|
1
|
Singer M, Deutschman CS, Seymour CW,
Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche
JD, Coopersmith CM, et al: The third international consensus
definitions for sepsis and septic shock (Sepsis-3). JAMA.
315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rudd KE, Johnson SC, Agesa KM, Shackelford
KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer
S, et al: Global, regional, and national sepsis incidence and
mortality, 1990–2017: Analysis for the global burden of disease
study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Weng L, Xu Y, Yin P, Wang Y, Chen Y, Liu
W, Li S, Peng JM, Dong R, Hu XY, et al: National incidence and
mortality of hospitalized sepsis in China. Crit Care. 27:842023.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Font MD, Thyagarajan B and Khanna AK:
Sepsis and septic shock-basics of diagnosis, pathophysiology and
clinical decision making. Med Clin North Am. 104:573–585. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim JK, Silwal P and Jo EK: Sirtuin 1 in
host defense during infection. Cells. 11:29212022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ghafouri-Fard S, Shoorei H, Hussen BM,
Poornajaf Y, Taheri M and Sharifi G: Interaction between SIRT1 and
non-coding RNAs in different disorders. Front Genet.
14:11219822023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zeng Z, Lan Y, Chen Y, Zuo F, Gong Y, Luo
G, Peng Y and Yuan Z: LncRNA GAS5 suppresses inflammatory responses
by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis.
Eur J Pharmacol. 942:1755202023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL,
Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family
in health and disease. Signal Transduct Target Ther. 7:4022022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jia Y, Shen K, Liu J, Li Y, Bai X, Yang Y,
He T, Zhang Y, Tong L, Gao X, et al: The deacetylation of Akt by
SIRT1 inhibits inflammation in macrophages and protects against
sepsis. Exp Biol Med (Maywood). 248:922–935. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rasha F, Mims BM, Castro-Piedras I, Barnes
BJ, Grisham MB, Rahman RL and Pruitt K: The versatility of
sirtuin-1 in endocrinology and immunology. Front Cell Dev Biol.
8:5890162020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu G, Bi Y, Xue L, Zhang Y, Yang H, Chen
X, Lu Y, Zhang Z, Liu H, Wang X, et al: Dendritic cell SIRT1-HIF1α
axis programs the differentiation of CD4+ T cells through IL-12 and
TGF-β1. Proc Natl Acad Sci USA. 112:E957–E965. 2015.PubMed/NCBI
|
|
12
|
Labiner HE, Sas KM, Hoying J, Sepeda JA,
Wolf N, Perez EC, Sas AR and Sims CA: SIRT1 downregulation in
pneumonia is associated with an immature neutrophil response and
increased disease severity. J Trauma Acute Care Surg. 96:557–565.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Doganyigit Z, Eroglu E and Akyuz E:
Inflammatory mediators of cytokines and chemokines in sepsis: From
bench to bedside. Hum Exp Toxicol. 41:96032712210788712022.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Singh V and Ubaid S: Role of silent
information regulator 1 (SIRT1) in regulating oxidative stress and
inflammation. Inflammation. 43:1589–1598. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Labiner HE, Sas KM, Baur JA and Sims CA:
Sirtuin 1 deletion increases inflammation and mortality in sepsis.
J Trauma Acute Care Surg. 93:672–678. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gharamti AA, Samara O, Monzon A,
Montalbano G, Scherger S, DeSanto K, Chastain DB, Sillau S, Montoya
JG, Franco-Paredes C, et al: Proinflammatory cytokines levels in
sepsis and healthy volunteers, and tumor necrosis factor-alpha
associated sepsis mortality: A systematic review and meta-analysis.
Cytokine. 158:1560062022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Han S, Li Z, Han F, Jia Y, Qi L, Wu G, Cai
W, Xu Y, Li C, Zhang W and Hu D: ROR alpha protects against
LPS-induced inflammation by down-regulating SIRT1/NF-kappa B
pathway. Arch Biochem Biophys. 668:1–8. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Li L, Liu M, Cao M, He T and Bai X:
Research progress on SIRT1 and sepsis. Histol Histopathol.
