
Advances in research on flavonoids in tumor immunotherapy (Review)
- Authors:
- Chaoguang Yan
- Guangchun Wang
-
Affiliations: Department of Oncology, Weifang Chinese Medicine Hospital, Weifang, Shandong 261000 P.R. China - Published online on: April 4, 2025 https://doi.org/10.3892/mmr.2025.13515
- Article Number: 150
-
Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Kumar H: Cancer and immunity: Who is shaping whom? Int Rev Immunol. 40:317–318. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bosch F and Rosich L: The contributions of Paul Ehrlich to pharmacology: A tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 82:171–179. 2008. View Article : Google Scholar : PubMed/NCBI | |
Burnet M: Cancer; a biological approach. I. The processes of control. Br Med J. 1:779–786. 1957. View Article : Google Scholar : PubMed/NCBI | |
Kennedy LB and Salama AKS: A review of cancer immunotherapy toxicity. CA Cancer J Clin. 70:86–104. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: Understanding the ch aracteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hargadon KM, Johnson CE and Williams CJ: Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 62:29–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D, Gavin D, Lee S, Liu K, George B, et al: FDA approval summary: Tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res. 25:1142–1146. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE and Pazdur R: FDA approval summary: Axicabtagene ciloleucel for relapsed or refractory large B-cell Lymphoma. Clin Cancer Res. 25:1702–1708. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved the rapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Centers for Disease Control and Prevention (CDC), . FDA licensure of quadrivalent human papillomavirus vaccine (HPV4, Gardasil) for use in males and guidance from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 59:630–632. 2010.PubMed/NCBI | |
Kirby T: FDA approves new upgraded Gardasil 9. Lancet Oncol. 16:e562015. View Article : Google Scholar : PubMed/NCBI | |
Centers for Disease Control and Prevention (CDC), . FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 59:626–629. 2010.PubMed/NCBI | |
Kalathil SG and Thanavala Y: High immunosuppressive burden in cancer patients: A major hurdle for cancer immunotherapy. Cancer Immunol Immunother. 65:813–819. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Qiao Z, Wang H, Zhu L and Zhang L: Flavonoids: Promising anticancer agents. Med Res Rev. 23:519–534. 2003. View Article : Google Scholar : PubMed/NCBI | |
Raffa D, Maggio B, Raimondi MV, Plescia F and Daidone G: Recent discoveries of anticancer flavonoids. Eur J Med Chem. 142:213–228. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ravishankar D, Rajora AK, Greco F and Osborn HM: Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 45:2821–2831. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duan N, Hu X, Zhou R, Li Y, Wu W and Liu N: A review on dietary flavonoids as modulators of the tumor microenvironment. Mol Nutr Food Res. 67:e22004352023. View Article : Google Scholar : PubMed/NCBI | |
Sudhakaran M, Sardesai S and Doseff AI: Flavonoids: New frontier for immuno-regulation and breast cancer control. Antioxidants (Basel). 8:1032019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F and Dai Z: Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 121:1095702020. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Jin Y, Song M, Zhao Y and Zhang H: When natural compounds meet nanotechnology: Nature-Inspired nanomedicines for cancer immunotherapy. Pharmaceutics. 14:15892022. View Article : Google Scholar : PubMed/NCBI | |
Wilky BA: Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol Rev. 290:6–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, et al: Mechanisms of immune modulation in the tumor microenvironment and impl ications for targeted therapy. Front Oncol. 13:12006462023. View Article : Google Scholar : PubMed/NCBI | |
Currenti J, Mishra A, Wallace M, George J and Sharma A: Immunosuppressive mechanisms of oncofetal reprogramming in the tumor microenvironment: Implications in immunotherapy response. Biochem Soc Trans. 51:597–612. 2023.PubMed/NCBI | |
Li Y, Xiang S, Pan W, Wang J, Zhan H and Liu S: Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol. 13:11668602023. View Article : Google Scholar : PubMed/NCBI | |
Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kimura S, Nanbu U, Noguchi H, Harada Y, Kumamoto K, Sasaguri Y and Nakayama T: Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J Oral Pathol Med. 48:677–685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and inv asiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeuti c targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
Khazaie K and von Boehmer H: The impact of CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol. 16:124–136. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rotte A: Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 38:2552019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI | |
Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, Moniuszko M, Radziwon P, Tucker SC and Honn KV: Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 40:949–982. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G and Holak TA: Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 25:1163–1174. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kennedy A, Waters E, Rowshanravan B, Hinze C, Williams C, Janman D, Fox TA, Booth C, Pesenacker AM, Halliday N, et al: Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol. 23:1365–1378. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chikuma S: CTLA-4, an essential immune-checkpoint for T-cell activation. Curr Top Microbiol Immunol. 410:99–126. 2017.PubMed/NCBI | |
