Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2025 Volume 32 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Barcodes based on nucleic acid sequences: Applications and challenges (Review)

  • Authors:
    • Ying Hong Wei
    • Faquan Lin
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
    Copyright: © Wei et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 187
    |
    Published online on: May 2, 2025
       https://doi.org/10.3892/mmr.2025.13552
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cells are the fundamental structural and functional units of living organisms and the study of these entities has remained a central focus throughout the history of biological sciences. Traditional cell research techniques, including fluorescent protein tagging and microscopy, have provided preliminary insights into the lineage history and clonal relationships between progenitor and descendant cells. However, these techniques exhibit inherent limitations in tracking the full developmental trajectory of cells and elucidating their heterogeneity, including sensitivity, stability and barcode drift. In developmental biology, nucleic acid barcode technology has introduced an innovative approach to cell lineage tracing. By assigning unique barcodes to individual cells, researchers can accurately identify and trace the origin and differentiation pathways of cells at various developmental stages, thereby illuminating the dynamic processes underlying tissue development and organogenesis. In cancer research, nucleic acid barcoding has played a pivotal role in analyzing the clonal architecture of tumor cells, exploring their heterogeneity and resistance mechanisms and enhancing our understanding of cancer evolution and inter‑clonal interactions. Furthermore, nucleic acid barcodes play a crucial role in stem cell research, enabling the tracking of stem cells from diverse origins and their derived progeny. This has offered novel perspectives on the mechanisms of stem cell self‑renewal and differentiation. The present review presented a comprehensive examination of the principles, applications and challenges associated with nucleic acid barcode technology.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Loewer A and Lahav G: We are all individuals: Causes and consequences of non-genetic heterogeneity in mammalian cells. Curr Opin Genet Dev. 21:753–758. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Wang Y, Zhang X and Wang Z: Cellular barcoding: From developmental tracing to anti-tumor drug discovery. Cancer Lett. 567:2162812023. View Article : Google Scholar : PubMed/NCBI

3 

Chen C, Liao Y and Peng G: Connecting past and present: Single-cell lineage tracing. Protein Cell. 13:790–807. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Weinreb C and Klein AM: Lineage reconstruction from clonal correlations. Proc Natl Acad Sci USA. 117:17041–17048. 2020. View Article : Google Scholar : PubMed/NCBI

5 

De Rop FV, Ismail JN, Bravo González-Blas C, Hulselmans GJ, Flerin CC, Janssens J, Theunis K, Christiaens VM, Wouters J, Marcassa G, et al: HyDrop enables droplet based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. Elife. 11:e739712022. View Article : Google Scholar : PubMed/NCBI

6 

Sulston JE, Schierenberg E, White JG and Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 100:64–119. 1983. View Article : Google Scholar : PubMed/NCBI

7 

Lu R, Neff NF, Quake SR and Weissman IL: Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol. 29:928–933. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Weber K, Thomaschewski M, Warlich M, Volz T, Cornils K, Niebuhr B, Täger M, Lütgehetmann M, Pollok JM, Stocking C, et al: RGB marking facilitates multicolor clonal cell tracking. Nat Med. 17:504–509. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Weber K, Bartsch U, Stocking C and Fehse B: A multicolor panel of novel lentiviral ‘Gene Ontology’ (LeGO) vectors for functional gene analysis. Mol Ther. 16:698–706. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Gomez-Nicola D, Riecken K, Fehse B and Perry VH: In-vivo RGB marking and multicolour single-cell tracking in the adult brain. Sci Rep. 4:75202014. View Article : Google Scholar : PubMed/NCBI

11 

Weber K, Mock U, Petrowitz B, Bartsch U and Fehse B: Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: New building blocks for cell marking and multi-gene analysis. Gene Ther. 17:511–520. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Mohme M, Maire CL, Riecken K, Zapf S, Aranyossy T, Westphal M, Lamszus K and Fehse B: Optical barcoding for single-clone tracking to study tumor heterogeneity. Mol Ther. 25:621–633. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Shembrey C, Smith J, Grandin M, Williams N, Cho HJ, Mølck C, Behrenbruch C, Thomson BN, Heriot AG, Merino D and Hollande F: Longitudinal monitoring of intra-tumoural heterogeneity using optical barcoding of patient-derived colorectal tumour models. Cancers (Basel). 14:5812022. View Article : Google Scholar : PubMed/NCBI

