
Matrix metalloproteinase‑9 in hemorrhagic transformation after acute ischemic stroke (Review)
- Authors:
- Pingping Guo
- Hongmin Li
- Xiangyu Zhang
- Yang Liu
- Sara Xue
- Voon Wee Yong
- Mengzhou Xue
-
Affiliations: Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 4N1, Canada - Published online on: June 5, 2025 https://doi.org/10.3892/mmr.2025.13590
- Article Number: 225
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Feigin VL and Owolabi MO; World Stroke Organization-Lancet Neurology Commission Stroke Collaboration Group, : Pragmatic solutions to reduce the global burden of stroke: A orld stroke organization-lancet neurology commission. Lancet Neurol. 22:1160–1206. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hasan TF, Hasan H and Kelley RE: Overview of acute ischemic stroke evaluation and management. Biomedicines. 9:14862021. View Article : Google Scholar : PubMed/NCBI | |
Otsu Y, Namekawa M, Toriyabe M, Ninomiya I, Hatakeyama M, Uemura M, Onodera O, Shimohata T and Kanazawa M: Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J Neurol Sci. 419:1172172020. View Article : Google Scholar : PubMed/NCBI | |
Goncalves A, Su EJ, Muthusamy A, Zeitelhofer M, Torrente D, Nilsson I, Protzmann J, Fredriksson L, Eriksson U, Antonetti DA and Lawrence DA: Thrombolytic tPA-induced hemorrhagic transformation of ischemic stroke is mediated by PKCβ phosphorylation of occludin. Blood. 140:388–400. 2022.PubMed/NCBI | |
Kovács KB, Bencs V, Hudák L, Oláh L and Csiba L: Hemorrhagic transformation of ischemic strokes. Int J Mol Sci. 24:140672023. View Article : Google Scholar : PubMed/NCBI | |
Lu W and Wen J: The relationship among H2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol. 146:1139022025. View Article : Google Scholar : PubMed/NCBI | |
Desilles JP, Rouchaud A, Labreuche J, Meseguer E, Laissy JP, Serfaty JM, Lapergue B, Klein IF, Guidoux C, Cabrejo L, et al: Blood-brain barrier disruption is associated with increased mortality after endovascular therapy. Neurology. 80:844–851. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Nelson AR, Betsholtz C and Zlokovic BV: Establishment and dysfunction of the blood-brain barrier. Cell. 163:1064–1078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH and Montaner J: MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 39:1121–1126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G and Pathak A: Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther. 12:28–35. 2016. View Article : Google Scholar : PubMed/NCBI | |
Misra S, Talwar P, Kumar A, Kumar P, Sagar R, Vibha D, Pandit AK, Gulati A, Kushwaha S and Prasad K: Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and meta-analysis of 29 studies. Gene. 672:180–194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y and Rosenberg GA: Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 1623:30–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kimura-Ohba S and Yang Y: Oxidative DNA damage mediated by intranuclear MMP activity is associated with neuronal apoptosis in ischemic stroke. Oxid Med Cell Longev. 2016:69273282016. View Article : Google Scholar : PubMed/NCBI | |
Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Montaner J, Alvarez-Sabín J, Molina CA, Anglés A, Abilleira S, Arenillas J and Monasterio J: Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. 32:2762–2767. 2001. View Article : Google Scholar : PubMed/NCBI | |
Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M, Quintana M and Alvarez-Sabín J: Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. 107:598–603. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ghorbani S, Ling CC, Yong VW and Xue M: The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis. 186:1062822023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li M, Chen Q and Wang J: Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: Mechanisms, models, and biomarkers. Mol Neurobiol. 52:1572–1579. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y and Liu M: The accuracy of serum matrix metalloproteinase-9 for predicting hemorrhagic transformation after acute ischemic stroke: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 27:1653–1665. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, El-Zammar Z, Alam S, Hallenbeck JM, Kidwell CS and Warach S: Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke. 41:e123–e128. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jha R, Battey TW, Pham L, Lorenzano S, Furie KL, Sheth KN and Kimberly WT: Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke. Stroke. 45:1040–1045. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW and Xue M: Ion channel dysregulation following intracerebral hemorrhage. Neurosci Bull. 40:401–414. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mondal S, Adhikari N, Banerjee S, Amin SA and Jha T: Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem. 194:1122602020. View Article : Google Scholar : PubMed/NCBI | |
Das S, Amin SA and Jha T: Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem. 223:1136232021. View Article : Google Scholar : PubMed/NCBI | |
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M and Kaczmarek L: MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci. 76:3207–3228. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cathcart J, Pulkoski-Gross A and Cao J: Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis. 2:26–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, Kamei H, Nabeshima T, Itohara S, Takuma K, et al: Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci. 31:12963–12971. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, Bai J, Lin T, Guo CJ, Zhang SJ, et al: Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation. 10:802013. View Article : Google Scholar : PubMed/NCBI | |
Bronisz E and Kurkowska-Jastrzebska I: Matrix metalloproteinase 9 in epilepsy: The role of neuroinflammation in seizure development. Mediators Inflamm. 2016:73690202016. View Article : Google Scholar : PubMed/NCBI | |
Stawarski M, Stefaniuk M and Wlodarczyk J: Matrix metalloproteinase-9 involvement in the structural plasticity of dendritic spines. Front Neuroanat. 8:682014. View Article : Google Scholar : PubMed/NCBI | |
Xue M, Hollenberg MD and Yong VW: Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 26:10281–10291. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen H, He Y, Chen S, Qi S and Shen J: Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 158:1048772020. View Article : Google Scholar : PubMed/NCBI | |
Qi Z, Liang J, Pan R, Dong W, Shen J, Yang Y, Zhao Y, Shi W, Luo Y, Ji X and Liu KJ: Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption. Neurobiol Dis. 95:12–21. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Liu Y, Wei R, Yong VW and Xue M: The important role of Zinc in neurological diseases. Biomolecules. 13:282022. View Article : Google Scholar : PubMed/NCBI | |
Foerch C, Montaner J, Furie KL, Ning MM and Lo EH: Invited article: searching for oracles? Blood biomarkers in acute stroke. Neurology. 73:393–399. 2009. View Article : Google Scholar : PubMed/NCBI | |
Romanic AM, White RF, Arleth AJ, Ohlstein EH and Barone FC: Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 29:1020–1030. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg GA and Yang Y: Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. 22:E42007. View Article : Google Scholar : PubMed/NCBI | |
Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X and Lo EH: Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 12:441–445. 2006. View Article : Google Scholar : PubMed/NCBI | |
Candelario-Jalil E, Yang Y and Rosenberg GA: Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 158:983–994. 2009. View Article : Google Scholar : PubMed/NCBI | |
Iadecola C and Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci. 10:1369–1376. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cottarelli A, Corada M, Beznoussenko GV, Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson PU, Agalliu D, et al: Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/β-catenin signaling. Development. 147:dev1851402020. View Article : Google Scholar : PubMed/NCBI | |
Heinemann U and Schuetz A: structural features of tight-junction proteins. Int J Mol Sci. 20:60202019. View Article : Google Scholar : PubMed/NCBI | |
Biswas S, Cottarelli A and Agalliu D: Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development. 147:dev1822792020. View Article : Google Scholar : PubMed/NCBI | |
Milner R, Hung S, Wang X, Berg GI, Spatz M and del Zoppo GJ: Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke. 39:191–197. 2008. View Article : Google Scholar : PubMed/NCBI | |
Thomsen MS, Routhe LJ and Moos T: The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 37:3300–3317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kadry H, Noorani B and Cucullo L: A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 17:692020. View Article : Google Scholar : PubMed/NCBI | |
Tabet A, Apra C, Stranahan AM and Anikeeva P: Changes in brain neuroimmunology following injury and disease. Front Integr Neurosci. 16:8945002022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF and Shi Y: Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 163-164:144–171. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rashid ZA and Bardaweel SK: Novel matrix metalloproteinase-9 (MMP-9) inhibitors in cancer treatment. Int J Mol Sci. 24:121332023. View Article : Google Scholar : PubMed/NCBI | |
Luchian I, Goriuc A, Sandu D and Covasa M: The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 23:18062022. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Wang L, Wang N, Li C, Hang H, Wu G, Ren S, Jun T and Wang L: An apolipoprotein E receptor mimetic peptide decreases blood-brain barrier permeability following intracerebral hemorrhage by inhibiting the CypA/MMP-9 signaling pathway via LRP1 activation. Int Immunopharmacol. 143 (Pt 3):1130072024. View Article : Google Scholar : PubMed/NCBI | |
Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J and Sorokin L: The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 75-76:102–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Könnecke H and Bechmann I: The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013:9141042013. View Article : Google Scholar : PubMed/NCBI | |
Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, Ringleb AP, Lorenzano S, Manelfe C and Bozzao L: Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 30:2280–2284. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH, et al: Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 274:1017–1025. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ande SR, Grynspan J, Aviv RI and Shankar JJS: Imaging for predicting hemorrhagic transformation of acute ischemic stroke-a narrative review. Can Assoc Radiol J. 73:194–202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Khatri P, Wechsler LR and Broderick JP: Intracranial hemorrhage associated with revascularization therapies. Stroke. 38:431–440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma G, Pan Z, Kong L and Du G: Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol. 90:1072162021. View Article : Google Scholar : PubMed/NCBI | |
Kanazawa M, Takahashi T, Nishizawa M and Shimohata T: Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 24:240–253. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Khan S, Liu Y, Wu G, Yong VW and Xue M: Oxidative stress following intracerebral hemorrhage: From molecular mechanisms to therapeutic targets. Front Immunol. 13:8472462022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhang X, Chen X and Wei Y: Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 49:152022. View Article : Google Scholar : PubMed/NCBI | |
Abdullahi W, Tripathi D and Ronaldson PT: Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 315:C343–C356. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fraser PA: The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med. 51:967–977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN and Yang Y: Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. 2018:38049792018. View Article : Google Scholar : PubMed/NCBI | |
Shuvalova M, Dmitrieva A, Belousov V and Nosov G: The role of reactive oxygen species in the regulation of the blood-brain barrier. Tissue Barriers. May 29–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Hong S, Park KK, Magae J, Ando K, Lee TS, Kwon TK, Kwak JY, Kim CH and Chang YC: Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: Inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J Biol Chem. 280:25202–25209. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee GH, Jin SW, Kim SJ, Pham TH, Choi JH and Jeong HG: Tetrabromobisphenol A induces MMP-9 expression via NADPH Oxidase and the activation of ROS, MAPK and Akt pathways in human breast cancer MCF-7 cells. Toxicol Res. 35:93–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
Banjara M and Ghosh C: Sterile Neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017:83859612017.PubMed/NCBI | |
Gülke E, Gelderblom M and Magnus T: Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 11:17562864187742542018. View Article : Google Scholar : PubMed/NCBI | |
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al: Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 23:407–431. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : PubMed/NCBI | |
McColl BW, Rothwell NJ and Allan SM: Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 28:9451–9462. 2008. View Article : Google Scholar : PubMed/NCBI | |
McColl BW, Rothwell NJ and Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci. 27:4403–4412. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD and Kuiper J: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 64:37–43. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T, et al: Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation. 8:1062011. View Article : Google Scholar : PubMed/NCBI | |
Dimitrijevic OB, Stamatovic SM, Keep RF and Andjelkovic AV: Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab. 26:797–810. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim JS: tPA Helpers in the treatment of acute ischemic stroke: Are they ready for clinical use? J Stroke. 21:160–174. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, Albers GW, Kaste M, Marler JR, Hamilton SA, et al: Time to treatment with intravenous alteplase and outcome in stroke: An updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 375:1695–1703. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fan X, Jiang Y, Yu Z, Yuan J, Sun X, Xiang S, Lo EH and Wang X: Combination approaches to attenuate hemorrhagic transformation after tPA thrombolytic therapy in patients with poststroke hyperglycemia/diabetes. Adv Pharmacol. 71:391–410. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, Gao Y, Pietras K, Mann K, Yepes M, et al: Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med. 14:731–737. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cuadrado E, Ortega L, Hernández-Guillamon M, Penalba A, Fernández-Cadenas I, Rosell A and Montaner J: Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 84:207–214. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW and Lo EH: Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 9:1313–1317. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, Liu D, Maggirwar SB, Deane R, Fernández JA, et al: Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med. 12:1278–1285. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi K, Zou M, Jia DM, Shi S, Yang X, Liu Q, Dong JF, Sheth KN, Wang X and Shi FD: tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res. 128:62–75. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mashaqi S, Mansour HM, Alameddin H, Combs D, Patel S, Estep L and Parthasarathy S: Matrix metalloproteinase-9 as a messenger in the cross talk between obstructive sleep apnea and comorbid systemic hypertension, cardiac remodeling, and ischemic stroke: A literature review. J Clin Sleep Med. 17:567–591. 2021. View Article : Google Scholar : PubMed/NCBI | |
di Biase L, Bonura A, Pecoraro PM, Carbone SP and Di Lazzaro V: Unlocking the potential of stroke blood biomarkers: Early diagnosis, ischemic vs. haemorrhagic differentiation and haemorrhagic transformation risk: A comprehensive review. Int J Mol Sci. 24:115452023. View Article : Google Scholar : PubMed/NCBI | |
Yuan R, Tan S, Wang D, Wu S, Cao X, Zhang S, Wu B and Liu M: Predictive value of plasma matrix metalloproteinase-9 concentrations for spontaneous haemorrhagic transformation in patients with acute ischaemic stroke: A cohort study in Chinese patients. J Clin Neurosci. 58:108–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ and Ansar S: LOX-1 and MMP-9 inhibition attenuates the detrimental effects of delayed rt-PA therapy and improves outcomes after acute ischemic stroke. Circ Res. 134:954–969. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F and Wang Y: Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. Phytomedicine. 120:1550712023. View Article : Google Scholar : PubMed/NCBI | |
Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF and Tanus-Santos JE: Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 383:547–554. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yin B, Li DD, Xu SY, Huang H, Lin J, Sheng HS, Fang JH, Song JN and Zhang M: Simvastatin pretreatment ameliorates t-PA-induced hemorrhage transformation and MMP-9/TIMP-1 imbalance in thromboembolic cerebral ischemic rats. Neuropsychiatr Dis Treat. 15:1993–2002. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen L, Yao S, Chen J, Hu W, Wang M, Chen S, Chen X, Li S, Gu X, et al: Association of polymorphisms of the matrix metalloproteinase 9 gene with ischaemic stroke in a southern Chinese population. Cell Physiol Biochem. 49:2188–2199. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Cao X, Xu X, Li A and Xu Y: Correlation between the −1562C/T polymorphism in the matrix metalloproteinase-9 gene and hemorrhagic transformation of ischemic stroke. Exp Ther Med. 9:1043–1047. 2015. View Article : Google Scholar : PubMed/NCBI | |
Szczudlik P and Borratyńska A: Association between the −1562 C/T MMP-9 polymorphism and cerebrovascular disease in a Polish population. Neurol Neurochir Pol. 44:350–357. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Cadenas I, Del Río-Espínola A, Carrera C, Domingues-Montanari S, Mendióroz M, Delgado P, Rosell A, Ribó M, Giralt D, Quintana M, et al: Role of the MMP-9 gene in hemorrhagic transformations after tissue-type plasminogen activator treatment in stroke patients. Stroke. 43:1398–1400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang Y and Zhao L: MMP-9 gene rs3918242 polymorphism increases risk of stroke: A meta-analysis. J Cell Biochem. 119:9801–9808. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yi X, Sui G, Zhou Q, Wang C, Lin J, Chai Z and Zhou J: Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke. Brain Behav. 9:e012942019. View Article : Google Scholar : PubMed/NCBI | |
Kytö V, Åivo J and Ruuskanen JO: Intensity of statin therapy after ischaemic stroke and long-term outcomes: A nationwide cohort study. Stroke Vasc Neurol. 10:142–145. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lapchak PA and Han MK: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin reduces thrombolytic-induced intracerebral hemorrhage in embolized rabbits. Brain Res. 1303:144–150. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG and Fatar M: Effect of simvastatin on MMPs and TIMPs in human brain endothelial cells and experimental stroke. Transl Stroke Res. 6:156–159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Tao D, Shen J, Wang Y, Dong X and Ji X: Neuroprotective effects and dynamic expressions of MMP9 and TIMP1 associated with atorvastatin pretreatment in ischemia-reperfusion rats. Neurosci Lett. 603:60–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kurzepa J, Szczepanska-Szerej A, Stryjecka-Zimmer M, Malecka-Massalska T and Stelmasiak Z: Simvastatin could prevent increase of the serum MMP-9/TIMP-1 ratio in acute ischaemic stroke. Folia Biol (Praha). 52:181–183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Turner NA, Aley PK, Hall KT, Warburton P, Galloway S, Midgley L, O'Regan DJ, Wood IC, Ball SG and Porter KE: Simvastatin inhibits TNFalpha-induced invasion of human cardiac myofibroblasts via both MMP-9-dependent and -independent mechanisms. J Mol Cell Cardiol. 43:168–176. 2007. View Article : Google Scholar : PubMed/NCBI | |
Skrzypiec-Spring M, Kaczorowski M, Rak-Pasikowska A, Sapa-Wojciechowska A, Kujawa K, Żuryń A, Bil-Lula I, Hałoń A and Szeląg A: RhoA/ROCK pathway is upregulated in experimental autoimmune myocarditis and is inhibited by simvastatin at the stage of myosin light chain phosphorylation. Biomedicines. 12:5962024. View Article : Google Scholar : PubMed/NCBI | |
Liu XS, Zhang ZG, Zhang L, Morris DC, Kapke A, Lu M and Chopp M: Atorvastatin downregulates tissue plasminogen activator-aggravated genes mediating coagulation and vascular permeability in single cerebral endothelial cells captured by laser microdissection. J Cereb Blood Flow Metab. 26:787–796. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Hernández A, Sánchez-Galán E, Ortego M, Martín-Ventura JL, Blanco-Colio LM, Tarín-Vicente N, Jiménez-Nacher JJ, López-Bescos L, Egido J and Tuñón J: Effect of intensive atorvastatin therapy on prostaglandin E2 levels and metalloproteinase-9 activity in the plasma of patients with non-ST-elevation acute coronary syndrome. Am J Cardiol. 102:12–18. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chopp M, Jia L, Cui Y, Lu M and Zhang ZG: Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J Cereb Blood Flow Metab. 29:1816–1824. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R and Bernini F: HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol. 18:1671–1678. 1998. View Article : Google Scholar : PubMed/NCBI | |
Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, et al: Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 388:2532–2561. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Xu Q, Gao G, Zhao M and Sun C: Clinical observation in edaravone treatment for acute cerebral infarction. Niger J Clin Pract. 22:1324–1327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Batino LKJ, Escabillas CG and Navarro JC: Edaravone's safety profile in acute ischemic stroke. Brain Behav. 14:e701582024. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Jiang Y, Zhang G, Lin Z and Du S: Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med. 18:2437–2442. 2019.PubMed/NCBI | |
Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P and Deli MA: Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS. 17:52020. View Article : Google Scholar : PubMed/NCBI | |
Zheng J and Chen X: Edaravone offers neuroprotection for acute diabetic stroke patients. Ir J Med Sci. 185:819–824. 2016. View Article : Google Scholar : PubMed/NCBI | |
Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, Ibayashi S and Iida M: Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci. 221:11–17. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okamura K, Tsubokawa T, Johshita H, Miyazaki H and Shiokawa Y: Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia. Neurol Res. 36:65–69. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yagi K, Kitazato KT, Uno M, Tada Y, Kinouchi T, Shimada K and Nagahiro S: Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke. 40:626–631. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto N, Pham LD, Maki T, Liang AC and Arai K: A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion. Neurosci Lett. 573:40–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Harada K, Suzuki Y, Yamakawa K, Kawakami J and Umemura K: Combination of reactive oxygen species and tissue-type plasminogen activator enhances the induction of gelatinase B in brain endothelial cells. Int J Neurosci. 122:53–59. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang CC, Hsiao LD, Tseng HC, Kuo CM and Yang CM: Pristimerin inhibits MMP-9 expression and cell migration through attenuating NOX/ROS-dependent NF-κB activation in rat brain astrocytes challenged with LPS. J Inflamm Res. 13:325–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Sun SC: NF-κB in inflammation and renal diseases. Cell Biosci. 5:632015. View Article : Google Scholar : PubMed/NCBI | |
Ridder DA and Schwaninger M: NF-κB signaling in cerebral ischemia. Neuroscience. 158:995–1006. 2009. View Article : Google Scholar : PubMed/NCBI | |
Amirshahrokhi K and Imani M: Edaravone reduces brain injury in hepatic encephalopathy by upregulation of Nrf2/HO-1 and inhibition of NF-κB, iNOS/NO and inflammatory cytokines. Mol Biol Rep. 52:2222025. View Article : Google Scholar : PubMed/NCBI | |
Mishina M, Komaba Y, Kobayashi S, Kominami S, Fukuchi T, Mizunari T, Teramoto A and Katayama Y: Administration of free radical scavenger edaravone associated with higher frequency of hemorrhagic transformation in patients with cardiogenic embolism. Neurol Med Chir (Tokyo). 48:292–297. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liao TV, Forehand CC, Hess DC and Fagan SC: Minocycline repurposing in critical illness: Focus on stroke. Curr Top Med Chem. 13:2283–2290. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singh T, Thapliyal S, Bhatia S, Singh V, Singh M, Singh H, Kumar A and Mishra A: Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci. 293:1203462022. View Article : Google Scholar : PubMed/NCBI | |
Chang JJ, Kim-Tenser M, Emanuel BA, Jones GM, Chapple K, Alikhani A, Sanossian N, Mack WJ, Tsivgoulis G, Alexandrov AV and Pourmotabbed T: Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: A pilot study. Eur J Neurol. 24:1384–1391. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, Ergul A, Edwards DJ, Fagan SC and Switzer JA: Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke. 48:2885–2887. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J and Blacker D: Intravenous minocycline in acute stroke: A randomized, controlled pilot study and meta-analysis. Stroke. 44:2493–2499. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A and Hess DC: Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke. 41:2283–2287. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen S, Jiang Y, Zhu C, Wu A, Ma X, Peng F, Ma L, Zhu D, Wang Q and Pi R: Minocycline reduces oxygen-glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation. Neurol Sci. 34:1391–1396. 2013. View Article : Google Scholar : PubMed/NCBI | |
Knecht T, Borlongan C and Dela Peña I: Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circ. 4:99–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X and Lo EH: Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 39:3372–3377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li Z, Khan S, Zhang R, Wei R, Zhang Y, Xue M and Yong VW: Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neurosci Lett. 764:1362972021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Mu Y, Li Z, Yong VW and Xue M: Extracellular matrix metalloproteinase inducer in brain ischemia and intracerebral hemorrhage. Front Immunol. 13:9864692022. View Article : Google Scholar : PubMed/NCBI | |
Song ZP, Xiong BR, Guan XH, Cao F, Manyande A, Zhou YQ, Zheng H and Tian YK: Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol Sin. 37:753–762. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Meng S, Wang Y, Cao J and Wang C: Visfatin/PBEF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK (p38, ERK1/2)-NF-κB signaling pathway. Int J Mol Med. 27:607–615. 2011.PubMed/NCBI | |
Chen Y, Won SJ, Xu Y and Swanson RA: Targeting microglial activation in stroke therapy: Pharmacological tools and gender effects. Curr Med Chem. 21:2146–2155. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kase CS, Furlan AJ, Wechsler LR, Higashida RT, Rowley HA, Hart RG, Molinari GF, Frederick LS, Roberts HC, Gebel JM, et al: Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: the PROACT II trial. Neurology. 57:1603–1610. 2001. View Article : Google Scholar : PubMed/NCBI | |
Arcambal A, Taïlé J, Rondeau P, Viranaïcken W, Meilhac O and Gonthier MP: Hyperglycemia modulates redox, inflammatory and vasoactive markers through specific signaling pathways in cerebral endothelial cells: Insights on insulin protective action. Free Radic Biol Med. 130:59–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ and Fan F: Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiolo Heart Circ Physiol. 320:H549–H562. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rom S, Heldt NA, Gajghate S, Seliga A, Reichenbach NL and Persidsky Y: Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Sci Rep. 10:72742020. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Chen S, Ruan Y, Liu Y, Cheng H, Zeng Y, Chen Y, Cheng Q, Huang G, He W and He J: The stress hyperglycemia ratio is associated with hemorrhagic transformation in patients with acute ischemic stroke. Clin Interv Aging. 16:431–442. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang FH, Lin YH, Huang HG, Sun JZ, Wen SQ and Lou M: Rosiglitazone attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal ischemia in rats. Neuroscience. 250:651–657. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhu ZY, Lu BW, Huang TT, Zhang YM, Zhou NY, Xuan W, Chen ZA, Wen DX, Yu WF and Li PY: Rosiglitazone ameliorates tissue plasminogen activator-induced brain hemorrhage after stroke. CNS Neurosci Ther. 25:1343–1352. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, Scharnagl H, Hombach V and Koenig W: Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 23:283–288. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Wu J, Jiao Y, Wang L, Wang F and Zhang Y: Rosiglitazone infusion therapy following minimally invasive surgery for intracerebral hemorrhage evacuation decreases matrix metalloproteinase-9 and blood-brain barrier disruption in rabbits. BMC Neurol. 15:372015. View Article : Google Scholar : PubMed/NCBI | |
Wang CX, Ding X, Noor R, Pegg C, He C and Shuaib A: Rosiglitazone alone or in combination with tissue plasminogen activator improves ischemic brain injury in an embolic model in rats. J Cereb Blood Flow Metab. 29:1683–1694. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Xu A, Lam KS, Tam PK, Che CM, Chan L, Lee IK, Wu D and Wang Y: Rosiglitazone promotes fatty acyl CoA accumulation and excessive glycogen storage in livers of mice without adiponectin. J Hepatol. 53:1108–1116. 2010. View Article : Google Scholar : PubMed/NCBI | |
Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W and Braun-Dullaeus RC: GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep. 6:385532016. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, Park KW, Cho HJ, Kang HJ, Park YB and Kim HS: New mechanism of rosiglitazone to reduce neointimal hyperplasia: Activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol. 29:472–479. 2009. View Article : Google Scholar : PubMed/NCBI | |
Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M and McMurray JJ; RECORD Study Team, : Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet. 373:2125–2135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama Y, Kimura K, Otsuka T, Toyoda K, Uchiyama S, