Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2025 Volume 32 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)

  • Authors:
    • Pingping Guo
    • Hongmin Li
    • Xiangyu Zhang
    • Yang Liu
    • Sara Xue
    • Voon Wee Yong
    • Mengzhou Xue
  • View Affiliations / Copyright

    Affiliations: Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada
    Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 225
    |
    Published online on: June 5, 2025
       https://doi.org/10.3892/mmr.2025.13590
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hemorrhagic transformation (HT) is a devasting complication following acute ischemic stroke with high morbidity and mortality. The pathogenesis of HT mainly involves ischemia‑reperfusion‑induced oxidative stress, neuroinflammation, thrombolytic therapy‑associated toxicity and, most critically, blood‑brain barrier (BBB) disruption. Matrix metalloproteinase‑9 (MMP‑9) serves as a critical mediator of HT through degrading extracellular matrix components and disrupting tight junction proteins, thereby compromising BBB integrity. Thus, elaborating the underlying molecular mechanisms of MMP‑9 in destroying BBB and promoting HT is essential to improve the outcome of ischemic stroke patients. Furthermore, to provide beneficial insights for the treatment of ischemic stroke, precise understanding of the potential role of MMP‑9 as a biomarker and treatment target to predict and ameliorate the risk of HT is also necessary.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Feigin VL and Owolabi MO; World Stroke Organization-Lancet Neurology Commission Stroke Collaboration Group, : Pragmatic solutions to reduce the global burden of stroke: A orld stroke organization-lancet neurology commission. Lancet Neurol. 22:1160–1206. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Hasan TF, Hasan H and Kelley RE: Overview of acute ischemic stroke evaluation and management. Biomedicines. 9:14862021. View Article : Google Scholar : PubMed/NCBI

3 

Otsu Y, Namekawa M, Toriyabe M, Ninomiya I, Hatakeyama M, Uemura M, Onodera O, Shimohata T and Kanazawa M: Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J Neurol Sci. 419:1172172020. View Article : Google Scholar : PubMed/NCBI

4 

Goncalves A, Su EJ, Muthusamy A, Zeitelhofer M, Torrente D, Nilsson I, Protzmann J, Fredriksson L, Eriksson U, Antonetti DA and Lawrence DA: Thrombolytic tPA-induced hemorrhagic transformation of ischemic stroke is mediated by PKCβ phosphorylation of occludin. Blood. 140:388–400. 2022.PubMed/NCBI

5 

Kovács KB, Bencs V, Hudák L, Oláh L and Csiba L: Hemorrhagic transformation of ischemic strokes. Int J Mol Sci. 24:140672023. View Article : Google Scholar : PubMed/NCBI

6 

Lu W and Wen J: The relationship among H2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol. 146:1139022025. View Article : Google Scholar : PubMed/NCBI

7 

Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, Lapergue B, Klein IF, Guidoux C, Cabrejo L, et al: Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology. 80:844–851. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Zhao Z, Nelson AR, Betsholtz C and Zlokovic BV: Establishment and dysfunction of the blood-brain barrier. Cell. 163:1064–1078. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH and Montaner J: MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 39:1121–1126. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G and Pathak A: Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther. 12:28–35. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Misra S, Talwar P, Kumar A, Kumar P, Sagar R, Vibha D, Pandit AK, Gulati A, Kushwaha S and Prasad K: Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and meta-analysis of 29 studies. Gene. 672:180–194. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Yang Y and Rosenberg GA: Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 1623:30–38. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Kimura-Ohba S and Yang Y: Oxidative DNA damage mediated by intranuclear MMP activity is associated with neuronal apoptosis in ischemic stroke. Oxid Med Cell Longev. 2016:69273282016. View Article : Google Scholar : PubMed/NCBI

14 

Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Montaner J, Alvarez-Sabín J, Molina CA, Anglés A, Abilleira S, Arenillas J and Monasterio J: Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 32:2762–2767. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M, Quintana M and Alvarez-Sabín J: Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. 107:598–603. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Li H, Ghorbani S, Ling CC, Yong VW and Xue M: The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis. 186:1062822023. View Article : Google Scholar : PubMed/NCBI