14 

Schepers K, Swart E, van Heijst JW, Gerlach C, Castrucci M, Sie D, Heimerikx M, Velds A, Kerkhoven RM, Arens R and Schumacher TN: Dissecting T cell lineage relationships by cellular barcoding. J Exp Med. 205:2309–2318. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Van Heijst JW, Gerlach C, Swart E, Sie D, Nunes-Alves C, Kerkhoven RM, Arens R, Correia-Neves M, Schepers K and Schumacher TN: Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science. 325:1265–1269. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P and Church GM: Developmental barcoding of whole mouse via homing CRISPR. Science. 361:eaat98042018. View Article : Google Scholar : PubMed/NCBI

17 

Kebschull JM and Zador AM: Cellular barcoding: Lineage tracing, screening and beyond. Nat Methods. 15:871–879. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Sankaran VG, Weissman JS and Zon LI: Cellular barcoding to decipher clonal dynamics in disease. Science. 378:eabm58742022. View Article : Google Scholar : PubMed/NCBI

19 

Serrano A, Berthelet J, Naik SH and Merino D: Mastering the use of cellular barcoding to explore cancer heterogeneity. Nat Rev Cancer. 22:609–624. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Merino D, Weber TS, Serrano A, Vaillant F, Liu K, Pal B, Di Stefano L, Schreuder J, Lin D, Chen Y, et al: Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat Commun. 10:7662019. View Article : Google Scholar : PubMed/NCBI

21 

Ko J, Wang Y, Carlson JCT, Marquard A, Gungabeesoon J, Charest A, Weitz D, Pittet MJ and Weissleder R: Single extracellular vesicle protein analysis using immuno-droplet digital polymerase chain reaction amplification. Adv Biosyst. 4:e19003072020. View Article : Google Scholar : PubMed/NCBI

22 

Banijamali M, Höjer P, Nagy A, Hååg P, Gomero EP, Stiller C, Kaminskyy VO, Ekman S, Lewensohn R, Karlström AE, et al: Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J Extracell Vesicles. 11:e122772022. View Article : Google Scholar : PubMed/NCBI

23 

Yeo GHT, Lin L, Qi CY, Cha M, Gifford DK and Sherwood RI: A multiplexed barcodelet single-cell RNA-Seq approach elucidates combinatorial signaling pathways that drive ESC differentiation. Cell Stem Cell. 26:938–950.e6. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA and Kirschner MW: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 161:1187–1201. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Perié L, Duffy KR, Kok L, de Boer RJ and Schumacher TN: The branching point in erythro-myeloid differentiation. Cell. 163:1655–1662. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Schueder F, Unterauer EM, Ganji M and Jungmann R: DNA-Barcoded fluorescence microscopy for spatial omics. Proteomics. 20:e19003682020. View Article : Google Scholar : PubMed/NCBI

27 

Howland KK and Brock A: Cellular barcoding tracks heterogeneous clones through selective pressures and phenotypic transitions. Trends Cancer. 9:591–601. 2023. View Article : Google Scholar : PubMed/NCBI

28 

Kretzschmar K and Watt FM: Lineage Tracing. Cell. 148:33–45. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Perié L and Duffy KR: Retracing the in vivo haematopoietic tree using single-cell methods. FEBS Lett. 590:4068–4083. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Kok L, Masopust D and Schumacher TN: The precursors of CD8+ tissue resident memory T cells: From lymphoid organs to infected tissues. Nat Rev Immunol. 22:283–293. 2022. View Article : Google Scholar : PubMed/NCBI

31 

Naik SH, Perié L, Swart E, Gerlach C, van Rooij N, de Boer RJ and Schumacher TN: Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature. 496:229–232. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Dhimolea E, De Matos Simoes R, Kansara D, Al'Khafaji A, Bouyssou J, Weng X, Sharma S, Raja J, Awate P, Shirasaki R, et al: An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell. 39:240–256.e11. 2021. View Article : Google Scholar : PubMed/NCBI

33 

Echeverria GV, Ge Z, Seth S, Zhang X, Jeter-Jones S, Zhou X, Cai S, Tu Y, McCoy A, Peoples M, et al: Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci Transl Med. 11:eaav09362019. View Article : Google Scholar : PubMed/NCBI

34 

Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, Bristow C, Peoples M, Robinson F, Qiu H, Shao J, et al: High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun. 9:50792018. View Article : Google Scholar : PubMed/NCBI

