, Gu Y, Zhang J, Hua X, et al: LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep. 6:389832016. View Article : Google Scholar : PubMed/NCBI | |
Boyd C and McCluggage WG: Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: Report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 36:368–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pisanic TR II, Cope LM, Lin SF, Yen TT, Athamanolap P, Asaka R, Nakayama K, Fader AN, Wang TH, Shih IM and Wang TL: Methylomic analysis of ovarian cancers identifies tumor-specific alterations readily detectable in early precursor lesions. Clin Cancer Res. 24:6536–6547. 2018. View Article : Google Scholar : PubMed/NCBI | |
Klinkebiel D, Zhang W, Akers SN, Odunsi K and Karpf AR: DNA Methylome analyses implicate fallopian tube epithelia as the origin for high-grade serous ovarian cancer. Mol Cancer Res. 14:787–794. 2016. View Article : Google Scholar : PubMed/NCBI | |
Givel AM, Kieffer Y, Scholer-Dahirel A, Sirven P, Cardon M, Pelon F, Magagna I, Gentric G, Costa A, Bonneau C, Mieulet V, et al: miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun. 9:10562018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Qiu C, Lu N, Liu Z, Jin C, Sun C, Bu H, Yu H, Dongol S and Kong B: FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner. Int J Oncol. 52:2130–2142. 2018.PubMed/NCBI | |
Ma H, Tian T, Liang S, Liu X, Shen H, Xia M, Liu X, Zhang W, Wang L, Chen S and Yu L: Estrogen receptor-mediated miR-486-5p regulation of OLFM4 expression in ovarian cancer. Oncotarget. 7:10594–1605. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nymoen DA, Slipicevic A, Holth A, Emilsen E, Hetland Falkenthal TE, Tropé CG, Reich R, Flørenes VA and Davidson B: MiR-29a is a candidate biomarker of better survival in metastatic high-grade serous carcinoma. Hum Pathol. 54:74–81. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arts FA, Keogh L, Smyth P, O'Toole S, Ta R, Gleeson N, O'Leary JJ, Flavin R and Sheils O: miR-223 potentially targets SWI/SNF complex protein SMARCD1 in atypical proliferative serous tumor and high-grade ovarian serous carcinoma. Hum Pathol. 70:98–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chaluvally-Raghavan P, Jeong KJ, Pradeep S, Silva AM, Yu S, Liu W, Moss T, Rodriguez-Aguayo C, Zhang D, Ram P, et al: Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep. 15:1493–1504. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Liu S, Wang G, Wu X, Ding Y, Guo G, Jiang J and Cui S: Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncol Rep. 33:591–598. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsov VA, Tang Z and Ivshina AV: Identification of common oncogenic and early developmental pathways in the ovarian carcinomas controlling by distinct prognostically significant microRNA subsets. BMC Genomics. 18 (Suppl 6):6922017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Guo G, Wang G, Zhao J, Wang B, Yu X and Ding Y: Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma. Mol Med Rep. 12:8021–8031. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yanaihara N, Noguchi Y, Saito M, Takenaka M, Takakura S, Yamada K and Okamoto A: MicroRNA gene expression signature driven by miR-9 overexpression in ovarian clear cell carcinoma. PLoS One. 11:e01625842016. View Article : Google Scholar : PubMed/NCBI | |
Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C and Riva C: The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 12:3329–3336. 2006. View Article : Google Scholar : PubMed/NCBI | |
Niskakoski A, Pasanen A, Porkka N, Eldfors S, Lassus H, Renkonen-Sinisalo L, Kaur S, Mecklin JP, Bützow R and Peltomäki P: Converging endometrial and ovarian tumorigenesis in Lynch syndrome: Shared origin of synchronous carcinomas. Gynecol Oncol. 150:92–98. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kolbe DL, DeLoia JA, Porter-Gill P, Strange M, Petrykowska HM, Guirguis A, Krivak TC, Brody LC and Elnitski L: Differential analysis of ovarian and endometrial cancers identifies a methylator phenotype. PLoS One. 7:e329412012. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Ren F, Wang D, Li Y, Liu K, Liu S and Chen P: RUNX3 is inactivated by promoter hypermethylation in malignant transformation of ovarian endometriosis. Oncol Rep. 32:2580–2588. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liew PL, Huang RL, Weng YC, Fang CL, Hui-Ming Huang T and Lai HC: Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors: Methylation profile of MuOC and PSMB8. Int J Cancer. 143:355–367. 2018. View Article : Google Scholar : PubMed/NCBI | |