18 

Wang W, Li M, Chen Q and Wang J: Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: Mechanisms, models, and biomarkers. Mol Neurobiol. 52:1572–1579. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y and Liu M: The accuracy of serum matrix metalloproteinase-9 for predicting hemorrhagic transformation after acute ischemic stroke: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 27:1653–1665. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, El-Zammar Z, Alam S, Hallenbeck JM, Kidwell CS and Warach S: Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke. 41:e123–e128. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Jha R, Battey TW, Pham L, Lorenzano S, Furie KL, Sheth KN and Kimberly WT: Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke. Stroke. 45:1040–1045. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW and Xue M: Ion channel dysregulation following intracerebral hemorrhage. Neurosci Bull. 40:401–414. 2024. View Article : Google Scholar : PubMed/NCBI

23 

Mondal S, Adhikari N, Banerjee S, Amin SA and Jha T: Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 194:1122602020. View Article : Google Scholar : PubMed/NCBI

24 

Das S, Amin SA and Jha T: Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem. 223:1136232021. View Article : Google Scholar : PubMed/NCBI

25 

Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M and Kaczmarek L: MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci. 76:3207–3228. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Cathcart J, Pulkoski-Gross A and Cao J: Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2:26–34. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, Kamei H, Nabeshima T, Itohara S, Takuma K, et al: Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci. 31:12963–12971. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, Bai J, Lin T, Guo CJ, Zhang SJ, et al: Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation. 10:802013. View Article : Google Scholar : PubMed/NCBI

29 

Bronisz E and Kurkowska-Jastrzebska I: Matrix metalloproteinase 9 in epilepsy: The role of neuroinflammation in seizure development. Mediators Inflamm. 2016:73690202016. View Article : Google Scholar : PubMed/NCBI

30 

Stawarski M, Stefaniuk M and Wlodarczyk J: Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Front Neuroanat. 8:682014. View Article : Google Scholar : PubMed/NCBI

31 

Xue M, Hollenberg MD and Yong VW: Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 26:10281–10291. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Chen H, He Y, Chen S, Qi S and Shen J: Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 158:1048772020. View Article : Google Scholar : PubMed/NCBI

33 

Qi Z, Liang J, Pan R, Dong W, Shen J, Yang Y, Zhao Y, Shi W, Luo Y, Ji X and Liu KJ: Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption. Neurobiol Dis. 95:12–21. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Li Z, Liu Y, Wei R, Yong VW and Xue M: The important role of Zinc in neurological diseases. Biomolecules. 13:282022. View Article : Google Scholar : PubMed/NCBI

35 

Foerch C, Montaner J, Furie KL, Ning MM and Lo EH: Invited article: searching for oracles? Blood biomarkers in acute stroke. Neurology. 73:393–399. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Romanic AM, White RF, Arleth AJ, Ohlstein EH and Barone FC: Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 29:1020–1030. 1998. View Article : Google Scholar : PubMed/NCBI

37 

Rosenberg GA and Yang Y: Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 22:E42007. View Article : Google Scholar : PubMed/NCBI

38 

Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X and Lo EH: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 12:441–445. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Candelario-Jalil E, Yang Y and Rosenberg GA: Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 158:983–994. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Iadecola C and Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci. 10:1369–1376. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Cottarelli A, Corada M, Beznoussenko GV, Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson PU, Agalliu D, et al: Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development. 147:dev1851402020. View Article : Google Scholar : PubMed/NCBI

42 

Heinemann U and Schuetz A: structural features of tight-junction proteins. Int J Mol Sci. 20:60202019. View Article : Google Scholar : PubMed/NCBI

43 

Biswas S, Cottarelli A and Agalliu D: Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development. 147:dev1822792020. View Article : Google Scholar : PubMed/NCBI

44 

Milner R, Hung S, Wang X, Berg GI, Spatz M and del Zoppo GJ: Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke. 39:191–197. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Thomsen MS, Routhe LJ and Moos T: The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 37:3300–3317. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Kadry H, Noorani B and Cucullo L: A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 17:692020. View Article : Google Scholar : PubMed/NCBI

