
CDK5 targets p21CIP1 to regulate thyroid cancer cell proliferation and malignancy in patients
- Authors:
- Min-Che Tung
- Muhammet Oner
- Shiuan-Woei Soong
- Pang-Ting Cheng
- Yu-Hsuan Li
- Mei-Chih Chen
- Chen-Kai Chou
- Hong-Yo Kang
- Frank Cheau-Feng Lin
- Stella Chin-Shaw Tsai
- Ho Lin
-
Affiliations: Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C., Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C., Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C., Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan, R.O.C., Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 83301, Taiwan, R.O.C., School of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan, R.O.C., Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C. - Published online on: April 24, 2025 https://doi.org/10.3892/mmr.2025.13547
- Article Number: 182
-
Copyright: © Tung et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Oner M, Lin E, Chen MC, Hsu FN, Shazzad Hossain Prince GM, Chiu KY, Teng CJ, Yang TY, Wang HY, Yue CH, et al: Future aspects of CDK5 in prostate cancer: From pathogenesis to therapeutic implications. Int J Mol Sci. 20:38812019. View Article : Google Scholar : PubMed/NCBI | |
Oner M, Chen MC, Cheng PT, Li YH, Cheng YC, Celik A, Soong SW, Hsu LW, Lin DY, Hossain Prince GMS, et al: Impact of metformin on neocortical development during pregnancy: Involvement of ERK and p35/CDK5 pathways. Chemosphere. 358:1421242024. View Article : Google Scholar : PubMed/NCBI | |
Oner M, Chen MC, Cheng PT and Lin H: Metformin inhibits nerve growth factor-induced sympathetic neuron differentiation through p35/CDK5 inhibition. Am J Physiol Cell Physiol. 326:C1648–C1658. 2024. View Article : Google Scholar : PubMed/NCBI | |
Oner M, Cheng PT, Wang HY, Chen MC and Lin H: Metformin alters dendrite development and synaptic plasticity in rat cortical neurons. Biochem Biophys Res Commun. 710:1498742024. View Article : Google Scholar : PubMed/NCBI | |
Oner M, Lin E, Chiu KY, Chen MC, Prince GMSH, Lai CH, Hsieh JT, Wang HY and Lin HO: p35/CDK5 regulates bladder cancer proliferation and migration and promotes higher tumor grade and poor survival rate in patients with bladder cancer. Anticancer Res. 44:543–553. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yue CH, Oner M, Chiu CY, Chen MC, Teng CL, Wang HY, Hsieh JT, Lai CH and Lin H: RET Regulates human medullary thyroid cancer cell proliferation through CDK5 and STAT3 activation. Biomolecules. 11:8602021. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Chen KC, Chang GC, Lin H, Wu CC, Kao WH, Teng CJ, Hsu SL and Yang TY: RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer. Cell Death Dis. 11:2652020. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Huang CY, Hsu SL, Lin E, Ku CT, Lin H and Chen CM: Retinoic acid induces apoptosis of prostate cancer DU145 cells through cdk5 overactivation. Evid Based Complement Alternat Med. 2012:5807362012. View Article : Google Scholar : PubMed/NCBI | |
Hsu FN, Chen MC, Lin KC, Peng YT, Li PC, Lin E, Chiang MC, Hsieh JT and Lin H: Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser727 on STAT3 in prostate cancer cells. Am J Physiol Endocrinol Metab. 305:E975–E986. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuo HS, Hsu FN, Chiang MC, You SC, Chen MC, Lo MJ and Lin H: The role of Cdk5 in retinoic acid-induced apoptosis of cervical cancer cell line. Chin J Physiol. 52:23–30. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin E, Chen MC, Huang CY, Hsu SL, Huang WJ, Lin MS, Wu JC and Lin H: All-trans retinoic acid induces DU145 cell cycle arrest through Cdk5 activation. Cell Physiol Biochem. 33:1620–1630. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Chen MC, Chiu CY, Song YM and Lin SY: Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem. 282:2776–2784. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Chen MC and Ku CT: Cyclin-dependent kinase 5 regulates steroidogenic acute regulatory protein and androgen production in mouse Leydig cells. Endocrinology. 150:396–403. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prince G, Yang TY, Lin H and Chen MC: Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. Chin J Physiol. 62:231–240. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teng CJ, Cheng PT, Cheng YC, Tsai JR, Chen MC and Lin H: Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro. 96:1057682024. View Article : Google Scholar : PubMed/NCBI | |
Karimian A, Ahmadi Y and Yousefi B: Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 42:63–71. 2016. View Article : Google Scholar : PubMed/NCBI | |
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T and Saurin AT: Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell. 83:4047–4061.e6. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dimri GP, Nakanishi M, Desprez PY, Smith JR and Campisi J: Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol Cell Biol. 16:2987–2997. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi M, Kaneko Y, Matsushime H and Ikeda K: Direct interaction of p21 cyclin-dependent kinase inhibitor with the retinoblastoma tumor suppressor protein. Biochem Biophys Res Commun. 263:35–40. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hauge S, Macurek L and Syljuåsen RG: p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775. Cell Cycle. 18:834–847. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pisonero-Vaquero S, Soldati C, Cesana M, Ballabio A and Medina DL: TFEB modulates p21/WAF1/CIP1 during the DNA damage response. Cells. 9:11862020. View Article : Google Scholar : PubMed/NCBI | |