Agostini A, Brunetti M, Davidson B, Tropé CG, Eriksson AGZ, Heim S, Panagopoulos I and Micci F: The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Sci Rep. 8:110692018. View Article : Google Scholar : PubMed/NCBI | |
Vang R, Shih IeM and Kurman RJ: Ovarian low-grade and high-grade serous carcinoma: Pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 16:267–282. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bowtell DD: The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 10:803–808. 2010. View Article : Google Scholar : PubMed/NCBI | |
O'Shea AS: Clinical staging of ovarian cancer. Methods Mol Biol. 2424:3–10. 2022. View Article : Google Scholar : PubMed/NCBI | |
Richards EJ, Permuth-Wey J, Li Y, Chen YA, Coppola D, Reid BM, Lin HY, Teer JK, Berchuck A, Birrer MJ, et al: A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer. Oncotarget. 6:34745–34757. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Wu D, Deng S, Han R, Liu T, Li J and Xu Y: Integrated analysis reveals that long non-coding RNA TUBA4B can be used as a prognostic biomarker in various cancers. Cell Physiol Biochem. 49:530–544. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meryet-Figuière M, Lambert B, Gauduchon P, Vigneron N, Brotin E, Poulain L and Denoyelle C: An overview of long non-coding RNAs in ovarian cancers. Oncotarget. 7:44719–44734. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Gao D, He S, Shuai C and Peng S: Dysregulated expression of long noncoding RNAs in ovarian cancer. Int J Gynecol Cancer. 26:1564–1570. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Lu Y and Lu B: MicroRNA and Long Non-Coding RNA in ovarian carcinoma: Translational insights and potential clinical applications. Cancer Invest. 34:465–476. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Qiu J and Hua K: Long non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in gynecologic cancers. Biosci Trends. 12:342–353. 2018. View Article : Google Scholar : PubMed/NCBI | |
Micheel J, Safrastyan A and Wollny D: Advances in non-coding RNA sequencing. Noncoding RNA. 7:702021.PubMed/NCBI | |
Zhang N, Hu G, Myers TG and Williamson PR: Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol. 126:e782019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Leng T, Zhang Q, Zhao Q, Nie X and Yang L: Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed Pharmacother. 102:302–308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, Zhang Y, Li Q and Hua KQ: Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 134:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xi J, Feng J and Zeng S: Long noncoding RNA lncBRM facilitates the proliferation, migration and invasion of ovarian cancer cells via upregulation of Sox4. Am J Cancer Res. 7:2180–2189. 2017.PubMed/NCBI | |
Zhang Y, Dun Y, Zhou S and Huang XH: LncRNA HOXD-AS1 promotes epithelial ovarian cancer cells proliferation and invasion by targeting miR-133a-3p and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother. 96:1216–1221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Yao D and Cui D: LncSOX4 serves an oncogenic role in the tumorigenesis of epithelial ovarian cancer by promoting cell proliferation and inhibiting apoptosis. Mol Med Rep. 17:8282–8288. 2018.PubMed/NCBI | |
Yan H, Li H, Li P, Li X, Lin J, Zhu L, Silva MA, Wang X, Wang P and Zhang Z: Long noncoding RNA MLK7-AS1 promotes ovarian cancer cells progression by modulating miR-375/YAP1 axis. J Exp Clin Cancer Res. 37:2372018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Chen Y, Zhang J and Liu S: LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis through regulating AURKA in epithelial ovarian cancer cells. Medicine (Baltimore). 97:e121312018. View Article : Google Scholar : PubMed/NCBI | |
Wang YS, Ma LN, Sun JX, Liu N and Wang H: Long non-coding CPS1-IT1 is a positive prognostic factor and inhibits epithelial ovarian cancer tumorigenesis. Eur Rev Med Pharmacol Sci. 21:3169–3175. 2017.PubMed/NCBI | |
