
The role of Bcl‑2 in controlling the transition between autophagy and apoptosis (Review)
- Authors:
- Ahmet Alperen Palabiyik
-
Affiliations: Department of Nursing, Faculty of Health Sciences, Ardahan University, Çamlıçatak, Ardahan 75002, Turkey - Published online on: April 15, 2025 https://doi.org/10.3892/mmr.2025.13537
- Article Number: 172
-
Copyright: © Palabiyik . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Zheng C, Liu T, Liu H and Wang J: Role of BCL-2 family proteins in apoptosis and its regulation by nutrients. Curr Protein Pept Sci. 21:799–806. 2020. View Article : Google Scholar : PubMed/NCBI | |
D'Aguanno S and Del Bufalo D: Inhibition of Anti-Apoptotic Bcl-2 proteins in preclinical and clinical studies: Current overview in cancer. Cells. 9:12872020. View Article : Google Scholar : PubMed/NCBI | |
Aslam M, Kanthlal SK and Panonummal R: Peptides: A supercilious candidate for activating intrinsic apoptosis by targeting mitochondrial membrane permeability for cancer therapy. Int J Pept Res Ther. 27:2883–2893. 2021. View Article : Google Scholar | |
Wolf P, Schoeniger A and Edlich F: Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res. 1869:1193172022. View Article : Google Scholar : PubMed/NCBI | |
Shahar N and Larisch S: Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat. 52:1007122020. View Article : Google Scholar : PubMed/NCBI | |
Banjara S, Suraweera CD, Hinds MG and Kvansakul M: The Bcl-2 family: ancient origins, conserved structures, and divergent mechanisms. Biomolecules. 10:1282020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Klionsky DJ and Shen HM: The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 24:186–203. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Chhikara BS, Gulia K and Chhillar M: Cleaning the molecular machinery of cells via proteostasis, proteolysis and endocytosis selectively, effectively, and precisely: Intracellular self-defense and cellular perturbations. Mol Omics. 17:11–28. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alqahtani SM, Alassiri HA, Alshahrani MSM, Alahmari NA, Alshahrani NZS, Alqahtani AA and Alqahtani AM: Cellular responses to ionizing radiation: Mechanisms of DNA repair and mutation. JICRCR. 7:2299–2315. 2024. | |
Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N and Soukas AA: Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 30:1869–1885. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang Q, Zhang H, Wang S, Ma X and Wang H: Golm1 facilitates the CaO2-DOPC-DSPE200-PEI-CsPbBr3 QDs-induced apoptotic death of hepatocytes through the stimulation of mitochondrial autophagy and mitochondrial reactive oxygen species production through interactions with P53/Beclin-1/Bcl-2. Chem Biol Interact. 398:1110762024. View Article : Google Scholar : PubMed/NCBI | |
Zając A, Maciejczyk A, Sumorek-Wiadro J, Filipek K, Deryło K, Langner E, Pawelec J, Wasiak M, Ścibiorski M, Rzeski W, et al: The role of Bcl-2 and Beclin-1 complex in ‘switching’ between apoptosis and autophagy in human glioma cells upon LY294002 and sorafenib treatment. Cells. 12:26702023. View Article : Google Scholar : PubMed/NCBI | |
Prerna K and Dubey VK: Beclin1-mediated interplay between autophagy and apoptosis: New understanding. Int J Biol Macromol. 204:258–273. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rosa N, Speelman-Rooms F, Parys JB and Bultynck G: Modulation of Ca2+ signaling by antiapoptotic Bcl-2 versus Bcl-xL: From molecular mechanisms to relevance for cancer cell survival. Biochim Biophys Acta Rev Cancer. 1877:1887912022. View Article : Google Scholar : PubMed/NCBI | |