35 

Blundell JR and Levy SF: Beyond genome sequencing: Lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics. 104((6 Pt A)): 417–430. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 161:1202–1214. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Naik SH, Schumacher TN and Perié L: Cellular barcoding: A technical appraisal. Exp Hematol. 42:598–608. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N and Junker JP: Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol. 36:469–473. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wagner DE and Klein AM: Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet. 21:410–427. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Cai D, Cohen KB, Luo T, Lichtman JW and Sanes JR: Improved tools for the Brainbow toolbox. Nat Methods. 10:540–547. 2013. View Article : Google Scholar

41 

Pei W, Feyerabend TB, Rössler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C, et al: Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 548:456–460. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Pei W, Wang X, Rössler J, Feyerabend TB, Höfer T and Rodewald HR: Using Cre-recombinase-driven Polylox barcoding for in vivo fate mapping in mice. Nat Protoc. 14:1820–1840. 2019. View Article : Google Scholar : PubMed/NCBI

43 

McLellan MA, Rosenthal NA and Pinto AR: Cre- loxP-mediated recombination: General principles and experimental considerations. Curr Protoc Mouse Biol. 7:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Pei W, Shang F, Wang X, Fanti AK, Greco A, Busch K, Klapproth K, Zhang Q, Quedenau C, Sauer S, et al: Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. Cell Stem Cell. 27:383–395.e8. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Becher B, Waisman A and Lu LF: Conditional gene-targeting in mice: Problems and solutions. Immunity. 48:835–836. 2018. View Article : Google Scholar : PubMed/NCBI

46 

McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS, Roederer M and Gottardo R: Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 29:461–467. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Kharchenko PV, Silberstein L and Scadden DT: Bayesian approach to single-cell differential expression analysis. Nat Methods. 11:740–742. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Fan J, Slowikowski K and Zhang F: Single-cell transcriptomics in cancer: Computational challenges and opportunities. Exp Mol Med. 52:1452–1465. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Lu T, Park S, Zhu J, Wang Y, Zhan X, Wang X, Wang L, Zhu H and Wang T: Overcoming expressional drop-outs in lineage reconstruction from single-cell RNA-sequencing data. Cell Rep. 34:1085892021. View Article : Google Scholar : PubMed/NCBI

50 

Wang JY and Doudna JA: CRISPR technology: A decade of genome editing is only the beginning. Science. 379:eadd86432023. View Article : Google Scholar : PubMed/NCBI

51 

Raj B, Wagner DE, McKenna A, Pandey S, Klein AM, Shendure J, Gagnon JA and Schier AF: Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat Biotechnol. 36:442–450. 2018. View Article : Google Scholar : PubMed/NCBI

52 

McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF and Shendure J: Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 353:aaf79072016. View Article : Google Scholar : PubMed/NCBI

53 

Raj B, Gagnon JA and Schier AF: Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat Protoc. 13:2685–2713. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A and Lengner CJ: Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell. 39:1150–1162.e9. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, Patel S, Yuan WC, Fujiwara Y, Li BE, et al: An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell. 181:1410–1422.e27. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM, Adamson B, Jost M, Quinn JJ, Yang D, Jones MG, et al: Molecular recording of mammalian embryogenesis. Nature. 570:77–82. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, Bivona TG and Weissman JS: Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science (New York, NY). 371:eabc19442021. View Article : Google Scholar

58 

Yang D, Jones MG, Naranjo S, Rideout WM III, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, et al: Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 185:1905–1923.e25. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Xie L, Liu H, You Z, Wang L, Li Y, Zhang X, Ji X, He H, Yuan T, Zheng W, et al: Comprehensive spatiotemporal mapping of single-cell lineages in developing mouse brain by CRISPR-based barcoding. Nat Methods. 20:1244–1255. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Alemany A, Florescu M, Baron CS, Peterson-Maduro J and Van Oudenaarden A: Whole-organism clone tracing using single-cell sequencing. Nature. 556:108–112. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, et al: Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol. Nov 27–2018.(Epub ahead of print).

62 

Schmidt ST, Zimmerman SM, Wang J, Kim SK and Quake SR: Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synth Biol. 6:936–942. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Varanasi A and Wilson E: The Applications of the CRISPR/Cas9 Gene-Editing System in Treating Human Diseases. J Stud Res. 11:1–17. 2022. View Article : Google Scholar

64 

Choubisa V and Sharma V: Unveiling neural network potential in forecasting CRISPR effects and off-target prophecies for gene editing. Int J Sci Res Arch. 10:252–259. 2023. View Article : Google Scholar

65 

Moreno-Ayala R and Junker JP: Single-cell genomics to study developmental cell fate decisions in zebrafish. Brief Funct Genomics. Mar 30–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

66 

Yabe IM, Truitt LL, Espinoza DA, Wu C, Koelle S, Panch S, Corat MAF, Winkler T, Yu KR, Hong SG, et al: Barcoding of macaque hematopoietic stem and progenitor cells: A robust platform to assess vector genotoxicity. Mol Ther Methods Clin Dev. 11:143–154. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, et al: NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19:2142018. View Article : Google Scholar : PubMed/NCBI

68 

Zhao L, Liu Z, Levy SF and Wu S: Bartender: A fast and accurate clustering algorithm to count barcode reads. Bioinformatics. 34:739–747. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Johnson MS, Venkataram S and Kryazhimskiy S: Best practices in designing, sequencing, and identifying random DNA barcodes. J Mol Evol. 91:263–280. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Störtz F and Minary P: crisprSQL: A novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res. 49((D1)): D855–D861. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Cradick TJ, Qiu P, Lee CM, Fine EJ and Bao G: COSMID: A web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids. 3:e2142014. View Article : Google Scholar : PubMed/NCBI

72 

Bystrykh LV and Belderbos ME: Clonal analysis of cells with cellular barcoding: When numbers and sizes matter. Methods Mol Biol. 1516:57–89. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M, Sun J, Calogero RA, Klein AM and Camargo FD: Clonal analysis of lineage fate in native haematopoiesis. Nature. 553:212–216. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J and Lu R: Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc. 15:1436–1458. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Ordon J, Thouin J, Nakano RT, et al: Simultaneous tracking of near-isogenic bacterial strains in synthetic Arabidopsis microbiota by chromosomally-integrated barcodes. 2023.

76 

Leibovich N and Goyal S: Limitations and Optimizations of Cellular Lineages Tracking. biorxiv. doi:. https://doi.org/10.1101/2023.03.15.532767

77 

Frenkel M, Hujoel MLA, Morris Z and Raman S: Discovering chromatin dysregulation induced by protein-coding perturbations at scale. bioRxiv. doi:. https://doi.org/10.1101/2023.09.20.555752

78 

Blois S, Goetz BM, Bull JJ and Sullivan CS: Interpreting and de-noising genetically engineered barcodes in a DNA virus. PLoS Comput Biol. 18:e10101312022. View Article : Google Scholar : PubMed/NCBI

79 

Anwar SL, Wulaningsih W and Lehmann U: Transposable elements in human cancer: Causes and consequences of deregulation. Int J Mol Sci. 18:9742017. View Article : Google Scholar : PubMed/NCBI

80 

Ohigashi I, Yamasaki Y, Hirashima T and Takahama Y: Identification of the transgenic integration site in immunodeficient tgε26 human CD3ε transgenic mice. PLoS One. 5:e143912010. View Article : Google Scholar : PubMed/NCBI

81 

Wolff JH and Mikkelsen JG: Delivering genes with human immunodeficiency virus-derived vehicles: Still state-of-the-art after 25 years. J Biomed Sci. 29:792022. View Article : Google Scholar : PubMed/NCBI

82 

Porter SN, Baker LC, Mittelman D and Porteus MH: Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo. Genome Biol. 15:R752014. View Article : Google Scholar : PubMed/NCBI

83 

Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S and Taipale J: Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 9:72–74. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Fan HC, Fu GK and Fodor SP: Combinatorial labeling of single cells for gene expression cytometry. Science. 347:12583672015. View Article : Google Scholar : PubMed/NCBI

85 

Hashimshony T, Wagner F, Sher N and Yanai I: CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2:666–673. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G and Sandberg R: Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 10:1096–1098. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, Huang Y and Wang J: Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. 73:130–142.e5. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:140492017. View Article : Google Scholar : PubMed/NCBI

89 

Rotem A, Ram O, Shoresh N, Sperling RA, Schnall-Levin M, Zhang H, Basu A, Bernstein BE and Weitz DA: High-throughput single-cell labeling (Hi-SCL) for RNA-Seq using drop-based microfluidics. PLoS One. 10:e01163282015. View Article : Google Scholar : PubMed/NCBI

90 

Pinglay S, Lalanne JB, Daza RM, Koeppel J, Li X, Lee DS and Shendure J: Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science. 387:eado59782025. View Article : Google Scholar : PubMed/NCBI

91 

Lan F, Demaree B, Ahmed N and Abate AR: Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol. 35:640–646. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Li J, Zhang R, Li T, et al: Ultra-high-throughput microbial single-cell whole genome sequencing for genome-resolved metagenomics. 2022. View Article : Google Scholar

93 

Shembekar N, Chaipan C, Utharala R and Merten CA: Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip. 16:1314–1331. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Suea-Ngam A, Howes PD, Srisa-Art M and deMello AJ: Droplet microfluidics: From proof-of-concept to real-world utility? Chem Commun (Camb). 55:9895–9903. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Sheng C, Lopes R, Li G, et al: Probabilistic machine learning ensures accurate ambient denoising in droplet-based single-cell omics. 2022. View Article : Google Scholar

96 

Imoto Y: Comprehensive Noise Reduction in Single-Cell Data with the RECODE Platform. biorxiv. doi:. https://doi.org/10.1101/2024.04.18.590054

97 

Sun C, Kathuria K, Emery SB, Kim B, Burbulis IE, Shin JH; Brain Somatic Mosaicism Network, ; Weinberger DR, Moran JV, Kidd JM, et al: Mapping recurrent mosaic copy number variation in human neurons. Nat Commun. 15:42202024. View Article : Google Scholar : PubMed/NCBI

98 

Bo L, Liang Y and Lin G: Cancer classification based on multiple dimensions: SNV patterns. Comput Biol Med. 151((Pt A)): 1062702022.PubMed/NCBI

99 

McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM and Gage FH: Mosaic copy number variation in human neurons. Science. 342:632–637. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Addis L, Ahn JW, Dobson R, Dixit A, Ogilvie CM, Pinto D, Vaags AK, Coon H, Chaste P, Wilson S, et al: Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat. 36:842–850. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Xiong E, Liu P, Deng R, Zhang K, Yang R and Li J: Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev. 11:nwae1182024. View Article : Google Scholar : PubMed/NCBI

102 

Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D and Eberwine J: Single-mitochondrion sequencing uncovers distinct mutational patterns and heteroplasmy landscape in mouse astrocytes and neurons. BMC Biol. 22:1622024. View Article : Google Scholar : PubMed/NCBI

103 

Dondi A, Borgsmüller N, Ferreira PF, Haas BJ, Jacob F and Heinzelmann-Schwarz V; Tumor Profiler Consortium; Beerenwinkel N, : De novo detection of somatic variants in high-quality long-read single-cell RNA sequencing data. bioRxiv [Preprint]. 2024.03.06.583775. 2024.

104 

Ganz J, Luquette LJ, Bizzotto S, Miller MB, Zhou Z, Bohrson CL, Jin H, Tran AV, Viswanadham VV, McDonough G, et al: Contrasting somatic mutation patterns in aging human neurons and oligodendrocytes. Cell. 187:1955–1970.e23. 2024. View Article : Google Scholar : PubMed/NCBI

105 

Csordas A, Sipos B, Kurucova T, Volfova A, Zamola F, Tichy B and Hicks DG: Cell Tree Rings: The structure of somatic evolution as a human aging timer. Geroscience. 46:3005–3019. 2024. View Article : Google Scholar : PubMed/NCBI

106 

You X, Cao Y, Suzuki T, Shao J, Zhu B, Masumura K, Xi J, Liu W, Zhang X and Luan Y: Genome-wide direct quantification of in vivo mutagenesis using high-accuracy paired-end and complementary consensus sequencing. Nucleic Acids Res. 51:e1092023. View Article : Google Scholar : PubMed/NCBI

107 

Weng C, Weissman JS and Sankaran VG: Robustness and reliability of single-cell regulatory multi-omics with deep mitochondrial mutation profiling. bioRxiv [Preprint]. 2024.08.23.609473. 2024.

108 

Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X, Yang L, Haseley P, Lehmann HS, Park PJ and Walsh CA: Cell lineage analysis in human brain using endogenous retroelements. Neuron. 85:49–59. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al: Global variation in copy number in the human genome. Nature. 444:444–454. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Wei CJ and Zhang K: RETrace: Simultaneous retrospective lineage tracing and methylation profiling of single cells. Genome Res. 30:602–610. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Fink J, Andersson-Rolf A and Koo BK: Adult stem cell lineage tracing and deep tissue imaging. BMB Rep. 48:655–667. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Woodworth MB, Girskis KM and Walsh CA: Building a lineage from single cells: Genetic techniques for cell lineage tracking. Nat Rev Genet. 18:230–244. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Li L, Bowling S, McGeary SE, Yu Q, Lemke B, Alcedo K, Jia Y, Liu X, Ferreira M, Klein AM, et al: A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell. 186:5183–5199.e22. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Walsh C and Cepko CL: Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science. 255:434–440. 1992. View Article : Google Scholar : PubMed/NCBI

115 

Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E, Broekhuis MJ, de Haan G and Bystrykh LV: Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood. 115:2610–2618. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Golden JA, Fields-Berry SC and Cepko CL: Construction and characterization of a highly complex retroviral library for lineage analysis. Proc Natl Acad Sci USA. 92:5704–5708. 1995. View Article : Google Scholar : PubMed/NCBI

117 

Khozyainova AA, Valyaeva AA, Arbatsky MS, Isaev SV, Iamshchikov PS, Volchkov EV, Sabirov MS, Zainullina VR, Chechekhin VI, Vorobev RS, et al: Complex analysis of single-cell RNA sequencing data. Biochemistry (Mosc). 88:231–252. 2023. View Article : Google Scholar : PubMed/NCBI

118 

Weinreb C, Rodriguez-Fraticelli A, Camargo FD and Klein AM: Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. 367:eaaw33812020. View Article : Google Scholar : PubMed/NCBI

119 

Bizzotto S, Dou Y, Ganz J, Doan RN, Kwon M, Bohrson CL, Kim SN, Bae T, Abyzov A; NIMH Brain Somatic Mosaicism Network, ; et al: Landmarks of human embryonic development inscribed in somatic mutations. Science. 371:1249–1253. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O and Camargo FD: Clonal dynamics of native haematopoiesis. Nature. 514:322–327. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Kim IS, Wu J, Rahme GJ, Battaglia S, Dixit A, Gaskell E, Chen H, Pinello L and Bernstein BE: Parallel single-cell RNA-Seq and genetic recording reveals lineage decisions in developing embryoid bodies. Cell Rep. 33:1082222020. View Article : Google Scholar : PubMed/NCBI

122 

Wagenblast E, Soto M, Gutiérrez-Ángel S, Hartl CA, Gable AL, Maceli AR, Erard N, Williams AM, Kim SY, Dickopf S, et al: A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 520:358–362. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Akimov Y, Bulanova D, Timonen S, Wennerberg K and Aittokallio T: Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics. Mol Syst Biol. 16:e91952020. View Article : Google Scholar : PubMed/NCBI

124 

McKenna A and Gagnon JA: Recording development with single cell dynamic lineage tracing. Development. 146:dev1697302019. View Article : Google Scholar : PubMed/NCBI

125 

Wang MY, Zhou Y, Lai GS, Huang Q, Cai WQ, Han ZW, Wang Y, Ma Z, Wang XW, Xiang Y, et al: DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep. 24:8492021. View Article : Google Scholar : PubMed/NCBI

126 

Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R and Lanner F: Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 165:1012–1026. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A and Schier AF: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 360:eaar31312018. View Article : Google Scholar : PubMed/NCBI

128 

McFarland JM, Paolella BR, Warren A, Geiger-Schuller K, Shibue T, Rothberg M, Kuksenko O, Colgan WN, Jones A, Chambers E, et al: Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat Commun. 11:42962020. View Article : Google Scholar : PubMed/NCBI

129 

Birnbaum KD: Power in numbers: Single-cell RNA-Seq strategies to dissect complex tissues. Annu Rev Genet. 52:203–221. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Lan F, Saba J, Ross TD, Zhou Z, Krauska K, Anantharaman K, Landick R and Venturelli OS: Massively parallel single-cell sequencing of diverse microbial populations. Nat Methods. 21:228–235. 2024. View Article : Google Scholar : PubMed/NCBI

131 

Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C and Shendure J: Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 348:910–914. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, Lucero J, Behrens MM, Hu M and Ren B: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol. 26:1063–1070. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Wu B, Bennett HM, Ye X, Sridhar A, Eidenschenk C, Everett C, Nazarova EV, Chen HH, Kim IK, Deangelis M, et al: Overloading And unpacKing (OAK)-droplet-based combinatorial indexing for ultra-high throughput single-cell multiomic profiling. Nat Commun. 15:91462024. View Article : Google Scholar : PubMed/NCBI

134 

Mathur L, Szalai B, Du NH, Utharala R, Ballinger M, Landry JJM, Ryckelynck M, Benes V, Saez-Rodriguez J and Merten CA: Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets. Nat Commun. 13:44502022. View Article : Google Scholar : PubMed/NCBI

135 

Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O'Shaughnessy A, Gnoj L, Scobie K, et al: A resource for large-scale RNA-interference-based screens in mammals. Nature. 428:427–431. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ and Chang K: Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 319:617–620. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D and Bock C: Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 14:297–301. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Duncombe TA and Dittrich PS: Droplet barcoding: Tracking mobile micro-reactors for high-throughput biology. Curr Opin Biotechnol. 60:205–212. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, et al: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 167:1867–1882.e21. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A and Amit I: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 167:1883–1896.e15. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Emanuel G, Moffitt JR and Zhuang X: High-throughput, image-based screening of pooled genetic-variant libraries. Nat Methods. 14:1159–1162. 2017. View Article : Google Scholar : PubMed/NCBI

142 

Camp JG, Platt R and Treutlein B: Mapping human cell phenotypes to genotypes with single-cell genomics. Science. 365:1401–1405. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Xie S, Duan J, Li B, Zhou P and Hon GC: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell. 66:285–299.e5. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Lawson MJ, Camsund D, Larsson J, Baltekin Ö, Fange D and Elf J: In situ genotyping of a pooled strain library after characterizing complex phenotypes. Mol Syst Biol. 13:9472017. View Article : Google Scholar : PubMed/NCBI

145 

Marusyk A, Janiszewska M and Polyak K: Intratumor heterogeneity: The rosetta stone of therapy resistance. Cancer Cell. 37:471–484. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Shembrey C, Huntington ND and Hollande F: Impact of tumor and immunological heterogeneity on the anti-cancer immune response. Cancers (Basel). 11:12172019. View Article : Google Scholar : PubMed/NCBI

147 

Lewis SM, Asselin-Labat ML, Nguyen Q, Berthelet J, Tan X, Wimmer VC, Merino D, Rogers KL and Naik SH: Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 18:997–1012. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Fennell KA, Vassiliadis D, Lam EYN, Martelotto LG, Balic JJ, Hollizeck S, Weber TS, Semple T, Wang Q, Miles DC, et al: Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature. 601:125–131. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Jin X, Demere Z, Nair K, Ali A, Ferraro GB, Natoli T, Deik A, Petronio L, Tang AA, Zhu C, et al: A metastasis map of human cancer cell lines. Nature. 588:331–336. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Holcar M, Ferdin J, Sitar S, Tušek-Žnidarič M, Dolžan V, Plemenitaš A, Žagar E and Lenassi M: Enrichment of plasma extracellular vesicles for reliable quantification of their size and concentration for biomarker discovery. Sci Rep. 10:213462020. View Article : Google Scholar : PubMed/NCBI

151 

Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, et al: Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 13:e124042024. View Article : Google Scholar : PubMed/NCBI

152 

Lozano-Andrés E, Enciso-Martinez A, Gijsbers A, Ridolfi A, Van Niel G, Libregts SFWM, Pinheiro C, van Herwijnen MJC, Hendrix A, Brucale M, et al: Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis. J Extracell Vesicles. 12:e123762023. View Article : Google Scholar : PubMed/NCBI

153 

Chang W-H, Cerione RA and Antonyak MA: Extracellular Vesicles and Their Roles in Cancer Progression. Cancer Cell Signaling. vol. 2174. Robles-Flores M: Springer US; New York, NY: pp. 143–170. 2021, View Article : Google Scholar

154 

Ferguson S, Yang KS and Weissleder R: Single extracellular vesicle analysis for early cancer detection. Trends Mol Med. 28:681–692. 2022. View Article : Google Scholar : PubMed/NCBI

155 

Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI

156 

Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, et al: The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods. 18:1013–1026. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Crescitelli R, Lässer C and Lötvall J: Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc. 16:1548–1580. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Ko J, Wang Y, Sheng K, Weitz DA and Weissleder R: Sequencing-based protein analysis of single extracellular vesicles. ACS Nano. 15:5631–5638. 2021. View Article : Google Scholar : PubMed/NCBI