Zhu FF, Zheng FY, Wang HO, Zheng JJ and Zhang Q: Downregulation of lncRNA TUBA4B is associated with poor prognosis for epithelial ovarian cancer. Pathol Oncol Res. 24:419–425. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ying X, Wei K, Lin Z, Cui Y, Ding J, Chen Y and Xu B: MicroRNA-125b suppresses ovarian cancer progression via suppression of the epithelial-mesenchymal transition pathway by targeting the SET protein. Cell Physiol Biochem. 39:501–510. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P and Wang S: A pilot study of circulating MicroRNA-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer. 27:3–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W and Li X: MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget. 6:40799–40814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Lu K, Dai S, Hu Y and Fan W: Clinicopathological and prognostic implications of the miR-200 family in patients with epithelial ovarian cancer. Int J Clin Exp Pathol. 7:2392–2401. 2014.PubMed/NCBI | |
Kapetanakis NI, Uzan C, Jimenez-Pailhes AS, Gouy S, Bentivegna E, Morice P, Caron O, Gourzones-Dmitriev C, Le Teuff G and Busson P: Plasma miR-200b in ovarian carcinoma patients: Distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget. 6:36815–36824. 2015. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Müller V, Milde-Langosch K, Trillsch F, Pantel K and Schwarzenbach H: Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 7:16923–16935. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du Z and Sha X: Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a. Tumour Biol. 39:10104283176943022017. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Chen X, Xiu YL, Sun KX and Zhao Y: MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett. 362:122–130. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shuang T, Wang M, Shi C, Zhou Y and Wang D: Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells. FEBS Lett. 589:3154–3164. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zou YT, Gao JY, Wang HL, Wang Y, Wang H and Li PL: Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet Mol Res. 14:8766–8777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Li W: Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 36:3605–3610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zeng Q, Ban Z, Cao J, Chu T, Lei D, Liu C, Guo W and Zeng X: Effects of let-7c on the proliferation of ovarian carcinoma cells by targeted regulation of CDC25a gene expression. Oncol Lett. 16:5543–5550. 2018.PubMed/NCBI | |
Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY and Chan DW: Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 5:944–958. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, Ishida K, Nakatsuka E, Kodama M, Hashimoto K, et al: Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 11:812018. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Bi T, Qu Z, Jiang J, Cui S and Wang Y: Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol Rep. 32:1003–1012. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen Q, Liu Q and Gao F: Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer. Tumour Biol. 37:8359–8365. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Huang K, You Y, Fu X, Hu L, Song L and Meng Y: Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol. 44:2111–2120. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Shen H, Yin X, Long L, Chen X, Feng F, Liu Y, Zhao P, Xu Y, Li M, et al: IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget. 8:39154–39166. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Fan J, Huang L, Ye M, Huang Z, Wang Y, Li Q and Huang J: Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma. Int J Clin Exp Pathol. 8:4132–4137. 2015.PubMed/NCBI | |
Koukourakis MI, Kontomanolis E, Sotiropoulou M, Mitrakas A, Dafa E, Pouliliou S, Sivridis E and Giatromanolaki A: Increased soluble PD-L1 levels in the plasma of patients with epithelial ovarian cancer correlate with plasma levels of miR34a and miR200. Anticancer Res. 38:5739–5745. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Dou Y and Sheng M: Inhibition of microRNA-383 has tumor suppressive effect in human epithelial ovarian cancer through the action on caspase-2 gene. Biomed Pharmacother. 83:1286–1294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai F, Zhang Y and Chen Y: Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Hum Pathol. 45:1285–1293. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, Huang B, Jin D and Wang Z: Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 10:242017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X and Cheng X: Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15:5092015. View Article : Google Scholar : PubMed/NCBI | |