Huang PH, Chen MC, Peng YT, Kao WH, Chang CH, Wang YC, Lai CH, Hsieh JT, Wang JH, Lee YT, et al: Cdk5 directly targets nuclear p21CIP1 and promotes cancer cell growth. Cancer Res. 76:6888–6900. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang YJ, Zhao HY, Zhai QL, Zhang Y and Shen YF: The impact of R213 mutation on p53-mediated p21 activity. Biochimie. 99:215–218. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen DW, Lang BHH, McLeod DSA, Newbold K and Haymart MR: Thyroid cancer. Lancet. 401:1531–1544. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sinha RA and Yen PM: Metabolic messengers: Thyroid hormones. Nat Metab. 6:639–650. 2024. View Article : Google Scholar : PubMed/NCBI | |
Basolo F, Macerola E, Poma AM and Torregrossa L: The 5th edition of WHO classification of tumors of endocrine organs: changes in the diagnosis of follicular-derived thyroid carcinoma. Endocrine. 80:470–476. 2023. View Article : Google Scholar : PubMed/NCBI | |
Modica R, Benevento E and Colao A: Endocrine-disrupting chemicals (EDCs) and cancer: New perspectives on an old relationship. J Endocrinol Invest. 46:667–677. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ijaz K and Yin F: Papillary thyroid carcinoma with squamous dedifferentiation: A potential diagnostic pitfall. Anticancer Res. 43:255–258. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ohashi R: Solid variant of papillary thyroid carcinoma: An under-recognized entity. Endocr J. 67:241–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang SY, Ahn HR, Youn HJ and Jung SH: Prognosis of papillary thyroid carcinoma in relation to preoperative subclinical hypothyroidism. Ann R Coll Surg Engl. 103:367–373. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Lee JS, Yun HJ, Kim SM, Chang H, Lee YS, Chang HS and Park CS: Aggressive subtypes of papillary thyroid carcinoma smaller than 1 cm. J Clin Endocrinol Metab. 108:1370–1375. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Zhang Q, Zhang H, Zheng K, Wang R and Wang G: Risk factors for lymph node metastasis in papillary thyroid carcinoma: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 11:2652020. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Deng Y, Liu T, Zhou J, Jia X, Xiao T, Zhou S, Li J, Guo Y, Wang Y, et al: Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat Commun. 11:48072020. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Zhu XL and Jiang J: Papillary thyroid carcinoma with breast and bone metastasis. Ear Nose Throat J. 102:259–262. 2023. View Article : Google Scholar : PubMed/NCBI | |
Daniels GH: Follicular thyroid carcinoma: A perspective. Thyroid. 28:1229–1242. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pelizzo MR, Mazza EI, Mian C and Merante Boschin I: Medullary thyroid carcinoma. Expert Rev Anticancer Ther. 23:943–957. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Barletta JA: Anaplastic thyroid carcinoma. Semin Diagn Pathol. 37:248–256. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tjokorda Gde Dalem Pemayun, . Current diagnosis and management of thyroid nodules. Acta Med Indones. 48:247–257. 2016.PubMed/NCBI | |
Roman BR, Randolph GW and Kamani D: Conventional thyroidectomy in the treatment of primary thyroid cancer. Endocrinol Metab Clin North Am. 48:125–141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fullmer T, Cabanillas ME and Zafereo M: Novel therapeutics in radioactive iodine-resistant thyroid cancer. Front Endocrinol (Lausanne). 12:7207232021. View Article : Google Scholar : PubMed/NCBI | |
Brierley JD: Update on external beam radiation therapy in thyroid cancer. J Clin Endocrinol Metab. 96:2289–2295. 2011. View Article : Google Scholar : PubMed/NCBI | |
Salvatore D, Santoro M and Schlumberger M: The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol. 17:296–306. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Akuetteh PDP, Song J, Ni C, Jin C, Li H, Jiang W, Si Y, Zhang X, Zhang Q and Huang G: Major vault protein (MVP) associated with BRAF V600E mutation is an immune microenvironment-related biomarker promoting the progression of papillary thyroid cancer via MAPK/ERK and PI3K/AKT pathways. Front Cell Dev Biol. 9:6883702022. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE and Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 7:569–580. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nozhat Z and Hedayati M: PI3K/AKT Pathway and its mediators in thyroid carcinomas. Mol Diagn Ther. 20:13–26. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chou CK, Chi SY, Hung YY, Yang YC, Fu HC, Wang JH, Chen CC and Kang HY: Clinical impact of androgen receptor-suppressing miR-146b expression in papillary thyroid cancer aggressiveness. J Clin Endocrinol Metab. 108:2852–2861. 2023. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cheng PT, Cheng YC, Oner M, Li YH, Chen MC, Wu JH, Chang TC, Celik A, Liu FL, Wang HY, et al: Antrodia salmonea extract inhibits cell proliferation through regulating cell cycle arrest and apoptosis in prostate cancer cell lines. Chin J Physiol. 65:209–214. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen CY, Li YH, Liao WL, Oner M, Cheng YC, Liu FL, Cheng PT, Celik A, Wu JH, Lai CH, et al: Antrodia salmonea extracts regulate p53-AR signaling and apoptosis in human prostate cancer LNCaP cells. Evid Based Complement Alternat Med. 2022:70331272022. View Article : Google Scholar : PubMed/NCBI | |
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al: Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 630:493–500. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee YK, Rovira A, Carroll PV and Simo R: Management of aggressive variants of papillary thyroid cancer. Curr Opin Otolaryngol Head Neck Surg. 32:125–133. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qu N, Chen D, Ma B, Zhang L, Wang Q, Wang Y, Wang H, Ni Z, Wang W, Liao T, et al: Integrated proteogenomic and metabolomic characterization of papillary thyroid cancer with different recurrence risks. Nat Commun. 15:31752024. View Article : Google Scholar : PubMed/NCBI | |
Coca-Pelaz A, Shah JP, Hernandez-Prera JC, Ghossein RA, Rodrigo JP, Hartl DM, Olsen KD, Shaha AR, Zafereo M, Suarez C, et al: Papillary thyroid cancer-aggressive variants and impact on management: A narrative review. Adv Ther. 37:3112–3128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, Papotti MG and Berruti A; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 30:1856–1883. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gunabushanam G: Perfluorobutane-enhanced US helps differentiate benign lymph nodes from papillary thyroid cancer metastases. Radiology. 307:e2305812023. View Article : Google Scholar : PubMed/NCBI | |
Schonfeld SJ, Morton LM, Berrington de Gonzalez A, Curtis RE and Kitahara CM: Risk of second primary papillary thyroid cancer among adult cancer survivors in the United States, 2000–2015. Cancer Epidemiol. 64:1016642020. View Article : Google Scholar : PubMed/NCBI | |
Gao GB, Sun Y, Fang RD, Wang Y, Wang Y and He QY: Post-translational modifications of CDK5 and their biological roles in cancer. Mol Biomed. 2:222021. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Yang C, Fan P, Xiao J, Zhang W, Zhan S, Liu T, Wang D and Wu H: CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J Biol Chem. 292:6269–6280. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mandl MM, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar AM and Liebl J: Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 116:912–922. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhai X, Zhao B, Wang Y and Xu Z: Cyclin I-like (CCNI2) is a cyclin-dependent kinase 5 (CDK5) activator and is involved in cell cycle regulation. Sci Rep. 7:409792017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li H and Herrup K: Cdk5 nuclear localization is p27-dependent in nerve cells: Implications for cell cycle suppression and caspase-3 activation. J Biol Chem. 285:14052–14061. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bautista L, Knippler CM and Ringel MD: p21-activated kinases in thyroid cancer. Endocrinology. 161:bqaa1052020. View Article : Google Scholar : PubMed/NCBI | |
Lu Z and Hunter T: Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 9:2342–2352. 2010. View Article : Google Scholar : PubMed/NCBI | |
Takasugi T, Minegishi S, Asada A, Saito T, Kawahara H and Hisanaga S: Two degradation pathways of the p35 Cdk5 (cyclin-dependent kinase) activation subunit, dependent and independent of ubiquitination. J Biol Chem. 291:4649–4657. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lu Z, Mao W, Ahmed AA, Yang H, Zhou J, Jennings N, Rodriguez-Aguayo C, Lopez-Berestein G, Miranda R, et al: CDK5 regulates paclitaxel sensitivity in ovarian cancer cells by modulating AKT activation, p21Cip1- and p27Kip1-mediated G1 cell cycle arrest and apoptosis. PLoS One. 10:e01318332015. View Article : Google Scholar : PubMed/NCBI | |
Havens CG and Walter JC: Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev. 25:1568–1582. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al: Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI | |
Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, et al: Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 6:387–400. 1995. View Article : Google Scholar : PubMed/NCBI | |
Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI | |
Hirai H, Kawanishi N and Iwasawa Y: Recent advances in the development of selective small molecule inhibitors for cyclin-dependent kinases. Curr Top Med Chem. 5:167–179. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ardelt MA, Fröhlich T, Martini E, Müller M, Kanitz V, Atzberger C, Cantonati P, Meßner M, Posselt L, Lehr T, et al: Inhibition of cyclin-dependent kinase 5: A strategy to improve sorafenib response in hepatocellular carcinoma therapy. Hepatology. 69:376–393. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lenjisa JL, Tadesse S, Khair NZ, Kumarasiri M, Yu M, Albrecht H, Milne R and Wang S: CDK5 in oncology: Recent advances and future prospects. Future Med Chem. 9:1939–1962. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pozo K and Bibb JA: The emerging role of Cdk5 in cancer. Trends Cancer. 2:606–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q and Cai C: CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 11:1913–1935. 2021.PubMed/NCBI |