34:1205–1215. 2019.PubMed/NCBI
|
|
19
|
Liu T, Zhang L, Joo D and Sun SC: NF-κB
signaling in inflammation. Signal Transduct Target Ther.
2:17023–2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li G, Xia Z, Liu Y, Meng F, Wu X, Fang Y,
Zhang C and Liu D: SIRT1 inhibits rheumatoid arthritis
fibroblast-like synoviocyte aggressiveness and inflammatory
response via suppressing NF-κB pathway. Biosci Rep.
38:BSR201805412018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Quan M, Lv Y, Dai Y, Qi B, Fu L, Chen X
and Qian Y: Tanshinone IIA protects against
lipopolysaccharide-induced lung injury through targeting Sirt1. J
Pharm Pharmacol. 71:1142–1151. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yoshizaki T, Schenk S, Imamura T,
Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C,
et al: SIRT1 inhibits inflammatory pathways in macrophages and
modulates insulin sensitivity. Am J Physiol Endocrinol Metab.
298:E419–E428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J,
Jia Y, Tie J and Hu D: Regulation of SIRT1 and its roles in
inflammation. Front Immunol. 13:8311682022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu FJ, Gu TJ and Wei DY: Emodin
alleviates sepsis-mediated lung injury via inhibition and reduction
of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J Med Sci.
38:253–260. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang Y, Liu Y, He X, Yang F, Han S, Qin A,
Wu G, Liu M, Li Z, Wang, et al: ING4 alleviated
lipopolysaccharide-induced inflammation by regulating the NF-κB
pathway via a direct interaction with SIRT1. Immunol Cell Biol.
98:127–137. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang X, Ning W, Gao G, Zhou Y, Duan XB,
Li X, Li D and Guo R: Bazedoxifene attenuates intestinal injury in
sepsis by suppressing the NF-κB/NLRP3 signaling pathways. Eur J
Pharmacol. 947:1756812023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
McKee CM and Coll RC: NLRP3 inflammasome
priming: A riddle wrapped in a mystery inside an enigma. J Leukoc
Biol. 108:937–952. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kelley N, Jeltema D, Duan Y and He Y: The
NLRP3 inflammasome: An overview of mechanisms of activation and
regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP
and Xiao XZ: Shikonin ameliorates LPS-induced cardiac dysfunction
by SIRT1-dependent inhibition of NLRP3 inflammasome. Front Physiol.
11:5704412020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zou Z and Yu J, Huang R and Yu J:
Cx43-delivered miR-181b negatively regulates sirt1/FOXO3a
signalling pathway-mediated apoptosis on intestinal injury in
sepsis. Digestion. 104:370–380. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Huang Y, Lin J, Wu Z and Li Y: Circular
RNA circVAPA modulates macrophage pyroptosis in sepsis-induced
acute lung injury through targeting miR-212-3p/Sirt1/Nrf2/NLRP3
axis. Int J Exp Pathol. 105:21–32. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lu H and Wang B: SIRT1 exerts
neuroprotective effects by attenuating cerebral
ischemia/reperfusion-induced injury via targeting p53/microRNA-22.
Int J Mol Med. 39:208–216. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Vandewalle J and Libert C: Sepsis: A
failing starvation response. Trends Endocrinol Metab. 33:292–304.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Luiking YC, Poeze M and Deutz NE: A
randomized-controlled trial of arginine infusion in severe sepsis
on microcirculation and metabolism. Clin Nutr. 39:1764–1773. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cheng SC, Scicluna BP, Arts RJ, Gresnigt
MS, Lachmandas E, Giamarellos-Bourboulis EJ, Kox M, Manjeri GR,
Wagenaars JA, Cremer OL, et al: Broad defects in the energy
metabolism of leukocytes underlie immunoparalysis in sepsis. Nat
Immunol. 17:406–413. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T,
Gou T, Wang L, Zhang J, Tian Y, et al: Novel role of the SIRT1 in
endocrine and metabolic diseases. Int J Biol Sci. 19:484–501. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Vachharajani VT, Liu T, Wang X, Hoth JJ,
Yoza BK and McCall CE: Sirtuins link inflammation and metabolism. J
Immunol Res. 2016:81672732016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang X, Buechler NL, Woodruff AG, Long DL,
Zabalawi M, Yoza BK, McCall CE and Vachharajani V: Sirtuins and
immuno-metabolism of sepsis. Int J Mol Sci. 19:27382018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Stark RJ, Koch SR, Stothers CL, Pourquoi
A, Lamb CK, Miller MR and Choi H: Loss of Sirtuin 1 (SIRT1)
potentiates endothelial dysfunction via impaired glycolysis during
infectious challenge. Clin Transl Med. 12:e10542022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jomova K, Raptova R, Alomar SY, Alwasel
SH, Nepovimova E, Kuca K and Valko M: Reactive oxygen species,
toxicity, oxidative stress, and antioxidants: chronic diseases and
aging. Arch Toxicol. 97:2499–2574. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Averill-Bates D: Reactive oxygen species
and cell signaling. Review. Biochim Biophys Acta Mol Cell Res.
1871:1195732024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kent AC, El Baradie KBY and Hamrick MW:
Targeting the mitochondrial permeability transition pore to prevent
age-associated cell damage and neurodegeneration. Oxid Med Cell
Longev. 2021:66264842021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Poli G, Fabi C, Sugoni C, Bellet MM,
Costantini C, Luca G and Brancorsini S: The role of NLRP3
inflammasome activation and oxidative stress in varicocele-mediated
male hypofertility. Int J Mol Sci. 23:52332022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang CC and Yang CM: Chinese herbs and
repurposing old drugs as therapeutic agents in the regulation of
oxidative stress and inflammation in pulmonary diseases. J Inflamm
Res. 14:657–687. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sang A, Wang Y, Wang S, Wang Q, Wang X, Li
X and Song X: Quercetin attenuates sepsis-induced acute lung injury
via suppressing oxidative stress-mediated ER stress through
activation of SIRT1/AMPK pathways. Cell Signal. 96:1103632022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mai C, Qiu L, Zeng Y and Tan X:
Lactobacillus casei strain Shirota enhances the ability of
geniposide to activate SIRT1 and decrease inflammation and
oxidative stress in septic mice. Front Physiol. 12:6788382021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhu Y, Wang K, Ma Z, Liu D, Yang Y, Sun M,
Wen A, Hao Y, Ma S, Ren F, et al: SIRT1 activation by butein
attenuates sepsis-induced brain injury in mice subjected to cecal
ligation and puncture via alleviating inflammatory and oxidative
stress. Toxicol Appl Pharmacol. 363:34–46. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mahlooji MA, Heshmati A, Kheiripour N,
Ghasemi H, Asl SS, Solgi G, Ranjbar A and Hosseini A: Evaluation of
protective effects of curcumin and nanocurcumin on aluminium
phosphide-induced subacute lung injury in rats: modulation of
oxidative stress through SIRT1/FOXO3 signalling pathway. Drug Res
(Stuttg). 72:100–108. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li H, Shen L, Lv T, Wang R, Zhang N, Peng
H and Diao W: Salidroside attenuates dextran sulfate sodium-induced
colitis in mice via SIRT1/FoxOs signaling pathway. Eur J Pharmacol.
861:1725912019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Üstündağ H, Kalindemirtaş FD, Doğanay S,
Demir Ö, Kurt N, Huyut MT, Özgeriş B and Kariper İA: Enhanced
efficacy of resveratrol-loaded silver nanoparticle in attenuating
sepsis-induced acute liver injury: Modulation of inflammation,
oxidative stress, and SIRT1 activation. Shock. 60:688–697.
2023.PubMed/NCBI
|
|
51
|
Hu Y, Xiang C and Zhang D, Zhou F and
Zhang D: Nephroprotective effect of Ginsenoside Rg1 in
lipopolysaccharide-induced sepsis in mice through the SIRT1/NF-κB
signaling. Folia Histochem Cytobiol. 62:13–24. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu X, Fan L, Lu C, Yin S and Hu H:
Functional role of p53 in the regulation of chemical-induced
oxidative stress. Oxid Med Cell Longev. 2020:60397692020.PubMed/NCBI
|
|
53
|
Xie W, Deng L, Lin M, Huang X, Qian R,
Xiong D, Liu W and Tang S: Sirtuin1 mediates the protective effects
of echinacoside against sepsis-induced acute lung injury via
regulating the NOX4-Nrf2 axis. Antioxidants (Basel). 12:19252023.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Liu Y, Yang H, Luo N, Fu Y, Qiu F, Pan Z,
Li X, Jian W, Yang X, Xue Q, et al: An Fgr kinase inhibitor
attenuates sepsis-associated encephalopathy by ameliorating
mitochondrial dysfunction, oxidative stress, and neuroinflammation
via the SIRT1/PGC-1α signaling pathway. J Transl Med. 21:4862023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Khan MM, Yang WL and Wang P: Endoplasmic
reticulum stress in sepsis. Shock. 44:294–304. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang F, Ma J, Wang J, Chen M, Xia H, Yao S
and Zhang D: SIRT1 ameliorated septic associated-lung injury and
macrophages apoptosis via inhibiting endoplasmic reticulum stress.
Cell Signal. 97:1103982022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu S, Yao S, Yang H, Liu S and Wang Y:
Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Qiu P, Liu Y and Zhang J: Review: The role
and mechanisms of macrophage autophagy in sepsis. Inflammation.
42:6–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li K, Liu TX, Li JF, Ma YR, Liu ML, Wang
YQ, Wu R, Li B, Shi LZ and Chen C: rhEPO inhibited cell apoptosis
to alleviate acute kidney injury in sepsis by AMPK/SIRT1 activated
autophagy. Biochem Biophys Res Commun. 517:557–565. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sun M, Li J, Mao L, Wu J, Deng Z, He M, An
S, Zeng Z, Huang Q and Chen Z: p53 deacetylation alleviates
sepsis-induced acute kidney injury by promoting autophagy. Front
Immunol. 12:6855232021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Deng Z, Sun M, Wu J, Fang H, Cai S, An S,
Huang Q, Chen Z, Wu C, Zhou Z, et al: SIRT1 attenuates
sepsis-induced acute kidney injury via Beclin1
deacetylation-mediated autophagy activation. Cell Death Dis.
12:2172021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang WX, He BM, Wu Y, Qiao JF and Peng
ZY: Melatonin protects against sepsis-induced cardiac dysfunction
by regulating apoptosis and autophagy via activation of SIRT1 in
mice. Life Sci. 217:8–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pi QZ, Wang XW, Jian ZL, Chen D, Zhang C
and Wu QC: Melatonin alleviates cardiac dysfunction via increasing
Sirt1-mediated Beclin-1 deacetylation and autophagy during sepsis.
Inflammation. 44:1184–1193. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang C, Hu Y, Song Y and Hu X: AQP3
mediates autophagy through SIRT1/p62 signal to alleviate intestinal
epithelial cell damage caused by sepsis. Int J Colorectal Dis.
39:2052024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jiang T, Liu E, Li Z, Yan C, Zhang X, Guan
J, Zhan Y, Zhao B and Ding W: SIRT1-Rab7 axis attenuates NLRP3 and
STING activation through late endosomal-dependent mitophagy during
sepsis-induced acute lung injury. Int J Surg. 110:2649–2668.
2024.PubMed/NCBI
|
|
66
|
Yin JY, Lu XT, Hou ML, Cao T and Tian Z:
Sirtuin1-p53: A potential axis for cancer therapy. Biochem
Pharmacol. 212:1155432023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ong ALC and Ramasamy TS: Role of
Sirtuin1-p53 regulatory axis in aging, cancer and cellular
reprogramming. Ageing Res Rev. 43:64–80. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lin X, Zhao X, Chen Q, Wang X, Wu Y and
Zhao H: Quercetin ameliorates ferroptosis of rat cardiomyocytes via
activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate
sepsis-induced cardiomyopathy. Int J Mol Med. 52:1162023.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang L, Zhang YM, Guo MN, Zhang H, Zhu XY,
Xu C and Liu YJ: Matrine attenuates lung injury by modulating
macrophage polarization and suppressing apoptosis. J Surg Res.
281:264–274. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mo X, Wang X, Ge Q and Bian F: The effects
of SIRT1/FoxO1 on LPS induced INS-1 cells dysfunction. Stress.
22:70–82. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dai Z, Liu WC, Chen XY, Wang X, Li JL and
Zhang X: Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and
inhibitors. Front Immunol. 14:11786622023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wen R, Liu YP, Tong XX, Zhang TN and Yang
N: Molecular mechanisms and functions of pyroptosis in sepsis and
sepsis-associated organ dysfunction. Front Cell Infect Microbiol.
12:9621392022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen LL, Song C, Zhang Y, Li Y, Zhao YH,
Lin FY, Han DD, Dai MH, Li W and Pan PH: Quercetin protects against
LPS-induced lung injury in mice via SIRT1-mediated suppression of
PKM2 nuclear accumulation. Eur J Pharmacol. 936:1753522022.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jiao Y, Zhang T, Zhang C, Ji H, Tong X,
Xia R, Wang W, Ma Z and Shi X: Exosomal miR-30d-5p of neutrophils
induces M1 macrophage polarization and primes macrophage pyroptosis
in sepsis-related acute lung injury. Crit Care. 25:3562021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ling H, Li Q, Duan ZP, Wang YJ, Hu BQ and
Dai XG: LncRNA GAS5 inhibits miR-579-3p to activate
SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell pyroptosis in
sepsis-associated renal injury. Am J Physiol Cell Physiol.
321:C117–C133. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yang J, Yan C, Chen S, Li M, Miao Y, Ma X,
Zeng J and Xie P: The possible mechanisms of ferroptosis in
sepsis-associated acquired weakness. Front Physiol. 15:13809922024.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Deng S, Li J, Li L, Lin S, Yang Y, Liu T,
Zhang T, Xie G, Wu D and Xu Y: Quercetin alleviates
lipopolysaccharide-induced acute lung injury by inhibiting
ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int J Mol Med.
52:1182023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Qiongyue Z, Xin Y, Meng P, Sulin M, Yanlin
W, Xinyi L and Xuemin S: Post-treatment with irisin attenuates
acute kidney injury in sepsis mice through anti-ferroptosis via the
SIRT1/Nrf2 pathway. Front Pharmacol. 13:8570672022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
McMullan RR, McAuley DF, O'Kane CM and
Silversides JA: Vascular leak in sepsis: physiological basis and
potential therapeutic advances. Crit Care. 28:972024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Duan S, Kim SG, Lim HJ, Song HR and Han
MK: Interferon-β alleviates sepsis by SIRT1-mediated blockage of
endothelial glycocalyx shedding. BMB Rep. 56:314–319. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen M, Tan J, Jin Z, Jiang T, Wu J and Yu
X: Research progress on Sirtuins (SIRTs) family modulators. Biomed
Pharmacother. 174:1164812024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yang XR, Wen R, Yang N and Zhang TN: Role
of sirtuins in sepsis and sepsis-induced organ dysfunction: A
review. Int J Biol Macromol. 278:1348532024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bursch KL, Goetz CJ and Smith BC: Current
trends in sirtuin activator and inhibitor development. Molecules.
29:11852024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
You J, Li Y and Chong W: The role and
therapeutic potential of SIRTs in sepsis. Front Immunol.
15:13949252024. View Article : Google Scholar : PubMed/NCBI
|