Paudel D, Zhou W, Ouyang Y, Dong S, Huang Q, Giri R, Wang J and Tong X: MicroRNA-130b functions as a tumor suppressor by regulating RUNX3 in epithelial ovarian cancer. Gene. 586:48–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, Zhang W and Chen C: MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Biomed Pharmacother. 107:712–720. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Dong C, Law PT, Chan MT, Su Z, Wang S, Wu WK and Xu H: MicroRNA-145 targets TRIM2 and exerts tumor-suppressing functions in epithelial ovarian cancer. Gynecol Oncol. 139:513–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qin CZ, Lou XY, Lv QL, Cheng L, Wu NY, Hu L and Zhou HH: MicroRNA-184 acts as a potential diagnostic and prognostic marker in epithelial ovarian cancer and regualtes cell proliferation, apoptosis and inflammation. Pharmazie. 70:668–673. 2015.PubMed/NCBI | |
Liang T, Li L, Cheng Y, Ren C and Zhang G: MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12. Onco Targets Ther. 9:4307–4315. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Zhang X, He S, Liu B, Han H and Sun X: MicroRNA-219-5p inhibits the proliferation, migration, and invasion of epithelial ovarian cancer cells by targeting the Twist/Wnt/β-catenin signaling pathway. Gene. 637:25–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Li Y, Alvero A, Li J, Wu Q, Xiao Q, Peng Y, Hu Y, Li X, Yan W, et al: MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget. 7:80633–80654. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Ruan Y, Jiang H and Xu C: MicroRNA-424 inhibits cell migration, invasion, and epithelial mesenchymal transition by downregulating doublecortin-like kinase 1 in ovarian clear cell carcinoma. Int J Biochem Cell Biol. 85:66–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu L, Sun Y, Xiang J, Zhou D, Wang L, Xu H, Yang X, Du N, Zhang M, et al: MicroRNA-520g promotes epithelial ovarian cancer progression and chemoresistance via DAPK2 repression. Oncotarget. 7:26516–26534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li Z, Gai F and Wang Y: MicroRNA-137 suppresses tumor growth in epithelial ovarian cancer in vitro and in vivo. Mol Med Rep. 12:3107–3114. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Jin S and Wang R: MicroRNA-139 suppressed tumor cell proliferation, migration and invasion by directly targeting HDGF in epithelial ovarian cancer. Mol Med Rep. 16:3379–3386. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Li H, Su L, Lu Q and Liu Z: MicroRNA-455 inhibits cell proliferation and invasion of epithelial ovarian cancer by directly targeting Notch1. Mol Med Rep. 16:9777–9785. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Jiang J, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Zhang L, Huang H, Huang Y, Huang L, Wang J, Huang S, He L, Zhou Y, Jia W, et al: MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4. Oncotarget. 6:23793–23806. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Jiang N, Shi H, Zhao S, Yao S and Shen H: miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol. 50:1383–1391. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang X, Tang W, Lin Z, Xu L, Dong R, Li Y, Li J, Zhang Z, Li X, et al: miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ. 24:2089–2100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, He J, Xu H, Xu L and Li N: MiR-143 targets CTGF and exerts tumor-suppressing functions in epithelial ovarian cancer. Am J Transl Res. 8:2716–2726. 2016.PubMed/NCBI | |
Dong M, Yang P and Hua F: miR-191 modulates malignant transformation of endometriosis through regulating TIMP3. Med Sci Monit. 21:915–920. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niu K, Shen W, Zhang Y, Zhao Y and Lu Y: MiR-205 promotes motility of ovarian cancer cells via targeting ZEB1. Gene. 574:330–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Xie Y, Zhuang X and Yuan Z: MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother. 104:763–770. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Yang S, Liu T and Lou G: miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 14:572015. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Ren X, Zhang Y, Fu X, Li Y, Peng Y, Xiao Q, Li T, Ouyang C, Hu Y, et al: MiR-221-3p targets ARF4 and inhibits the proliferation and migration of epithelial ovarian cancer cells. Biochem Biophys Res Commun. 497:1162–1170. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Wan Q, Li F and Tang C: MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Rep. 51:456–461. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Li H, Yang S, Liu T and Lou G: MiR-381 inhibits epithelial ovarian cancer malignancy via YY1 suppression. Tumour Biol. 37:9157–9167. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Wang K and Xi M: MiR-494 inhibits epithelial ovarian cancer growth by targeting c-Myc. Med Sci Monit. 22:617–624. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhao X, Wang L, Zhang S, Cui M and He J: miR-494 suppresses tumor growth of epithelial ovarian carcinoma by targeting IGF1R. Tumour Biol. 37:7767–7776. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou QH, Zhao YM, JIA LL and Zhang Y: Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 21:4278–4282. 2017.PubMed/NCBI | |
Zhang S, Zhang JY, Lu LJ, Wang CH and Wang LH: MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci. 21:4542–4547. 217.PubMed/NCBI | |
Shi C and Zhang Z: miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma. Tumour Biol. 37:5437–5443. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Huang Y, Chen L and Wang J: miR-221 regulates proliferation and apoptosis of ovarian cancer cells by targeting BMF. Oncol Lett. 16:6697–6704. 2018.PubMed/NCBI | |
Wen C, Liu X, Ma H, Zhang W and Li H: miR-338-3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. Int J Oncol. 46:2277–2285. 2015. View Article : Google Scholar : PubMed/NCBI | |
Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, et al: miR-590-3p promotes ovarian cancer growth and metastasis via a Novel FOXA2-versican pathway. Cancer Res. 78:4175–4190. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Zhao J, Wang X, Zhu X and Gong L: Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 36:2101–2107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Xia B, Qin L, Chen H and Lou G: S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA Cell Biol. 37:491–500. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen JL, Chen F, Zhang TT and Liu NF: Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med. 37:1601–1610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zuberi M, Khan I, Gandhi G, Ray PC and Saxena A: The conglomeration of diagnostic, prognostic and therapeutic potential of serum miR-199a and its association with clinicopathological features in epithelial ovarian cancer. Tumour Biol. 37:11259–11266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Zong ZH, Chen S, Sang XB, Wu DD, Wang LL, Liu Y and Zhao Y: The role of miR-372 in ovarian carcinoma cell proliferation. Gene. 624:14–20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li D and Zhang W: Tumor suppressor role of miR-217 in human epithelial ovarian cancer by targeting IGF1R. Oncol Rep. 35:1671–1679. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liu J, Zang D, Wu S, Liu A, Zhu J, Wu G, Li J and Jiang L: Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression. Oncotarget. 6:15180–15193. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Gong G, Tan H, Dai F, Zhu X, Chen Y, Wang J, Liu Y, Chen P, Wu X and Wen J: Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 33:2915–2923. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li S, Dong C, Xie X and Zhang Y: Knockdown of long noncoding RNA NR_026689 inhibits proliferation and invasion and increases apoptosis in ovarian carcinoma HO-8910PM cells. Oncol Res. 25:259–265. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Guo Q, Lu X, Zhao J, Shi J, Wang Z and Zhou X: CTD-2020K17.1, a novel long non-coding RNA, promotes migration, invasion, and proliferation of serous ovarian cancer cells in vitro. Med Sci Monit. 24:1329–1339. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Zhang XD, Tang XY, Zheng TT, Zhang Y and Hua KQ: ElncRNA1, a long non-coding RNA that is transcriptionally induced by oestrogen, promotes epithelial ovarian cancer cell proliferation. Int J Oncol. 51:507–514. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Meng H, Liu S, Hu J, Zhang Y, Jiao T, Liu Y, Ou J, Wang D, Yao L, et al: LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 24:841–852. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang H, Song T, Zou Y, Jiang J, Fang L and Li P: HOTAIR is a potential target for the treatment of cisplatin-resistant ovarian cancer. Mol Med Rep. 12:2211–2216. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu CW, Zhou DD, Xie T, Hao JL, Pant OP, Lu CB and Liu XF: HOXA11 antisense long noncoding RNA (HOXA11-AS): A promising lncRNA in human cancers. Cancer Med. 7:3792–3799. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du W, Feng Z and Sun Q: LncRNA LINC00319 accelerates ovarian cancer progression through miR-423-5p/NACC1 pathway. Biochem Biophys Res Commun. 507:198–202. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shu C, Yan D, Mo Y, Gu J, Shah N and He J: Long noncoding RNA lncARSR promotes epithelial ovarian cancer cell proliferation and invasion by association with HuR and miR-200 family. Am J Cancer Res. 8:981–992. 2018.PubMed/NCBI | |
Chen S, Wu DD, Sang XB, Wang LL, Zong ZH, Sun KX, Liu BL and Zhao Y: The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis. 8:e31182017. View Article : Google Scholar : PubMed/NCBI | |
Qnbo L, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI | |
Lin Q, Guan W, Ren W, Zhang L, Zhang J and Xu G: MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 39:2644–2652. 2018.PubMed/NCBI | |
Yan C, Jiang Y, Wan Y, Zhang L, Liu J, Zhou S and Cheng W: Long noncoding RNA NBAT-1 suppresses tumorigenesis and predicts favorable prognosis in ovarian cancer. Onco Targets Ther. 10:1993–2002. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Fu X and Lu Z: Long non-coding RNA NEAT1 promoted ovarian cancer cells' metastasis through regulation of miR-382-3p/ROCK1 axial. Cancer Sci. 109:2188–2198. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Wang LL, Sun KX, Liu Y, Guan X, Zong ZH and Zhao Y: LncRNA PCGEM1 induces ovarian carcinoma tumorigenesis and progression through RhoA pathway. Cell Physiol Biochem. 47:1578–1588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Geng J and Wang J: Long non-coding RNA RP11-552M11.4 promotes cells proliferation, migration and invasion by targeting BRCA2 in ovarian cancer. Cancer Sci. 109:1428–1446. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu C, Lu Z, Chen L, Wang J, Li Y and Ma H: Upregulation of the long non-coding RNA SPRY4-IT1 indicates a poor prognosis and promotes tumorigenesis in ovarian cancer. Biomed Pharmacother. 88:529–534. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li TH, Zhang JJ, Liu SX and Chen Y: Long non-coding RNA taurine-upregulated gene 1 predicts unfavorable prognosis, promotes cells proliferation, and inhibits cells apoptosis in epithelial ovarian cancer. Medicine (Baltimore). 97:e05752018. View Article : Google Scholar : PubMed/NCBI | |
Hong HH, Hou LK, Pan X, Wu CY, Huang H, Li B and Nie W: Long non-coding RNA UCA1 is a predictive biomarker of cancer. Oncotarget. 7:44442–44447. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Cao X, Zhang L, Zhang X, Sheng H and Tao K: UCA1 overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy. Cancer Chemother Pharmacol. 77:629–634. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiu JJ, Wang Y, Liu YL, Zhang Y, Ding JX and Hua KQ: The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget. 7:32478–32492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Shi H, Ren F, Jia Y and Zhang R: Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res. 359:185–194. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hua F, Li CH, Chen XG and Liu XP: Long Noncoding RNA CCAT2 knockdown suppresses tumorous progression by sponging miR-424 in epithelial ovarian cancer. Oncol Res. 26:241–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yim GW, Kim HJ, Kim LK, Kim SW, Kim S, Nam EJ and Kim YT: Long Non-coding RNA HOXA11 antisense promotes cell proliferation and invasion and predicts patient prognosis in serous ovarian cancer. Cancer Res Treat. 49:656–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koutsaki M, Spandidos DA and Zaravinos A: Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: Prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett. 351:173–181. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sulaiman SA, Ab Mutalib NS and Jamal R: miR-200c regulation of metastases in ovarian cancer: Potential role in epithelial and mesenchymal transition. Front Pharmacol. 7:2712016. View Article : Google Scholar : PubMed/NCBI | |