159 

Ivanova A, Chalupska R, Louro AF, Firth M, González-King Garibotti H, Hultin L, Kohl F, Lázaro-Ibáñez E, Lindgren J, Musa G, et al: Barcoded hybrids of extracellular vesicles and lipid nanoparticles for multiplexed analysis of tissue distribution. Adv Sci (Weinh). 12:e24078502025. View Article : Google Scholar : PubMed/NCBI

160 

Kunitake K, Mizuno T, Hattori K, Oneyama C, Kamiya M, Ota S, Urano Y and Kojima R: Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis and release regulators. Nat Commun. 15:97772024. View Article : Google Scholar : PubMed/NCBI

161 

Farzad N, Enninful A, Bao S, Zhang D, Deng Y and Fan R: Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue. Nat Protoc. 19:3389–3425. 2024. View Article : Google Scholar : PubMed/NCBI

162 

Pandit S, Duchow M, Chao W, Capasso A and Samanta D: DNA-barcoded plasmonic nanostructures for activity-based protease sensing. Angew Chem Int Ed Engl. 63:e2023109642024. View Article : Google Scholar : PubMed/NCBI

163 

Lareau CA, Ma S, Duarte FM and Buenrostro JD: Inference and effects of barcode multiplets in droplet-based single-cell assays. Nat Commun. 11:8662020. View Article : Google Scholar : PubMed/NCBI

164 

Hotinger JA, Campbell IW, Hullahalli K, Osaki A and Waldor MK: Quantification of Salmonella enterica serovar typhimurium population dynamics in murine infection using a highly diverse barcoded library. Elife. 13:RP1013882024. View Article : Google Scholar

165 

Karlsson F, Kallas T, Thiagarajan D, Karlsson M, Schweitzer M, Navarro JF, Leijonancker L, Geny S, Pettersson E, Rhomberg-Kauert J, et al: Molecular pixelation: spatial proteomics of single cells by sequencing. Nat Methods. 21:1044–1052. 2024. View Article : Google Scholar : PubMed/NCBI

166 

Eyler CE, Matsunaga H, Hovestadt V, Vantine SJ, van Galen P and Bernstein BE: Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 21:1742020. View Article : Google Scholar : PubMed/NCBI

167 

Maetzig T, Morgan M and Schambach A: Fluorescent genetic barcoding for cellular multiplex analyses. Exp Hematol. 67:10–17. 2018. View Article : Google Scholar : PubMed/NCBI

168 

Maetzig T, Ruschmann J, Sanchez Milde L, Lai CK, Von Krosigk N and Humphries RK: Lentiviral Fluorescent Genetic Barcoding for Multiplex Fate Tracking of Leukemic Cells. Mol Ther Methods Clin Dev. 6:54–65. 2017. View Article : Google Scholar : PubMed/NCBI

169 

Yoon B, Kim H, Jung SW and Park J: Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int. 105:1186–1199. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wei YH and Lin F: Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 32: 187, 2025.
APA
Wei, Y.H., & Lin, F. (2025). Barcodes based on nucleic acid sequences: Applications and challenges (Review). Molecular Medicine Reports, 32, 187. https://doi.org/10.3892/mmr.2025.13552
MLA
Wei, Y. H., Lin, F."Barcodes based on nucleic acid sequences: Applications and challenges (Review)". Molecular Medicine Reports 32.1 (2025): 187.
Chicago
Wei, Y. H., Lin, F."Barcodes based on nucleic acid sequences: Applications and challenges (Review)". Molecular Medicine Reports 32, no. 1 (2025): 187. https://doi.org/10.3892/mmr.2025.13552
Copy and paste a formatted citation
x
Spandidos Publications style
Wei YH and Lin F: Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 32: 187, 2025.
APA
Wei, Y.H., & Lin, F. (2025). Barcodes based on nucleic acid sequences: Applications and challenges (Review). Molecular Medicine Reports, 32, 187. https://doi.org/10.3892/mmr.2025.13552
MLA
Wei, Y. H., Lin, F."Barcodes based on nucleic acid sequences: Applications and challenges (Review)". Molecular Medicine Reports 32.1 (2025): 187.
Chicago
Wei, Y. H., Lin, F."Barcodes based on nucleic acid sequences: Applications and challenges (Review)". Molecular Medicine Reports 32, no. 1 (2025): 187. https://doi.org/10.3892/mmr.2025.13552
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team