47 

Tabet A, Apra C, Stranahan AM and Anikeeva P: Changes in brain neuroimmunology following injury and disease. Front Integr Neurosci. 16:8945002022. View Article : Google Scholar : PubMed/NCBI

48 

Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF and Shi Y: Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 163-164:144–171. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Rashid ZA and Bardaweel SK: Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int J Mol Sci. 24:121332023. View Article : Google Scholar : PubMed/NCBI

50 

Luchian I, Goriuc A, Sandu D and Covasa M: The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 23:18062022. View Article : Google Scholar : PubMed/NCBI

51 

Chen X and Wang L, Wang N, Li C, Hang H, Wu G, Ren S, Jun T and Wang L: An apolipoprotein E receptor mimetic peptide decreases blood-brain barrier permeability following intracerebral hemorrhage by inhibiting the CypA/MMP-9 signaling pathway via LRP1 activation. Int Immunopharmacol. 143 (Pt 3):1130072024. View Article : Google Scholar : PubMed/NCBI

52 

Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J and Sorokin L: The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 75-76:102–113. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Könnecke H and Bechmann I: The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013:9141042013. View Article : Google Scholar : PubMed/NCBI

54 

Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, Ringleb AP, Lorenzano S, Manelfe C and Bozzao L: Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 30:2280–2284. 1999. View Article : Google Scholar : PubMed/NCBI

55 

Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH, et al: Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 274:1017–1025. 1995. View Article : Google Scholar : PubMed/NCBI

56 

Ande SR, Grynspan J, Aviv RI and Shankar JJS: Imaging for predicting hemorrhagic transformation of acute ischemic stroke-a narrative review. Can Assoc Radiol J. 73:194–202. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Khatri P, Wechsler LR and Broderick JP: Intracranial hemorrhage associated with revascularization therapies. Stroke. 38:431–440. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Ma G, Pan Z, Kong L and Du G: Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol. 90:1072162021. View Article : Google Scholar : PubMed/NCBI

59 

Kanazawa M, Takahashi T, Nishizawa M and Shimohata T: Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 24:240–253. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Zhang Y, Khan S, Liu Y, Wu G, Yong VW and Xue M: Oxidative stress following intracerebral hemorrhage: From molecular mechanisms to therapeutic targets. Front Immunol. 13:8472462022. View Article : Google Scholar : PubMed/NCBI

61 

Zhao Y, Zhang X, Chen X and Wei Y: Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 49:152022. View Article : Google Scholar : PubMed/NCBI

62 

Abdullahi W, Tripathi D and Ronaldson PT: Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 315:C343–C356. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Fraser PA: The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med. 51:967–977. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN and Yang Y: Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. 2018:38049792018. View Article : Google Scholar : PubMed/NCBI

65 

Shuvalova M, Dmitrieva A, Belousov V and Nosov G: The role of reactive oxygen species in the regulation of the blood-brain barrier. Tissue Barriers. May 29–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

66 

Hong S, Park KK, Magae J, Ando K, Lee TS, Kwon TK, Kwak JY, Kim CH and Chang YC: Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: Inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J Biol Chem. 280:25202–25209. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Lee GH, Jin SW, Kim SJ, Pham TH, Choi JH and Jeong HG: Tetrabromobisphenol A induces MMP-9 expression via NADPH Oxidase and the activation of ROS, MAPK and Akt pathways in human breast cancer MCF-7 cells. Toxicol Res. 35:93–101. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Banjara M and Ghosh C: Sterile Neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017:83859612017.PubMed/NCBI

69 

Gülke E, Gelderblom M and Magnus T: Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 11:17562864187742542018. View Article : Google Scholar : PubMed/NCBI

70 

Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al: Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 23:407–431. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : PubMed/NCBI

72 

McColl BW, Rothwell NJ and Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 28:9451–9462. 2008. View Article : Google Scholar : PubMed/NCBI