Goldberg MV and Drake CG: LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 344:269–278. 2011.PubMed/NCBI | |
Chauvin JM and Zarour HM: TIGIT in cancer immunotherapy. J Immunother Cancer. 8:e0009572020. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Chen J, Ji T and Cong X: TIGIT, a novel immune checkpoint therapy for melanoma. Cell Death Dis. 14:4662023. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Rangachari M and Kuchroo VK: Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol. 42:1013022019. View Article : Google Scholar : PubMed/NCBI | |
Kane LP: Regulation of Tim-3 function by binding to phosphatidylserine. Biochem J. 478:3999–4004. 2021. View Article : Google Scholar : PubMed/NCBI | |
Haist M, Stege H, Grabbe S and Bros M: The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment. Cancers (Basel). 13:2102021. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Redd PS, Lee JR, Savage N and Liu K: The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 5:e12471352016. View Article : Google Scholar : PubMed/NCBI | |
Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors in cancer therapy: A focus on T-regulatory cells. Immunol Cell Biol. 96:21–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Malinga NZ, Siwele SC, Steel HC, Kwofie LLI, Meyer PWA, Smit T, Anderson R, Rapoport BL and Kgokolo MCM: Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma. Transl Oncol. 19:1013842022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Cao X: Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl). 94:509–522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martínez G, Mijares MR and De Sanctis JB: Effects of flavonoids and its derivatives on immune cell responses. Recent Pat Inflamm Allergy Drug Discov. 13:84–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD and Gordon S: Macrophage receptors and immune recognition. Annu Rev Immunol. 23:901–944. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nikitina E, Larionova I, Choinzonov E and Kzhyshkowska J: Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci. 19:28212018. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aras S and Zaidi MR: TAMeless traitors: Macrophages in cancer progression and metastasis. Br J Cancer. 117:1583–1591. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Chen JX, Li M, Xiang Z, Wu J and Wang YJ: Role of tumor-associated macrophages in common digestive system malign ant tumors. World J Gastrointest Oncol. 15:596–616. 2023. View Article : Google Scholar : PubMed/NCBI | |
Khan SU, Khan MU, Azhar Ud Din M, Khan IM, Khan MI, Bungau S and Hassan SSU: Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front Immunol. 14:11664872023. View Article : Google Scholar : PubMed/NCBI | |
Choi HJ, Choi HJ, Chung TW and Ha KT: Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C-C motif) ligand 2 express ion in tumor-associated macrophage. Biochem Biophys Res Commun. 470:101–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tripathi DK, Nagar N, Kumar V, Joshi N, Roy P and Poluri KM: Gallate moiety of catechin is essential for inhibiting CCL2 chemokine-mediated monocyte recruitment. J Agric Food Chem. 71:4990–5005. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu Y, Zhang J, Zhang Y, He W, Ju J, Wu Y and Wang Y: The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice. Sci Rep. 13:132782023. View Article : Google Scholar : PubMed/NCBI | |
Jiang YX, Chen Y, Yang Y, Chen XX and Zhang DD: Screening Five Qi-Tonifying Herbs on M2 phenotype macrophages. Evid Based Complement Alternat Med. 2019:95493152019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Zhang X, Chen X, Li Y, Ke Z, Tang T, Chai H, Guo AM, Chen H and Yang J: Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol. 279:311–321. 2014. View Article : Google Scholar : PubMed/NCBI | |
He S, Wang S, Liu S, Li Z, Liu X and Wu J: Baicalein potentiated M1 macrophage polarization in cancer through Tar geting PI3Kγ/NF-κB signaling. Front Pharmacol. 12:7438372021. View Article : Google Scholar : PubMed/NCBI | |
Tan HY, Wang N, Man K, Tsao SW, Che CM and Feng Y: Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis. 6:e19422015. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q and Banerjee P: TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother. 67:761–774. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fonseca M, Macedo AS, Lima SAC, Reis S, Soares R and Fonte P: Evaluation of the antitumour and antiproliferative effect of xanthohumol-loaded PLGA nanoparticles on melanoma. Materials (Basel). 14:64212021. View Article : Google Scholar : PubMed/NCBI | |
Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH and Naidoo Y: Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep. 10:93622020. View Article : Google Scholar : PubMed/NCBI | |
Dickerhof N, Magon NJ, Tyndall JDA, Kettle AJ and Hampton MB: Potent inhibition of macrophage migration inhibitory factor (MIF) by m yeloperoxidase-dependent oxidation of epicatechins. Biochem J. 462:303–314. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sakai M, Ohnishi K, Masuda M, Ohminami H, Yamanaka-Okumura H, Hara T and Taketani Y: Isorhamnetin, a 3′-methoxylated flavonol, enhances the lysosomal prote olysis in J774.1 murine macrophages in a TFEB-independent manner. Biosci Biotechnol Biochem. 84:1221–1231. 2020. View Article : Google Scholar : PubMed/NCBI | |