Teng Y, Su X, Zhang X, Zhang Y, Li C, Niu W, Liu C and Qu K: miRNA-200a/c as potential biomarker in epithelial ovarian cancer (EOC): Evidence based on miRNA meta-signature and clinical investigations. Oncotarget. 7:81621–81633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Muralidhar G and Barbolina M: The miR-200 Family: Versatile players in epithelial ovarian cancer. Int J Mol Sci. 16:16833–16847. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC and Saxena A: Utility of serum miR-125b as a diagnostic and prognostic indicator and its alliance with a panel of tumor suppressor genes in epithelial ovarian cancer. PLoS One. 11:e01539022016. View Article : Google Scholar : PubMed/NCBI | |
Faul C, Gerszten K, Edwards R, Land S, D'Angelo G, Kelley J III and Price F: A phase I/II study of hypofractionated whole abdominal radiation therapy in patients with chemoresistant ovarian carcinoma: Karnofsky score determines treatment outcome. Int J Radiat Oncol Biol Phys. 47:749–754. 2000. View Article : Google Scholar : PubMed/NCBI | |
Iorio GC, Martini S, Arcadipane F, Ricardi U and Franco P: The role of radiotherapy in epithelial ovarian cancer: A literature overview. Med Oncol. 36:642019. View Article : Google Scholar : PubMed/NCBI | |
Sorbe B: Consolidation treatment of advanced ovarian carcinoma with radiotherapy after induction chemotherapy. Int J Gynecol Cancer. 13 (Suppl 2):S192–S195. 2003. View Article : Google Scholar | |
Pang L and Guo Z: Differences in characteristics and outcomes between large-cell neuroendocrine carcinoma of the ovary and high-grade serous ovarian cancer: A retrospective observational cohort study. Front Oncol. 12:8916992022. View Article : Google Scholar : PubMed/NCBI | |
Patel SC, Frandsen J, Bhatia S and Gaffney D: Impact on survival with adjuvant radiotherapy for clear cell, mucinous, and endometriod ovarian cancer: The SEER experience from 2004 to 2011. J Gynecol Oncol. 27:e452016. View Article : Google Scholar : PubMed/NCBI | |
Pestell KE, Medlow CJ, Titley JC, Kelland LR and Walton MI: Characterisation Of The P53 Status, Bcl-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines. Int J Cancer. 77:913–918. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zielske SP: Epigenetic DNA methylation in radiation biology: On the field or on the sidelines? J Cell Biochem. 116:212–217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY and Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-Mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 27:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu WJ, Huang YX, Wang W, Zhang Y, Liu BJ, Qiu JG, Jiang BH and Liu LZ: NOX4 signaling mediates cancer development and therapeutic resistance through HER3 in ovarian cancer cells. Cells. 10:16472021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jia Y, Jia ZH, Zhu Y and Jin YM: Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol. 53:2180–2190. 2018.PubMed/NCBI | |
Zhao Y, Liu S, Wen Y and Zhong L: Effect of MicroRNA-210 on the growth of ovarian cancer cells and the efficacy of radiotherapy. Gynecol Obstet Invest. 86:71–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Cui D, Wang S, Wang P, Xing X and Li H: Oleuropein represses the radiation resistance of ovarian cancer by inhibiting hypoxia and microRNA-299-targetted heparanase expression. Food Funct. 8:2857–2864. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marques C, Ferreira da Silva F, Sousa I and Nave M: Chemotherapy-free treatment of recurrent advanced ovarian cancer: Myth or reality? Int J Gynecol Cancer. 33:607–618. 2023. View Article : Google Scholar : PubMed/NCBI | |
Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, Ricci C, Scambia G and Fagotti A: Chemotherapy resistance in epithelial ovarian cancer: Mechanisms and emerging treatments. Semin Cancer Biol. 77:144–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Falzone L, Bordonaro R and Libra M: SnapShot: Cancer chemotherapy. Cell. 186:1816–1816.e1. 2023. View Article : Google Scholar | |
Raab M, Sanhaji M, Zhou S, Rödel F, El-Balat A, Becker S and Strebhardt K: Blocking mitotic exit of ovarian cancer cells by pharmaceutical inhibition of the anaphase-promoting complex reduces chromosomal instability. Neoplasia. 21:363–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q, Hardcastle T, Lee A, Roy R, East P and Kschischo M: Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 106:8671–8676. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pradhan M, Risberg BÅ, Tropé CG, van de Rijn M, Gilks CB and Lee CH: Gross genomic alterations and gene expression profiles of high-grade serous carcinoma of the ovary with and without BRCA1 inactivation. BMC Cancer. 10:4932010. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Yang J, Wang X, Zeng M, Wang J, Wang A, Zhao M, Guo L, Liu C, Li D and Chen J: Active DNA end processing in micronuclei of ovarian cancer cells. BMC Cancer. 18:4262018. View Article : Google Scholar : PubMed/NCBI | |
Morden CR, Farrell AC, Sliwowski M, Lichtensztejn Z, Altman AD, Nachtigal MW and McManus KJ: Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol Oncol. 161:769–778. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gorringe KL, Chin SF, Pharoah P, Staines JM, Oliveira C, Edwards PA and Caldas C: Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis. 26:923–930. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bayani J, Paderova J, Murphy J, Rosen B, Zielenska M and Squire JA: Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia. 10:1057–1065. 2008. View Article : Google Scholar : PubMed/NCBI | |
Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D, Tan P, Tan IB, Richardson AL, Szallasi Z and Swanton C: Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71:3447–3452. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hille S, Rein DT, Riffelmann M, Neumann R, Sartorius J, Pfützner A, Kurbacher CM, Schöndorf T and Breidenbach M: Anticancer drugs induce mdr1 gene expression in recurrent ovarian cancer. Anticancer Drugs. 17:1041–1044. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang M, Shi C, Shi F and Pei C: Long non-coding RNA Linc00312 modulates the sensitivity of ovarian cancer to cisplatin via the Bcl-2/Caspase-3 signaling pathway. Biosci Trends. 12:309–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Qin L, Tian D, Wang T, Fan L, Zhang P and Wang Z: ZEB1 Promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy. 63:262–271. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E and Sidransky D: Np63 confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res. 71:1167–1176. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK and Kakar SS: MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res. 4:172011. View Article : Google Scholar : PubMed/NCBI | |
Leung AWY, Veinotte CJ, Melong N, Melong N, Oh MH, Chen K, Enfield KSS, Backstrom I, Warburton C, Yapp D, et al: In vivo validation of PAPSS1 (3′-phosphoadenosine 5′-phosphosulfate synthase 1) as a cisplatin-sensitizing therapeutic target. Clin Cancer Res. 23:6555–6566. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kritsch D, Hoffmann F, Steinbach D, Jansen L, Mary Photini S, Gajda M, Mosig AS, Sonnemann J, Peters S, Melnikova M, et al: Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int J Cancer. 141:1600–1614. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nam EJ, Kim S, Lee TS, Kim HJ, Lee JY, Kim SW, Kim JH and Kim YT: Primary and recurrent ovarian high-grade serous carcinomas display similar microRNA expression patterns relative to those of normal ovarian tissue. Oncotarget. 7:70524–70534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Lee YS and Cho Y: Differential MicroRNA expression profiles in primary and recurrent epithelial ovarian cancer. Anticancer Res. 7:2611–2617. 2015. | |
Chong GO, Jeon HS, Han HS, Son JW, Lee YH, Hong DG, Park HJ, Lee YS and Cho YL: Overexpression of microRNA-196b accelerates invasiveness of cancer cells in recurrent epithelial ovarian cancer through regulation of homeobox A9. Cancer Genomics Proteomics. 14:137–142. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Wang M, Wu J, Jie Z, Chang S and Shuang T: The clinicopathological significance of miR-1307 in chemotherapy resistant epithelial ovarian cancer. J Ovarian Res. 8:232015. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Hu Y and Li L: NRP1 is targeted by miR-130a and miR-130b, and is associated with multidrug resistance in epithelial ovarian cancer based on integrated gene network analysis. Mol Med Rep. 13:188–196. 2016. View Article : Google Scholar : PubMed/NCBI |