Saleem S: Apoptosis, autophagy, necrosis and their multi galore crosstalk in neurodegeneration. Neuroscience. 469:162–174. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S and Singh BB: Calcium signaling regulates autophagy and apoptosis. Cells. 10:21252021. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Liang Q, Pan YZ, Wang X, Kuo YC, Chiang WC, Zhang X, Williams NS, Rizo J, Levine B and De Brabander JK: Novel Bcl-2 inhibitors selectively disrupt the autophagy-specific Bcl-2-Beclin 1 protein-protein interaction. ACS Med Chem Lett. 13:1510–1516. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu YP, Zhang S, Xin YF, Gu LQ, Xu XZ, Zhang CD and You ZQ: Evidence for the mechanism of Shenmai injection antagonizing doxorubicin-induced cardiotoxicity. Phytomedicine. 88:1535972021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li X, Liang H, Yu K, Zhai J, Xue M, Luo Z, Zheng C and Zhang H: SARS-CoV-2 ORF7a blocked autophagy flux by intervening in the fusion between autophagosome and lysosome to promote viral infection and pathogenesis. J Med Virol. 95:e292002023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Zhang H, Li W, Zhai J, Li X and Zheng C: The role of SARS-CoV-2 ORF7a in autophagy flux disruption: implications for viral infection and pathogenesis. Autophagy. 20:1449–1451. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kataoka T: Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol. 10:10657022022. View Article : Google Scholar : PubMed/NCBI | |
King LE, Hohorst L and García-Sáez AJ: Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci. 136:jcs2607902023. View Article : Google Scholar : PubMed/NCBI | |
Iorio R, Celenza G and Petricca S: Mitophagy: Molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 11:302021. View Article : Google Scholar : PubMed/NCBI | |
Moyzis AG, Lally NS, Liang W, Najor RH and Gustafsson ÅB: Mcl-1 differentially regulates autophagy in response to changes in energy status and mitochondrial damage. Cells. 11:14692022. View Article : Google Scholar : PubMed/NCBI | |
Li YY, Qin ZH and Sheng R: The multiple roles of autophagy in neural function and diseases. Neurosci Bull. 40:363–382. 2024. View Article : Google Scholar : PubMed/NCBI | |
El-Wetidy MS, Ahmad R, Rady I, Helal H, Rady MI, Vaali-Mohammed MA, Al-Khayal K, Traiki TB and Abdulla MH: Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress Chaperones. 26:473–493. 2021. View Article : Google Scholar : PubMed/NCBI | |
Redza-Dutordoir M and Averill-Bates DA: Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim Biophys Acta Mol Cell Res. 1868:1190412021. View Article : Google Scholar : PubMed/NCBI | |
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Cao S, Mao C, Sun F, Zhang X and Song Y: Post-translational modifications of p65: State of the art. Front Cell Dev Biol. 12:14175022024. View Article : Google Scholar : PubMed/NCBI | |
Hussar P: Apoptosis regulators bcl-2 and caspase-3. Encyclopedia. 2:1624–1636. 2022. View Article : Google Scholar | |
Green DR: The mitochondrial pathway of apoptosis part II: The BCL-2 protein family. Cold Spring Harb Perspect Biol. 14:a0410462022. View Article : Google Scholar : PubMed/NCBI | |
Iksen Witayateeraporn W, Hardianti B and Pongrakhananon V: Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res. 38:2249–2275. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sharma A and Trivedi AK: Regulation of apoptosis by E3 ubiquitin ligases in ubiquitin proteasome system. Cell Biol Int. 44:721–734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cui J and Placzek WJ: Post-transcriptional regulation of anti-apoptotic BCL2 family members. Int J Mol Sci. 19:3082018. View Article : Google Scholar : PubMed/NCBI | |
Bednarczyk M, Dąbrowska-Szeja N, Łętowski D, Dzięgielewska-Gęsiak S, Waniczek D and Muc-Wierzgoń M: Relationship between dietary nutrient intake and autophagy-related genes in obese humans: A narrative review. Nutrients. 16:40032024. View Article : Google Scholar : PubMed/NCBI | |
Xi H, Wang S, Wang B, Hong X, Liu X, Li M, Shen R and Dong Q: The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Rep. 48:2082022. View Article : Google Scholar : PubMed/NCBI | |