73 

McColl BW, Rothwell NJ and Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci. 27:4403–4412. 2007. View Article : Google Scholar : PubMed/NCBI

74 

de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD and Kuiper J: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 64:37–43. 1996. View Article : Google Scholar : PubMed/NCBI

75 

Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T, et al: Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation. 8:1062011. View Article : Google Scholar : PubMed/NCBI

76 

Dimitrijevic OB, Stamatovic SM, Keep RF and Andjelkovic AV: Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab. 26:797–810. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Kim JS: tPA Helpers in the treatment of acute ischemic stroke: Are they ready for clinical use? J Stroke. 21:160–174. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, et al: Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 375:1695–1703. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Fan X, Jiang Y, Yu Z, Yuan J, Sun X, Xiang S, Lo EH and Wang X: Combination approaches to attenuate hemorrhagic transformation after tPA thrombolytic therapy in patients with poststroke hyperglycemia/diabetes. Adv Pharmacol. 71:391–410. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, et al: Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med. 14:731–737. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Cuadrado E, Ortega L, Hernández-Guillamon M, Penalba A, Fernández-Cadenas I, Rosell A and Montaner J: Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 84:207–214. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW and Lo EH: Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 9:1313–1317. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar SB, Deane R, Fernández JA, et al: Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med. 12:1278–1285. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Shi K, Zou M, Jia DM, Shi S, Yang X, Liu Q, Dong JF, Sheth KN, Wang X and Shi FD: tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res. 128:62–75. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Mashaqi S, Mansour HM, Alameddin H, Combs D, Patel S, Estep L and Parthasarathy S: Matrix metalloproteinase-9 as a messenger in the cross talk between obstructive sleep apnea and comorbid systemic hypertension, cardiac remodeling, and ischemic stroke: A literature review. J Clin Sleep Med. 17:567–591. 2021. View Article : Google Scholar : PubMed/NCBI

86 

di Biase L, Bonura A, Pecoraro PM, Carbone SP and Di Lazzaro V: Unlocking the potential of stroke blood biomarkers: Early diagnosis, ischemic vs. haemorrhagic differentiation and haemorrhagic transformation risk: A comprehensive review. Int J Mol Sci. 24:115452023. View Article : Google Scholar : PubMed/NCBI

87 

Yuan R, Tan S, Wang D, Wu S, Cao X, Zhang S, Wu B and Liu M: Predictive value of plasma matrix metalloproteinase-9 concentrations for spontaneous haemorrhagic transformation in patients with acute ischaemic stroke: A cohort study in Chinese patients. J Clin Neurosci. 58:108–112. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ and Ansar S: LOX-1 and MMP-9 inhibition attenuates the detrimental effects of delayed rt-PA therapy and improves outcomes after acute ischemic stroke. Circ Res. 134:954–969. 2024. View Article : Google Scholar : PubMed/NCBI

89 

Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F and Wang Y: Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. Phytomedicine. 120:1550712023. View Article : Google Scholar : PubMed/NCBI

90 

Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF and Tanus-Santos JE: Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 383:547–554. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Yin B, Li DD, Xu SY, Huang H, Lin J, Sheng HS, Fang JH, Song JN and Zhang M: Simvastatin pretreatment ameliorates t-PA-induced hemorrhage transformation and MMP-9/TIMP-1 imbalance in thromboembolic cerebral ischemic rats. Neuropsychiatr Dis Treat. 15:1993–2002. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Li Y, Chen L, Yao S, Chen J, Hu W, Wang M, Chen S, Chen X, Li S, Gu X, et al: Association of polymorphisms of the matrix metalloproteinase 9 gene with ischaemic stroke in a southern Chinese population. Cell Physiol Biochem. 49:2188–2199. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Zhang X, Cao X, Xu X, Li A and Xu Y: Correlation between the −1562C/T polymorphism in the matrix metalloproteinase-9 gene and hemorrhagic transformation of ischemic stroke. Exp Ther Med. 9:1043–1047. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Szczudlik P and Borratyńska A: Association between the −1562 C/T MMP-9 polymorphism and cerebrovascular disease in a Polish population. Neurol Neurochir Pol. 44:350–357. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Fernández-Cadenas I, Del Río-Espínola A, Carrera C, Domingues-Montanari S, Mendióroz M, Delgado P, Rosell A, Ribó M, Giralt D, Quintana M, et al: Role of the MMP-9 gene in hemorrhagic transformations after tissue-type plasminogen activator treatment in stroke patients. Stroke. 43:1398–1400. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Wang B, Wang Y and Zhao L: MMP-9 gene rs3918242 polymorphism increases risk of stroke: A meta-analysis. J Cell Biochem. 119:9801–9808. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Yi X, Sui G, Zhou Q, Wang C, Lin J, Chai Z and Zhou J: Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke. Brain Behav. 9:e012942019. View Article : Google Scholar : PubMed/NCBI

98 

Kytö V, Åivo J and Ruuskanen JO: Intensity of statin therapy after ischaemic stroke and long-term outcomes: A nationwide cohort study. Stroke Vasc Neurol. 10:142–145. 2024. View Article : Google Scholar : PubMed/NCBI

99 

Lapchak PA and Han MK: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin reduces thrombolytic-induced intracerebral hemorrhage in embolized rabbits. Brain Res. 1303:144–150. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG and Fatar M: Effect of simvastatin on MMPs and TIMPs in human brain endothelial cells and experimental stroke. Transl Stroke Res. 6:156–159. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Fang X, Tao D, Shen J, Wang Y, Dong X and Ji X: Neuroprotective effects and dynamic expressions of MMP9 and TIMP1 associated with atorvastatin pretreatment in ischemia-reperfusion rats. Neurosci Lett. 603:60–65. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Kurzepa J, Szczepanska-Szerej A, Stryjecka-Zimmer M, Malecka-Massalska T and Stelmasiak Z: Simvastatin could prevent increase of the serum MMP-9/TIMP-1 ratio in acute ischaemic stroke. Folia Biol (Praha). 52:181–183. 2006. View Article : Google Scholar : PubMed/NCBI

103 

Turner NA, Aley PK, Hall KT, Warburton P, Galloway S, Midgley L, O'Regan DJ, Wood IC, Ball SG and Porter KE: Simvastatin inhibits TNFalpha-induced invasion of human cardiac myofibroblasts via both MMP-9-dependent and -independent mechanisms. J Mol Cell Cardiol. 43:168–176. 2007. View Article : Google Scholar : PubMed/NCBI

104 

Skrzypiec-Spring M, Kaczorowski M, Rak-Pasikowska A, Sapa-Wojciechowska A, Kujawa K, Żuryń A, Bil-Lula I, Hałoń A and Szeląg A: RhoA/ROCK pathway is upregulated in experimental autoimmune myocarditis and is inhibited by simvastatin at the stage of myosin light chain phosphorylation. Biomedicines. 12:5962024. View Article : Google Scholar : PubMed/NCBI

105 

Liu XS, Zhang ZG, Zhang L, Morris DC, Kapke A, Lu M and Chopp M: Atorvastatin downregulates tissue plasminogen activator-aggravated genes mediating coagulation and vascular permeability in single cerebral endothelial cells captured by laser microdissection. J Cereb Blood Flow Metab. 26:787–796. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Gómez-Hernández A, Sánchez-Galán E, Ortego M, Martín-Ventura JL, Blanco-Colio LM, Tarín-Vicente N, Jiménez-Nacher JJ, López-Bescos L, Egido J and Tuñón J: Effect of intensive atorvastatin therapy on prostaglandin E2 levels and metalloproteinase-9 activity in the plasma of patients with non-ST-elevation acute coronary syndrome. Am J Cardiol. 102:12–18. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Zhang L, Chopp M, Jia L, Cui Y, Lu M and Zhang ZG: Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J Cereb Blood Flow Metab. 29:1816–1824. 2009. View Article : Google Scholar : PubMed/NCBI

108 

Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R and Bernini F: HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol. 18:1671–1678. 1998. View Article : Google Scholar : PubMed/NCBI

109 

Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, et al: Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 388:2532–2561. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Sun Z, Xu Q, Gao G, Zhao M and Sun C: Clinical observation in edaravone treatment for acute cerebral infarction. Niger J Clin Pract. 22:1324–1327. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Batino LKJ, Escabillas CG and Navarro JC: Edaravone's safety profile in acute ischemic stroke. Brain Behav. 14:e701582024. View Article : Google Scholar : PubMed/NCBI

112 

Liu J, Jiang Y, Zhang G, Lin Z and Du S: Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med. 18:2437–2442. 2019.PubMed/NCBI

113 

Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P and Deli MA: Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS. 17:52020. View Article : Google Scholar : PubMed/NCBI

114 

Zheng J and Chen X: Edaravone offers neuroprotection for acute diabetic stroke patients. Ir J Med Sci. 185:819–824. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, Ibayashi S and Iida M: Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci. 221:11–17. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Okamura K, Tsubokawa T, Johshita H, Miyazaki H and Shiokawa Y: Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol Res. 36:65–69. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Yagi K, Kitazato KT, Uno M, Tada Y, Kinouchi T, Shimada K and Nagahiro S: Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke. 40:626–631. 2009. View Article : Google Scholar : PubMed/NCBI

118 

Miyamoto N, Pham LD, Maki T, Liang AC and Arai K: A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion. Neurosci Lett. 573:40–45. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Harada K, Suzuki Y, Yamakawa K, Kawakami J and Umemura K: Combination of reactive oxygen species and tissue-type plasminogen activator enhances the induction of gelatinase B in brain endothelial cells. Int J Neurosci. 122:53–59. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Yang CC, Hsiao LD, Tseng HC, Kuo CM and Yang CM: Pristimerin inhibits MMP-9 expression and cell migration through attenuating NOX/ROS-dependent NF-κB activation in rat brain astrocytes challenged with LPS. J Inflamm Res. 13:325–341. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Zhang H and Sun SC: NF-κB in inflammation and renal diseases. Cell Biosci. 5:632015. View Article : Google Scholar : PubMed/NCBI

122 

Ridder DA and Schwaninger M: NF-κB signaling in cerebral ischemia. Neuroscience. 158:995–1006. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Amirshahrokhi K and Imani M: Edaravone reduces brain injury in hepatic encephalopathy by upregulation of Nrf2/HO-1 and inhibition of NF-κB, iNOS/NO and inflammatory cytokines. Mol Biol Rep. 52:2222025. View Article : Google Scholar : PubMed/NCBI

124 

Mishina M, Komaba Y, Kobayashi S, Kominami S, Fukuchi T, Mizunari T, Teramoto A and Katayama Y: Administration of free radical scavenger edaravone associated with higher frequency of hemorrhagic transformation in patients with cardiogenic embolism. Neurol Med Chir (Tokyo). 48:292–297. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Liao TV, Forehand CC, Hess DC and Fagan SC: Minocycline repurposing in critical illness: Focus on stroke. Curr Top Med Chem. 13:2283–2290. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Singh T, Thapliyal S, Bhatia S, Singh V, Singh M, Singh H, Kumar A and Mishra A: Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci. 293:1203462022. View Article : Google Scholar : PubMed/NCBI

127 

Chang JJ, Kim-Tenser M, Emanuel BA, Jones GM, Chapple K, Alikhani A, Sanossian N, Mack WJ, Tsivgoulis G, Alexandrov AV and Pourmotabbed T: Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: A pilot study. Eur J Neurol. 24:1384–1391. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, Ergul A, Edwards DJ, Fagan SC and Switzer JA: Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke. 48:2885–2887. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J and Blacker D: Intravenous minocycline in acute stroke: A randomized, controlled pilot study and meta-analysis. Stroke. 44:2493–2499. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A and Hess DC: Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke. 41:2283–2287. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Chen X, Chen S, Jiang Y, Zhu C, Wu A, Ma X, Peng F, Ma L, Zhu D, Wang Q and Pi R: Minocycline reduces oxygen-glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation. Neurol Sci. 34:1391–1396. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Knecht T, Borlongan C and Dela Peña I: Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circ. 4:99–108. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X and Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 39:3372–3377. 2008. View Article : Google Scholar : PubMed/NCBI

134 

Liu Y, Li Z, Khan S, Zhang R, Wei R, Zhang Y, Xue M and Yong VW: Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neurosci Lett. 764:1362972021. View Article : Google Scholar : PubMed/NCBI

135 

Liu Y, Mu Y, Li Z, Yong VW and Xue M: Extracellular matrix metalloproteinase inducer in brain ischemia and intracerebral hemorrhage. Front Immunol. 13:9864692022. View Article : Google Scholar : PubMed/NCBI

136 

Song ZP, Xiong BR, Guan XH, Cao F, Manyande A, Zhou YQ, Zheng H and Tian YK: Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin. 37:753–762. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Fan Y, Meng S, Wang Y, Cao J and Wang C: Visfatin/PBEF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK (p38, ERK1/2)-NF-κB signaling pathway. Int J Mol Med. 27:607–615. 2011.PubMed/NCBI

138 

Chen Y, Won SJ, Xu Y and Swanson RA: Targeting microglial activation in stroke therapy: Pharmacological tools and gender effects. Curr Med Chem. 21:2146–2155. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Kase CS, Furlan AJ, Wechsler LR, Higashida RT, Rowley HA, Hart RG, Molinari GF, Frederick LS, Roberts HC, Gebel JM, et al: Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial. Neurology. 57:1603–1610. 2001. View Article : Google Scholar : PubMed/NCBI

140 

Arcambal A, Taïlé J, Rondeau P, Viranaïcken W, Meilhac O and Gonthier MP: Hyperglycemia modulates redox, inflammatory and vasoactive markers through specific signaling pathways in cerebral endothelial cells: Insights on insulin protective action. Free Radic Biol Med. 130:59–70. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ and Fan F: Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiolo Heart Circ Physiol. 320:H549–H562. 2021. View Article : Google Scholar : PubMed/NCBI

142 

Rom S, Heldt NA, Gajghate S, Seliga A, Reichenbach NL and Persidsky Y: Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Sci Rep. 10:72742020. View Article : Google Scholar : PubMed/NCBI

143 

Yuan C, Chen S, Ruan Y, Liu Y, Cheng H, Zeng Y, Chen Y, Cheng Q, Huang G, He W and He J: The stress hyperglycemia ratio is associated with hemorrhagic transformation in patients with acute ischemic stroke. Clin Interv Aging. 16:431–442. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Zhang FH, Lin YH, Huang HG, Sun JZ, Wen SQ and Lou M: Rosiglitazone attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal ischemia in rats. Neuroscience. 250:651–657. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Li Y, Zhu ZY, Lu BW, Huang TT, Zhang YM, Zhou NY, Xuan W, Chen ZA, Wen DX, Yu WF and Li PY: Rosiglitazone ameliorates tissue plasminogen activator-induced brain hemorrhage after stroke. CNS Neurosci Ther. 25:1343–1352. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, Scharnagl H, Hombach V and Koenig W: Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 23:283–288. 2003. View Article : Google Scholar : PubMed/NCBI

147 

Wu G, Wu J, Jiao Y, Wang L, Wang F and Zhang Y: Rosiglitazone infusion therapy following minimally invasive surgery for intracerebral hemorrhage evacuation decreases matrix metalloproteinase-9 and blood-brain barrier disruption in rabbits. BMC Neurol. 15:372015. View Article : Google Scholar : PubMed/NCBI

148 

Wang CX, Ding X, Noor R, Pegg C, He C and Shuaib A: Rosiglitazone alone or in combination with tissue plasminogen activator improves ischemic brain injury in an embolic model in rats. J Cereb Blood Flow Metab. 29:1683–1694. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Zhou M, Xu A, Lam KS, Tam PK, Che CM, Chan L, Lee IK, Wu D and Wang Y: Rosiglitazone promotes fatty acyl CoA accumulation and excessive glycogen storage in livers of mice without adiponectin. J Hepatol. 53:1108–1116. 2010. View Article : Google Scholar : PubMed/NCBI

150 

Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W and Braun-Dullaeus RC: GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep. 6:385532016. View Article : Google Scholar : PubMed/NCBI

151 

Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, Park KW, Cho HJ, Kang HJ, Park YB and Kim HS: New mechanism of rosiglitazone to reduce neointimal hyperplasia: Activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol. 29:472–479. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M and McMurray JJ; RECORD Study Team, : Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet. 373:2125–2135. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Nishiyama Y, Kimura K, Otsuka T, Toyoda K, Uchiyama S, Hoshino H, Sakai N, Okada Y, Origasa H, Naritomi H, et al: Dual antiplatelet therapy with cilostazol for secondary prevention in lacunar stroke: Subanalysis of the CSPS.com trial. Stroke. 54:697–705. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Uchiyama S: Results of the Cilostazol Stroke Prevention Study II (CSPS II): A randomized controlled trial for the comparison of cilostazol and aspirin in stroke patients. Rinsho Shinkeigaku. 50:832–834. 2010.(In Japanese). View Article : Google Scholar : PubMed/NCBI

155 

Nonaka Y, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T and Hara H: Cilostazol protects against hemorrhagic transformation in mice transient focal cerebral ischemia-induced brain damage. Neurosci Lett. 452:156–161. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Hase Y, Okamoto Y, Fujita Y, Kitamura A, Nakabayashi H, Ito H, Maki T, Washida K, Takahashi R and Ihara M: Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia. Exp Neurol. 233:523–533. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Kasahara Y, Nakagomi T, Matsuyama T, Stern D and Taguchi A: Cilostazol reduces the risk of hemorrhagic infarction after administration of tissue-type plasminogen activator in a murine stroke model. Stroke. 43:499–506. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Chuang SY, Yang SH, Chen TY and Pang JH: Cilostazol inhibits matrix invasion and modulates the gene expressions of MMP-9 and TIMP-1 in PMA-differentiated THP-1 cells. Eur J Pharmacol. 670:419–426. 2011. View Article : Google Scholar : PubMed/NCBI

159 

da Motta NA and de Brito FC: Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundam Clin Pharmacol. 30:327–337. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Kitashoji A, Egashira Y, Mishiro K, Suzuki Y, Ito H, Tsuruma K, Shimazawa M and Hara H: Cilostazol ameliorates warfarin-induced hemorrhagic transformation after cerebral ischemia in mice. Stroke. 44:2862–2868. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Guo P, Li H, Zhang X, Liu Y, Xue S, Yong VW and Xue M: Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review). Mol Med Rep 32: 225, 2025.
APA
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V.W., & Xue, M. (2025). Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review). Molecular Medicine Reports, 32, 225. https://doi.org/10.3892/mmr.2025.13590
MLA
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V. W., Xue, M."Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)". Molecular Medicine Reports 32.2 (2025): 225.
Chicago
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V. W., Xue, M."Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)". Molecular Medicine Reports 32, no. 2 (2025): 225. https://doi.org/10.3892/mmr.2025.13590
Copy and paste a formatted citation
x
Spandidos Publications style
Guo P, Li H, Zhang X, Liu Y, Xue S, Yong VW and Xue M: Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review). Mol Med Rep 32: 225, 2025.
APA
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V.W., & Xue, M. (2025). Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review). Molecular Medicine Reports, 32, 225. https://doi.org/10.3892/mmr.2025.13590
MLA
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V. W., Xue, M."Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)". Molecular Medicine Reports 32.2 (2025): 225.
Chicago
Guo, P., Li, H., Zhang, X., Liu, Y., Xue, S., Yong, V. W., Xue, M."Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)". Molecular Medicine Reports 32, no. 2 (2025): 225. https://doi.org/10.3892/mmr.2025.13590
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team