Greten TF, Manns MP and Korangy F: Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 11:802–807. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li BH, Garstka MA and Li ZF: Chemokines and their receptors promoting the recruitment of myeloid-de rived suppressor cells into the tumor. Mol Immunol. 117:201–215. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ozga AJ, Chow MT and Luster AD: Chemokines and the immune response to cancer. Immunity. 54:859–874. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lindau D, Gielen P, Kroesen M, Wesseling P and Adema GJ: The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 138:105–115. 2013. View Article : Google Scholar : PubMed/NCBI | |
Law AMK, Valdes-Mora F and Gallego-Ortega D: Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 9:5612020. View Article : Google Scholar : PubMed/NCBI | |
Ohl K and Tenbrock K: Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front Immunol. 9:24992018. View Article : Google Scholar : PubMed/NCBI | |
Hatziioannou A, Alissafi T and Verginis P: Myeloid-derived suppressor cells and T regulatory cells in tumors: Unr aveling the dark side of the force. J Leukoc Biol. 102:407–421. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bauer D, Redmon N, Mazzio E and Soliman KF: Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One. 12:e01755582017. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Yan F, Zhao Y, Chen X, Sun S, Wang Y and Ying L: Green tea polyphenol EGCG Attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients. 12:10422020. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Liu W, Guo W and Zhu X: Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells. Biomed Pharmacother. 81:460–467. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Shen Y, Hu S, Rui T, Liu J and Yuan Y: Neobavaisoflavone inhibits antitumor immunosuppression via myeloid-der ived suppressor cells. Int Immunopharmacol. 111:1091032022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY and Wei S: Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor e ffects, and modulate myeloid derived suppressive cells (MDSCs) functio ns. Int Immunopharmacol. 11:890–898. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang R, Huang X, Chen C, Dou D, Wang Q, Wu X, Liu H and Sun T: Chrysin targets myeloid-derived suppressor cells and enhances tumour response to anti-PD-1 immunotherapy. Clin Transl Med. 12:e10192022. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama D, Hinohara K and Nishikawa H: Significance of regulatory T cells in cancer immunology and immunotherapy. Exp Dermatol. 32:256–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD and Li Z: Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol. 7:eabi46132022. View Article : Google Scholar : PubMed/NCBI | |
Beissert S, Schwarz A and Schwarz T: Regulatory T cells. J Invest Dermatol. 126:15–24. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Du Y, Lin X, Qian Y, Zhou T and Huang Z: CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol. 34:244–249. 2016. View Article : Google Scholar : PubMed/NCBI | |
Facciabene A, Motz GT and Coukos G: T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 72:2162–2171. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ and Rezaee A: Regulating the regulatory T cells as cell therapies in autoimmunity an d cancer. Front Med (Lausanne). 10:12442982023. View Article : Google Scholar : PubMed/NCBI | |
Wilke CM, Wu K, Zhao E, Wang G and Zou W: Prognostic significance of regulatory T cells in tumor. Int J Cancer. 127:748–758. 2010. View Article : Google Scholar : PubMed/NCBI | |
Han XY, Xu N, Yuan JF, Wu H, Shi HL, Yang L and Wu XJ: Total flavonoids of astragalus inhibit activated CD4[Formula: See text] T cells and regulate differentiation of Th17/Th1/Treg cells in exper imental autoimmune encephalomyelitis mice by JAK/STAT and NF[Formula: See text]B signaling pathways. Am J Chin Med. 51:1233–1248. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fujiki T, Shinozaki R, Udono M and Katakura Y: Identification and functional evaluation of polyphenols that induce re gulatory T cells. Nutrients. 14:28622022. View Article : Google Scholar : PubMed/NCBI | |
Dandawate S, Williams L, Joshee N, Rimando AM, Mittal S, Thakur A, Lum LG and Parajuli P: Scutellaria extract and wogonin inhibit tumor-mediated induction of T(reg) cells via inhibition of TGF-β1 activity. Cancer Immunol Immunother. 61:701–711. 2012. View Article : Google Scholar : PubMed/NCBI | |
Du G, Jin L, Han X, Song Z, Zhang H and Liang W: Naringenin: A potential immunomodulator for inhibiting lung fibrosis a nd metastasis. Cancer Res. 69:3205–3212. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Hao W, Lin X, Fan D and Zhou J: Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice. Onco Targets Ther. 7:947–956. 2014.PubMed/NCBI | |
Chen S, Li R, Chen Y, Chou CK, Zhang Z, Yang Y, Liao P, Wang Q and Chen X: Scutellarin enhances anti-tumor immune responses by reducing TNFR2-expressing CD4+Foxp3+ regulatory T cells. Biomed Pharmacother. 151:1131872022. View Article : Google Scholar : PubMed/NCBI | |
Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D and Sozzani S: Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 20:432–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J and Zhou Z: Impaired function of dendritic cells within the tumor microenvironment. Front Immunol. 14:12136292023. View Article : Google Scholar : PubMed/NCBI | |
Wesa AK and Storkus WJ: Killer dendritic cells: Mechanisms of action and therapeutic implicati ons for cancer. Cell Death Differ. 15:51–57. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chauvin C and Josien R: Dendritic cells as killers: Mechanistic aspects and potential roles. J Immunol. 181:11–16. 2008. View Article : Google Scholar : PubMed/NCBI | |
LaCasse CJ, Janikashvili N, Larmonier CB, Alizadeh D, Hanke N, Kartchner J, Situ E, Centuori S, Har-Noy M, Bonnotte B, et al: Th-1 lymphocytes induce dendritic cell tumor killing activity by an IF N-γ-dependent mechanism. J Immunol. 187:6310–6317. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mittal SK and Roche PA: Suppression of antigen presentation by IL-10. Curr Opin Immunol. 34:22–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Wu K, Yin M, Han S, Ding Y, Qiao A, Lu G, Deng B, Bo P and Gong W: Wogonin inhibits tumor-derived regulatory molecules by suppressing STA T3 signaling to promote tumor immunity. J Immunother. 38:167–184. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Li XJ, Chen Z, Zhu XX, Wang J, Zhang LB, Qiang L, Ma YJ, Li ZY, Guo QL and You QD: Wogonin induced calreticulin/annexin A1 exposure dictates the immunogenicity of cancer cells in a PERK/AKT dependent manner. PLoS One. 7:e508112012. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay S, Romero JR and Chattopadhyay N: Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol Cell Endocrinol. 287:57–64. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zeng W, Wang L, Wang Z, Yin X, Qin Y, Zhang F, Zhang C and Liang W: Naringenin enhances the antitumor effect of therapeutic vaccines by promoting antigen cross-presentation. J Immunol. 204:622–631. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu BC, Qiu Y, Zhao RD, Han X, Yun FY and Tui X: Digital gene expression profiling of dendritic cells treated with Seabuckthorn favones. Chin J Microbiol Immunol. 37:840–848. 2017. | |
Verna G, Liso M, Cavalcanti E, Bianco G, Di Sarno V, Santino A, Campiglia P and Chieppa M: Quercetin administration suppresses the cytokine storm in myeloid and plasmacytoid dendritic cells. Int J Mol Sci. 22:83492021. View Article : Google Scholar : PubMed/NCBI | |
Sawicki MW, Dimasi N, Natarajan K, Wang J, Margulies DH and Mariuzza RA: Structural basis of MHC class I recognition by natural killer cell receptors. Immunol Rev. 181:52–65. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cerwenka A and Lanier LL: Ligands for natural killer cell receptors: Redundancy or specificity. Immunol Rev. 181:158–169. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gianchecchi E, Delfino DV and Fierabracci A: Natural killer cells: Potential biomarkers and therapeutic target in A utoimmune diseases? Front Immunol. 12:6168532021. View Article : Google Scholar : PubMed/NCBI | |
Portale F and Di Mitri D: NK cells in cancer: Mechanisms of dysfunction and therapeutic potentia l. Int J Mol Sci. 24:95212023. View Article : Google Scholar : PubMed/NCBI | |
Prager I and Watzl C: Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol. 105:1319–1329. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alspach E, Lussier DM and Schreiber RD: Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 11:a0284802019. View Article : Google Scholar : PubMed/NCBI | |
Boehm U, Klamp T, Groot M and Howard JC: Cellular responses to interferon-gamma. Annu Rev Immunol. 15:749–795. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lian GY, Wang QM, Tang PM, Zhou S, Huang XR and Lan HY: Combination of asiatic acid and naringenin modulates NK cell anti-canc er immunity by rebalancing Smad3/Smad7 signaling. Mol Ther. 26:2255–2266. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH and Xu CF: Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol. 37:39463202311611742023. View Article : Google Scholar : PubMed/NCBI | |
Lee HH and Cho H: Apigenin increases natural killer cytotoxicity to human hepatocellular carcinoma expressing HIF-1α through high interaction of CD95/CD95L. J Microbiol Biotechnol. 32:397–404. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pathni A, Özçelikkale A, Rey-Suarez I, Li L, Davis S, Rogers N, Xiao Z and Upadhyaya A: Cytotoxic T lymphocyte activation signals modulate cytoskeletal dynamics and mechanical force generation. Front Immunol. 13:7798882022. View Article : Google Scholar : PubMed/NCBI | |
Hay ZLZ and Slansky JE: Granzymes: The molecular executors of immune-mediated cytotoxicity. Int J Mol Sci. 23:18332022. View Article : Google Scholar : PubMed/NCBI | |
Weigelin B and Friedl P: T cell-mediated additive cytotoxicity-death by multiple bullets. Trends Cancer. 8:980–987. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeytun A, Hassuneh M, Nagarkatti M and Nagarkatti PS: Fas-Fas ligand-based interactions between tumor cells and tumor-specif ic cytotoxic T lymphocytes: A lethal two-way street. Blood. 90:1952–1959. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Yoshizawa H, Yamaguchi Y, Ito K, Kagamu H, Suzuki E, Gejyo F, Hamada H and Arakawa M: Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol. 162:3574–3582. 1999. View Article : Google Scholar : PubMed/NCBI | |
Péguillet I, Milder M, Louis D, Vincent-Salomon A, Dorval T, Piperno-Neumann S, Scholl SM and Lantz O: High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 74:2204–2216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Magombedze G, Reddy PBJ, Eda S and Ganusov VV: Cellular and population plasticity of helper CD4(+) T cell responses. Front Physiol. 4:2062013. View Article : Google Scholar : PubMed/NCBI | |
Wang LX, Shu S, Disis ML and Plautz GE: Adoptive transfer of tumor-primed, in vitro-activated, CD4+ T effector cells (TEs) combined with CD8+ TEs provides intratumoral TE prolifera tion and synergistic antitumor response. Blood. 109:4865–4876. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bourgeois C, Rocha B and Tanchot C: A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 297:2060–2063. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ke M, Zhang Z, Xu B, Zhao S, Ding Y, Wu X, Wu R, Lv Y and Dong J: Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cells. Int Immunopharmacol. 75:1058242019. View Article : Google Scholar : PubMed/NCBI | |
Kawaguchi S, Kawahara K, Fujiwara Y, Ohnishi K, Pan C, Yano H, Hirosue A, Nagata M, Hirayama M, Sakata J, et al: Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration. Cancer Immunol Immunother. 71:2127–2139. 2022. View Article : Google Scholar : PubMed/NCBI | |
Maatouk M, Elgueder D, Mustapha N, Chaaban H, Bzéouich IM, Loannou I, Kilani S, Ghoul M, Ghedira K and Chekir-Ghedira L: Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity. Cell Stress Chaperones. 21:1101–1109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pfarr K, Danciu C, Arlt O, Neske C, Dehelean C, Pfeilschifter JM and Radeke HH: Simultaneous and dose dependent melanoma cytotoxic and immune stimulat ory activity of betulin. PLoS One. 10:e01188022015. View Article : Google Scholar : PubMed/NCBI | |
Sassi A, Maatouk M, El Gueder D, Bzéouich IM, Abdelkefi-Ben Hatira S, Jemni-Yacoub S, Ghedira K and Chekir-Ghedira L: Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and in vivo study. Chem Biol Interact. 283:10–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sassi A, Mokdad Bzéouich I, Mustapha N, Maatouk M, Ghedira K and Chekir-Ghedira L: Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur J Pharmacol. 812:91–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yonekawa M, Shimizu M, Kaneko A, Matsumura J and Takahashi H: Suppression of R5-type of HIV-1 in CD4+ NKT cells by Vδ1+ T cells activated by flavonoid glycosides, hesperidin and linarin. Sci Rep. 9:75062019. View Article : Google Scholar : PubMed/NCBI | |
Bruni E, Cimino MM, Donadon M, Carriero R, Terzoli S, Piazza R, Ravens S, Prinz I, Cazzetta V, Marzano P, et al: Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. J Immunother Cancer. 10:e0045792022. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Biswas D, Usaite I, Angelova M, Boeing S, Karasaki T, Veeriah S, Czyzewska-Khan J, Morton C, Joseph M, et al: A local human Vδ1 T cell population is associated with survival in non small-cell lung cancer. Nat Cancer. 3:696–709. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Liu Y, Wang C, Zheng H, Chen Y, Liu W, Chen X, Zhang J, Chen H, Yang Y and Yang J: Inhibition of COX-2 and EGFR by melafolone improves Anti-PD-1 therapy through vascular normalization and PD-L1 downregulation in lung cancer. J Pharmacol Exp Ther. 368:401–413. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Wang S, Jiang S, Liu Z, Wan X, Yang C, Zhang L, Zheng Z, Wang B and Li L: Luteolin as an adjuvant effectively enhances CTL anti-tumor response in B16F10 mouse model. Int Immunopharmacol. 94:1074412021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Pan Y, Gou P, Zhou C, Ma L, Liu Q, Du Y, Yang J and Wang Q: Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol Rep. 39:280–288. 2018.PubMed/NCBI | |
Xu L, Zhang Y, Tian K, Chen X, Zhang R, Mu X, Wu Y, Wang D, Wang S, Liu F, et al: Apigenin suppresses PD-L1 expression in melanoma and host dendritic ce lls to elicit synergistic therapeutic effects. J Exp Clin Cancer Res. 37:2612018. View Article : Google Scholar : PubMed/NCBI | |
Coombs MRP, Harrison ME and Hoskin DW: Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 380:424–433. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang ZB, Wang WJ, Xu C, Xie YJ, Wang XR, Zhang YZ, Huang JM, Huang M, Xie C, Liu P, et al: Luteolin and its derivative apigenin suppress the inducible PD-L1 expr ession to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 515:36–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Gao WQ, Wang P, Wang TQ, Xu WC, Zhu XY and Liu H: Pentamethylquercetin inhibits hepatocellular carcinoma progression and adipocytes-induced PD-L1 expression via IFN-γ signaling. Curr Cancer Drug Targets. 20:868–874. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sp N, Kang DY, Lee JM and Jang KJ: Mechanistic insights of anti-immune evasion by nobiletin through regul ating miR-197/STAT3/PD-L1 signaling in non-small cell lung cancer (NSC LC) cells. Int J Mol Sci. 22:98432021. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, He XL, Qi L, Shi W, Yuan LW, Huang MY, Xu YL, Chen X, Gu L, Zhang LL and Lu JJ: Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in l ung cancer cells. Biochem Pharmacol. 197:1149402022. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Li MY, Han L, Tai Y, Cao S, Li J, Zhao H, Wang R, Lv B, Shan Z, et al: Galangin inhibits programmed cell death-ligand 1 expression by suppres sing STAT3 and MYC and enhances T cell tumor-killing activity. Phytomedicine. 116:1548772023. View Article : Google Scholar : PubMed/NCBI | |
Kongtawelert P, Wudtiwai B, Shwe TH, Pothacharoen P and Phitak T: Inhibitory effect of hesperidin on the expression of programmed death ligand (PD-L1) in breast cancer. Molecules. 25:2522020. View Article : Google Scholar : PubMed/NCBI | |
Rong W, Wan N, Zheng X, Shi G, Jiang C, Pan K, Gao M, Yin Z, Gao ZJ and Zhang J: Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expression. Phytomedicine. 95:1538672022. View Article : Google Scholar : PubMed/NCBI | |
Mo D, Zhu H, Wang J, Hao H, Guo Y, Wang J, Han X, Zou L, Li Z, Yao H, et al: Icaritin inhibits PD-L1 expression by Targeting Protein IκB Kinase α. Eur J Immunol. 51:978–988. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Zhang Q, Zhu H, Wen Y, Qiu D, Xiong J, Fu X, Wu Y, Meng K and Li J: Icaritin promotes tumor T-cell infiltration and induces antitumor immu nity in mice. Eur J Immunol. 49:2235–2244. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dongye Z, Wu X, Wen Y, Ding X, Wang C, Zhao T, Li J and Wu Y: Icaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. Int Immunopharmacol. 111:1090932022. View Article : Google Scholar : PubMed/NCBI | |
Yuan LW, Jiang XM, Xu YL, Huang MY, Chen YC, Yu WB, Su MX, Ye ZH, Chen X, Wang Y and Lu JJ: Licochalcone A inhibits interferon-gamma-induced programmed death-ligand 1 in lung cancer cells. Phytomedicine. 80:1533942021. View Article : Google Scholar : PubMed/NCBI | |
Mei C, Zhang X, Zhi Y, Liang Z, Xu H, Liu Z, Liu Y, Lyu Y and Wang H: Isorhamnetin regulates programmed death ligand-1 expression by suppressing the EGFR-STAT3 signaling pathway in canine mammary tumors. Int J Mol Sci. 25:6702024. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang Y, Hu W, Zou F, Ning J, Rao T, Ruan Y, Yu W and Cheng F: MTHFD2 promotes PD-L1 expression via activation of the JAK/STAT signal ling pathway in bladder cancer. J Cell Mol Med. 27:2922–2936. 2023. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki T, Kohashi K, Toda Y, Ishihara S, Yamada Y and Oda Y: Association of PD-L1 and IDO1 expression with JAK-STAT pathway activation in soft-tissue leiomyosarcoma. J Cancer Res Clin Oncol. 147:1451–1463. 2021. View Article : Google Scholar : PubMed/NCBI | |
Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T, Sakamoto N, Katada K, Kamada K, Uchiyama K, et al: The JAK/STAT pathway is involved in the upregulation of PD-L1 expressi on in pancreatic cancer cell lines. Oncol Rep. 37:1545–1554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A and Di Rosa F: Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol. 11:5846262020. View Article : Google Scholar : PubMed/NCBI | |
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK and Brunner C: NF-κB and its role in checkpoint control. Int J Mol Sci. 21:39492020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Yang F, Wang R, Li W, Maskey N, Zhang W, Guo Y, Liu S, Wang H and Yao X: CALD1 promotes the expression of PD-L1 in bladder cancer via the JAK/S TAT signaling pathway. Ann Transl Med. 9:14412021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang X, Xie X, Chen W, Li M, Diao D and Dang C: Obesity and metabolic syndrome related macrophage promotes PD-L1 expre ssion in TNBC through IL6/JAK/STAT pathway and can be reversed by telm isartan. Cancer Biol Ther. 21:1179–1190. 2020. View Article : Google Scholar : PubMed/NCBI | |
Padmanabhan S, Gaire B, de Leon D, Vancura A and Vancurova I: Interferon-γ induces PD-L1 expression in ovarian cancer cells by JAK/STAT1 signaling. FASEB J 34 (S1). 1. 2020. View Article : Google Scholar | |
Liu M, Wei F, Wang J, Yu W, Shen M, Liu T, Zhang D, Wang Y, Ren X and Sun Q: Myeloid-derived suppressor cells regulate the immunosuppressive functions of PD-1−PD-L1+ Bregs through PD-L1/PI3K/AKT/NF-κB axis in breast cancer. Cell Death Dis. 12:4652021. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Yang J, Qu L, Deng X, Duan Z, Fu R, Liang L and Fan D: Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-κB pathway in lung adenocarcinoma. Food Funct. 11:456–471. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Han Z, Trivett AL, Lin H, Hannifin S, Yang D and Oppenheim JJ: Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunol Immunother. 68:1059–1071. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Xiong J, Zhou T, Zhang Z, Huang Z, Tian S and Wang Y: Quercetin/Anti-PD-1 antibody combination therapy regulates the gut microbiota, impacts macrophage immunity and reshapes the hepatocellular carcinoma tumor microenvironment. Front Biosci (Landmark Ed). 28:3272023. View Article : Google Scholar : PubMed/NCBI | |
Cuzick J: Preventive therapy for cancer. Lancet Oncol. 18:e472–e482. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buonaguro L, Petrizzo A, Tornesello ML and Buonaguro FM: Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol. 18:23–34. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harper DM: Currently approved prophylactic HPV vaccines. Expert Rev Vaccines. 8:1663–1679. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Wang Y and Du J: Human papillomavirus vaccines: An updated review. Vaccines (Basel). 8:3912020. View Article : Google Scholar : PubMed/NCBI | |
Brower V: Approval of provenge seen as first step for cancer treatment vaccines. J Natl Cancer Inst. 102:1108–1110. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ogi C and Aruga A: Clinical evaluation of therapeutic cancer vaccines. Hum Vaccin Immunother. 9:1049–1057. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pao SC, Chu MT and Hung SI: Therapeutic vaccines targeting neoantigens to induce T-cell immunity against cancers. Pharmaceutics. 14:8672022. View Article : Google Scholar : PubMed/NCBI | |
Cho HI and Celis E: Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res. 69:9012–9019. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stegmann T, Wiekmeijer AS, Kwappenberg K, van Duikeren S, Bhoelan F, Bemelman D, Beenakker TJM, Krebber WJ, Arens R and Melief CJM: Enhanced HPV16 E6/E7+ tumor eradication via induction of tumor-specific T cells by therapeutic vaccination with virosomes presenting synthetic long peptides. Cancer Immunol Immunother. 72:2851–2864. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L: Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11:10132020. View Article : Google Scholar : PubMed/NCBI | |
Radogna F and Diederich M: Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy. Biochem Pharmacol. 153:12–23. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmed A and Tait SWG: Targeting immunogenic cell death in cancer. Mol Oncol. 14:2994–3006. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patra S, Roy PK, Dey A and Mandal M: Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer. 1879:1891052024. View Article : Google Scholar : PubMed/NCBI | |
Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D and Saha B: DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine. 104:114–123. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nace G, Evankovich J, Eid R and Tsung A: Dendritic cells and damage-associated molecular patterns: Endogenous danger signals linking innate and adaptive immunity. J Innate Immun. 4:6–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee SM, Kim P, You J and Kim EH: Role of damage-associated molecular pattern/cell death pathways in vaccine-induced immunity. Viruses. 13:23402021. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, Lotze MT and Tang D: Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4:e9662013. View Article : Google Scholar : PubMed/NCBI | |
Woo SR, Corrales L and Gajewski TF: Innate immune recognition of cancer. Annu Rev Immunol. 33:445–474. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsuchiya K: Switching from apoptosis to pyroptosis: Gasdermin-elicited inflammation and antitumor immunity. Int J Mol Sci. 22:4262021. View Article : Google Scholar : PubMed/NCBI | |
Pandolfi F, Altamura S, Frosali S and Conti P: Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther. 38:1017–1028. 2016. View Article : Google Scholar : PubMed/NCBI | |
Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, Krüger U, Becker T, Ebsen M, Röcken C, et al: Tumor-associated macrophages exhibit pro-and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer. 135:843–861. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shalapour S and Karin M: Pas de deux: Control of anti-tumor immunity by cancer-associated inflammation. Immunity. 51:15–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al: Classification of current anticancer immunotherapies. Oncotarget. 5:12472–12508. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jafari S, Heydarian S, Lai R, Mehdizadeh Aghdam E and Molavi O: Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy. Bioimpacts. 13:51–61. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Xu X, Li M, Zhang X and Cao F: Afzelin induces immunogenic cell death against lung cancer by targeting NQO2. BMC Complement Med Ther. 23:3812023. View Article : Google Scholar : PubMed/NCBI | |
Zhu MY, Wang T, Wang HD, Wang HZ, Chen HY, Zhang S, Guo YJ, Li H and Hui H: LW-213 induces immunogenic tumor cell death via ER stress mediated by lysosomal TRPML1. Cancer Lett. 577:2164352023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zou Y, Wang L, Yang L, Li Y, Liao A, Chen Z, Yu Z, Guo J and Han S: Nanodelivery of scutellarin induces immunogenic cell death for treating hepatocellular carcinoma. Int J Pharm. 642:1231142023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Yao W, Lin M, Huang W, Li B, Peng B, Ma Q, Zhou X and Liang M: Icaritin-loaded PLGA nanoparticles activate immunogenic cell death and facilitate tumor recruitment in mice with gastric cancer. Drug Deliv. 29:1712–1725. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Shen L, Li X, Song W, Liu Y and Huang L: Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano. 13:12511–12524. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Mao J, Leng X, Zhu L, Rui X, Jin Z, Jiang H, Liu H, Zhang F, Bi X, et al: Co-delivery of proanthocyanidin and mitoxantrone induces synergistic immunogenic cell death to potentiate cancer immunotherapy. Biomater Sci. 10:4549–4560. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Wang S, Zhang L, Tian L, Li L, Liu Z, Dong Q, Lv X, Mu H, Zhang Q and Wang B: Hesperetin as an adjuvant augments protective anti-tumour immunity res ponses in B16F10 melanoma by stimulating cytotoxic CD8+ T cells. Scand J Immunol. 91:e128672020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Wang S, Jiang S, Li C, Wang Y, Li L, Wang Y, Ma G, Qiao H, Leng Z, et al: Chrysin enhances antitumour immunity response through the IL-12-STAT4 signal pathway in the B16F10 melanoma mouse model. Scand J Immunol. 96:e131772022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang S, Liu Z, Zhang L, Wang S and Wang B: Procyanidin, a kind of biological flavonoid, induces protective anti-tumor immunity and protects mice from lethal B16F10 challenge. Int Immunopharmacol. 47:251–258. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang TH, Lee JH, Song CK, Han HD, Shin BC, Pai SI, Hung CF, Trimble C, Lim JS, Kim TW and Wu TC: Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res. 67:802–811. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chuang CM, Monie A, Wu A and Hung CF: Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci. 16:492009. View Article : Google Scholar : PubMed/NCBI | |
Olson DJ and Odunsi K: Adoptive cell therapy for nonhematologic solid tumors. J Clin Oncol. 41:3397–3407. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dudley ME and Rosenberg SA: Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer. 3:666–675. 2003. View Article : Google Scholar : PubMed/NCBI | |
Du S, Yan J, Xue Y, Zhong Y and Dong Y: Adoptive cell therapy for cancer treatment. Exploration (Beijing). 3:202100582023. View Article : Google Scholar : PubMed/NCBI | |
Chang YF, Chuang HY, Hsu CH, Liu RS, Gambhir SS and Hwang JJ: Immunomodulation of curcumin on adoptive therapy with T cell functiona limaging in mice. Cancer Prev Res (Phila). 5:444–452. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nozhat Z, Heydarzadeh S, Memariani Z and Ahmadi A: Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int. 21:5742021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Fan J, Hu M, Xu J, He Z and Zeng J: Quercetin enhances 5-fluorouracil sensitivity by regulating the autophagic flux and inducing drp-1 mediated mitochondrial fragmentation in colorectal cancer cells. Curr Mol Pharmacol. Feb 27–2024.(Epub ahead of print). | |
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, et al: Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology. 33:11–47. 2025. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A and Huang H: The fascinating effects of baicalein on cancer: A review. Int J Mol Sci. 17:16812016. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Song L, Wang H, Wang J, Xu Z and Xing N: Quercetin in prostate cancer: Chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential. Oncol Rep. 33:2659–2668. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, et al: Application of quercetin in the treatment of gastrointestinal cancers. Front Pharmacol. 13:8602092022. View Article : Google Scholar : PubMed/NCBI | |
Dahiya A, Majee C, Mazumder R, Priya N and Atriya A: Insight into the glycosylation methods of the flavonoids as an approach to enhance its bioavailability and pharmacological activities. Ind J Pharm Edu Res. 57:354–371. 2023. View Article : Google Scholar | |
Li C, Dai T, Chen J, Chen M, Liang R, Liu C, Du L and McClements DJ: Modification of flavonoids: Methods and influences on biological activities. Crit Rev Food Sci Nutr. 63:10637–10658. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gopikrishna A, Girigoswami A and Girigoswami K: Controlled drug delivery systems for improved efficacy and bioavailability of flavonoids. J Achiev Mater Manuf Eng. 116:49–60. 2023. | |
Naeem A, Ming Y, Pengyi H, Jie KY, Yali L, Haiyan Z, Shuai X, Wenjing L, Ling W, Xia ZM, et al: The fate of flavonoids after oral administration: A comprehensive overview of its bioavailability. Crit Rev Food Sci Nutr. 62:6169–6186. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bilia AR, Piazzini V, Risaliti L, Vanti G, Casamonti M, Wang M and Bergonzi MC: Nanocarriers: A successful tool to increase solubility, stability and optimise bioefficacy of natural constituents. Curr Med Chem. 26:4631–4656. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alizadeh SR, Savadkouhi N and Ebrahimzadeh MA: Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert Opin Drug Discov. 18:1117–1132. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pecorini G, Ferraro E and Puppi D: Polymeric systems for the controlled release of flavonoids. Pharmaceutics. 15:6282023. View Article : Google Scholar : PubMed/NCBI | |
Lee WH, Loo CY, Ong HX, Traini D, Young PM and Rohanizadeh R: Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J Biomed Nanotechnol. 12:371–386. 2016. View Article : Google Scholar : PubMed/NCBI | |
Loo CY, Traini D, Young PM, Parumasivam T and Lee WH: Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer-Part 1: Aerosol performance characterization. J Drug Deliv Sci Technol. 86:1046462023. View Article : Google Scholar | |
Hong L, Li W, Li Y and Yin S: Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv. 13:21365–21382. 2023. View Article : Google Scholar : PubMed/NCBI | |
Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA and Choi HG: A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 30:21838152023. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Liu X, Lu X and Tian J: Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol. 14:11119912023. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Su Z, Han S, Huang J, Lin L and Shuai X: Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 6:eaay77852020. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Miao L, Wang Y, Xu Z, Zhao Y, Shen Y, Xiang G and Huang L: Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Ther. 24:364–374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tiwari P and Mishra KP: Role of plant-derived flavonoids in cancer treatment. Nutr Cancer. 75:430–449. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kadhum WR, Ramaiah P, Tayyib NA, Hjazi A, Kahhharov AJ, Alkhafaji AT, Al-Dami FH, Ridha BM, Alsalamy AH and Alwave M: Novel and potential therapy options for a range of cancer diseases: Using flavonoid. Pathol Res Pract. Nov 29–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Galati G and O'Brien PJ: Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 37:287–303. 2004. View Article : Google Scholar : PubMed/NCBI | |
Havsteen BH: The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 96:67–202. 2002. View Article : Google Scholar : PubMed/NCBI | |
Dong S, Guo X, Han F, He Z and Wang Y: Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B. 12:1163–1185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khatib S, Pomyen Y, Dang H and Wang XW: Understanding the cause and consequence of tumor heterogeneity. Trends Cancer. 6:267–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao F, Farag MA, Xiao J, Yang X, Liu Y, Shen J and Lu B: The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: The prospects of single cell sequencing. J Nutr Biochem. 108:1090912022. View Article : Google Scholar : PubMed/NCBI |