Jin C, Zhu M, Ye J, Song Z, Zheng C and Chen W: Autophagy: Are amino acid signals dependent on the mTORC1 pathway or independent? Curr Issues Mol Biol. 46:8780–8793. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kma L and Baruah TJ: The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. 69:248–264. 2022. View Article : Google Scholar : PubMed/NCBI | |
Patra S, Patil S, Klionsky DJ and Bhutia SK: Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol. 238:287–305. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kench U, Sologova S, Smolyarchuk E, Prassolov V and Spirin P: Pharmaceutical agents for targeting autophagy and their applications in clinics. Pharmaceuticals (Basel). 17:13552024. View Article : Google Scholar : PubMed/NCBI | |
Prasad V and Greber UF: The endoplasmic reticulum unfolded protein response-homeostasis, cell death and evolution in virus infections. FEMS Microbiol Rev. 45:fuab0162021. View Article : Google Scholar : PubMed/NCBI | |
Morris JL, Gillet G, Prudent J and Popgeorgiev N: Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int J Mol Sci. 22:37302021. View Article : Google Scholar : PubMed/NCBI | |
Casas-Martinez JC, Samali A and McDonagh B: Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci. 81:2502024. View Article : Google Scholar : PubMed/NCBI | |
Naim S and Kaufmann T: The multifaceted roles of the BCL-2 family member BOK. Front Cell Dev Biol. 8:5743382020. View Article : Google Scholar : PubMed/NCBI | |
Larrañaga-SanMiguel A, Bengoa-Vergniory N and Flores-Romero H: Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol. 35:33–45. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Zhang Y, Lu X, Ding H, Han B, Song X, Miao H, Cui X, Wei S, Liu W, et al: CDC20 regulates the cell proliferation and radiosensitivity of P53 mutant HCC cells through the Bcl-2/Bax pathway. Int J Biol Sci. 17:3608–3621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mancuso S, Mattana M, Carlisi M, Santoro M and Siragusa S: Effects of B-cell lymphoma on the immune system and immune recovery after treatment: The paradigm of targeted therapy. Int J Mol Sci. 23:33682022. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Kong X, Zhang H, Chen Y, Cai S, Luo H and Chen P: Inhibiting DNA methylation alleviates cigarette smoke extract-induced dysregulation of Bcl-2 and endothelial apoptosis. Tob Induc Dis. 18:512020. View Article : Google Scholar : PubMed/NCBI | |
Şimşek H, Akaras N, Gür C, Küçükler S and Kandemir FM: Beneficial effects of Chrysin on Cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene. 875:1475022023. View Article : Google Scholar : PubMed/NCBI | |
Gulia S, Chandra P and Da A: The prognosis of cancer depends on the interplay of autophagy, apoptosis, and anoikis within the tumor microenvironment. Cell Biochem Biophys. 81:621–658. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fernandes MGF, Luo JXX, Cui QL, Perlman K, Pernin F, Yaqubi M, Hall JA, Dudley R, Srour M, Couturier CP, et al: Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Commun Biol. 4:202021. View Article : Google Scholar : PubMed/NCBI | |
Tarantini S, Balasubramanian P, Delfavero J, Csipo T, Yabluchanskiy A, Kiss T, Nyúl-Tóth Á, Mukli P, Toth P, Ahire C, et al: Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience. 43:2427–2440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kong ASY, Maran S and Loh HS: Navigating the interplay between BCL-2 family proteins, apoptosis, and autophagy in colorectal cancer. Advances in Cancer Biology-Metastasis. 11:1001262024. View Article : Google Scholar | |
Yang D, He L, Ma S, Li S, Zhang Y, Hu C, Huang J, Xu Z, Tang D and Chen Z: Pharmacological targeting of Bcl-2 induces caspase 3-mediated cleavage of HDAC6 and regulates the autophagy process in colorectal cancer. Int J Mol Sci. 24:66622023. View Article : Google Scholar : PubMed/NCBI | |
Andreotti DZ, Silva JDN, Matumoto AM, Orellana AM, De Mello PS and Kawamoto EM: Effects of physical exercise on autophagy and apoptosis in aged brain: Human and animal studies. Front Nutr. 7:942020. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y and Tang X: Beclin-1: A therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol. 15:15064262024. View Article : Google Scholar : PubMed/NCBI | |
Chota A, George BP and Abrahamse H: Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget. 12:1615–1626. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qian S, Wei Z, Yang W, Huang J, Yang Y and Wang J: The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 12:9853632022. View Article : Google Scholar : PubMed/NCBI | |
Saddam M, Paul SK, Habib MA, Fahim MA, Mimi A, Islam S, Paul B and Helal MMU: Emerging biomarkers and potential therapeutics of the BCL-2 protein family: The apoptotic and anti-apoptotic context. Egypt J Med Hum Genet. 25:122024. View Article : Google Scholar | |
Kapoor I, Bodo J, Hill BT, Hsi ED and Almasan A: Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 11:9412020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guo M, Niu S, Shang M, Chang X, Sun Z, Zhang R, Shen X and Xue Y: ROS and DRP1 interactions accelerate the mitochondrial injury induced by polystyrene nanoplastics in human liver HepG2 cells. Chem Biol Interact. 379:1105022023. View Article : Google Scholar : PubMed/NCBI | |
Jenner A, Peña-Blanco A, Salvador-Gallego R, Ugarte-Uribe B, Zollo C, Ganief T, Bierlmeier J, Mund M, Lee JE, Ries J, et al: DRP1 interacts directly with BAX to induce its activation and apoptosis. EMBO J. 41:e1085872022. View Article : Google Scholar : PubMed/NCBI | |
Radika PR, Chandrasekaran D, Mahila S and Muninathan N: Role of reactive oxygen species and apoptotic genes in bad obstetric history. Bulletin of Pure and Applied Sciences-Zoology. 43:917–929. 2024. | |
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin Hassan MI, Habib S and Islam S: Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells. 13:18382024. View Article : Google Scholar : PubMed/NCBI | |
Hartman ML and Czyz M: BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ. 30:1437–1446. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gupta R, Ambasta RK and Pravir Kumar: Autophagy and apoptosis cascade: Which is more prominent in neuronal death? Cell Mol Life Sci. 78:8001–8047. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sitthisuk P, Innajak S, Poorahong W, Samosorn S, Dolsophon K and Watanapokasin R: Effect of acacia concinna extract on apoptosis induction associated with endoplasmic reticulum stress and modulated intracellular signaling pathway in human colon HCT116 cancer cells. Nutrients. 16:37642024. View Article : Google Scholar : PubMed/NCBI | |
Kortam MA, Ali BM and Fathy N: The deleterious effect of stress-induced depression on rat liver: Protective role of resveratrol and dimethyl fumarate via inhibiting the MAPK/ERK/JNK pathway. J Biochem Mol Toxicol. 35:e226272021. View Article : Google Scholar : PubMed/NCBI | |
Turk M, Tatli O, Alkan HF, Ozfiliz Kilbas P, Alkurt G and Dinler Doganay G: Co-chaperone bag-1 plays a role in the autophagy-dependent cell survival through Beclin 1 interaction. Molecules. 26:8542021. View Article : Google Scholar : PubMed/NCBI | |
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN and Fathy M: Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci Rep. 14:125662024. View Article : Google Scholar : PubMed/NCBI | |
Rosa N, Ivanova H, Wagner LE II, Kale J, La Rovere R, Welkenhuyzen K, Louros N, Karamanou S, Shabardina V, Lemmens I, et al: Bcl-xL acts as an inhibitor of IP3R channels, thereby antagonizing Ca2+-driven apoptosis. Cell Death Differ. 29:788–805. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cauwelier C, de Ridder I and Bultynck G: Recent advances in canonical versus non-canonical Ca2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. Biochim Biophys Acta Mol Cell Res. 1871:1197132024. View Article : Google Scholar : PubMed/NCBI | |
Sharma M: Interplay between autophagy and apoptosis in cancer: Mechanisms and therapeutic implications. In role of autophagy and reactive oxygen species in cancer treatment: Principles and Current Strategies. 235–254. 2024. View Article : Google Scholar | |
Yu Y, Liu B, Li X, Lu D, Yang L, Chen L, Li Y, Cheng L, Lv F, Zhang P, et al: ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death Dis. 13:462022. View Article : Google Scholar : PubMed/NCBI | |
Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, Hassan H, Zhao J, Carew JS, Nawrocki ST and Anwer F: Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol. 17:193–208. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nolte EM, Joubert AM, Lafanechère L and Mercier AE: Radiosensitization of breast cancer cells with a 2-methoxyestradiol analogue affects DNA damage and repair signaling in vitro. Int J Mol Sci. 24:35922023. View Article : Google Scholar : PubMed/NCBI | |
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP and Pinheiro RO: Autophagy as a target for drug development of skin ınfection caused by mycobacteria. Front Immunol. 12:6742412021. View Article : Google Scholar : PubMed/NCBI | |
O'Neill J, Manion M, Schwartz P and Hockenbery DM: Promises and challenges of targeting Bcl-2 anti-apoptotic proteins for cancer therapy. Biochim Biophys Acta. 1705:43–51. 2004.PubMed/NCBI | |
Perini GF, Ribeiro GN, Pinto Neto JV, Campos LT and Hamerschlak N: BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol. 11:652018. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Wu X, Zhang Q, Gong J, Chen Y, You Y, Shen J, Qiang Y and Cao G: Mechanisms of action of the BCL-2 inhibitor venetoclax in multiple myeloma: A literature review. Front Pharmacol. 14:12919202023. View Article : Google Scholar : PubMed/NCBI | |
Vervloessem T, Kerkhofs M, La Rovere RM, Sneyers F, Parys JB and Bultynck G: Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium. 70:102–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Bogenberger JM and Tibes R: Targeting apoptosis in acute myeloid leukemia: Current status and future directions of BCL-2 inhibition with venetoclax and beyond. Targ Oncol. 15:147–162. 2020. View Article : Google Scholar | |
Puglisi M, Molife LR, de Jonge MJ, Khan KH, Doorn L, van Forster MD, Blanco M, Gutierrez M, Franklin C, Busman T, et al: A phase I study of the safety, pharmacokinetics and efficacy of navitoclax plus docetaxel in patients with advanced solid tumors. Future Oncol. 17:2747–2758. 2021. View Article : Google Scholar : PubMed/NCBI | |
Castelli G, Pelosi E and Testa U: Emerging therapies for acute myelogenus leukemia patients targeting apoptosis and mitochondrial metabolism. Cancers (Basel). 11:2602019. View Article : Google Scholar : PubMed/NCBI | |
Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, Thompson ER, Teh CE, Nguyen T, Xu Z, Flensburg C, et al: Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 9:342–353. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wanford JJ, Hachani A and Odendall C: Reprogramming of cell death pathways by bacterial effectors as a widespread virulence strategy. Infect Immun. 90:e00614212022. View Article : Google Scholar : PubMed/NCBI | |
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H and Ding J: Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 13:6372022. View Article : Google Scholar : PubMed/NCBI | |
Yuan J and Ofengeim D: A guide to cell death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Wang Q, Tang YD, Zhai J, Hu W and Zheng C: When ferroptosis meets pathogenic infections. Trends Microbiol. 31:468–479. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C and Fu L: Mitochondrial adaptation in cancer drug resistance: Prevalence, mechanisms, and management. J Hematol Oncol. 15:972022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lee HH, Jiang VC, Che Y, McIntosh J, Jordan A, Vargas J, Zhang T, Yan F, Simmons ME, et al: Potentiation of apoptosis in drug-resistant mantle cell lymphoma cells by MCL-1 inhibitor involves downregulation of inhibitor of apoptosis proteins. Cell Death Dis. 14:7142023. View Article : Google Scholar : PubMed/NCBI | |
Valko Z, Megyesfalvi Z, Schwendenwein A, Lang C, Paku S, Barany N, Ferencz B, Horvath-Rozsas A, Kovacs I, Schlegl E, et al: Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer. Br J Cancer. 128:1850–1861. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nwosu GO, Ross DM, Powell JA and Pitson SM: Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis. 15:4132024. View Article : Google Scholar : PubMed/NCBI | |
Tatarata QZ, Wang Z and Konopleva M: BCL-2 inhibition in acute myeloid leukemia: Resistance and combinations. Expert Rev Hematol. 17:935–946. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, et al: Crosstalk between autophagy and oxidative stress in hematological malignancies: Mechanisms, implications, and therapeutic potential. Antioxidants. 14:2642025. View Article : Google Scholar : PubMed/NCBI | |
Yoshida GJ: Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: From pathophysiology to treatment. J Hematol Oncol. 10:672017. View Article : Google Scholar : PubMed/NCBI | |
Grant S: Rational combination strategies to enhance venetoclax activity and overcome resistance in hematologic malignancies. Leuk Lymphoma. 59:1292–1299. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J and Zhang J: Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol. 104:575–587. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Chen Q and He J: Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int. 20:5242020. View Article : Google Scholar : PubMed/NCBI | |
Al-Odat OS, Guirguis DA, Schmalbach NK, Yao G, Budak-Alpdogan T, Jonnalagadda SC and Pandey MK: Autophagy and apoptosis: current challenges of treatment and drug resistance in multiple myeloma. Int J Mol Sci. 24:6442022. View Article : Google Scholar : PubMed/NCBI | |
Mishra R, Zokaei Nikoo M, Veeraballi S and Singh A: Venetoclax and hypomethylating agent combination in myeloid malignancies: Mechanisms of synergy and challenges of resistance. Int J Mol Sci. 25:4842023. View Article : Google Scholar : PubMed/NCBI | |
Mowers EE, Sharifi MN and Macleod KF: Autophagy in cancer metastasis. Oncogene. 36:1619–1630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Dong X, Huang DC, Xu P, Zhao Q and Chen B: Current advances and future strategies for BCL-2 inhibitors: Potent weapons against cancers. Cancers (Basel). 15:49572023. View Article : Google Scholar : PubMed/NCBI | |
Bazhanova ED and Kozlov AA: Role of apoptosis-related proteins P53 and Bcl-2 in the pathogenesis of nervous system diseases. J Evol Biochem Phys. 60:1475–1489. 2024. View Article : Google Scholar | |
Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang D, He J, Chen L and Li H: Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacol Res. 151:1045472020. View Article : Google Scholar : PubMed/NCBI | |
Murumulla L and Challa S: Role of Apoptosis in Neurodegeneration: Therapeutic targets and strategies. In apoptosis and human health: Understanding mechanistic and therapeutic potential Singapore: Springer Nature Singapore; pp. 231–249. 2024 | |
Perrotta C, Cattaneo MG, Molteni R and De Palma C: Autophagy in the regulation of tissue differentiation and homeostasis. Front Cell Dev Biol. 8:6029012020. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Jiang H and Momeni MR: Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol. 273((Pt 2)): 1327322024. View Article : Google Scholar : PubMed/NCBI | |
Lindqvist LM, Heinlein M, Huang DC and Vaux DL: Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA. 111:8512–8517. 2014. View Article : Google Scholar : PubMed/NCBI | |
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI |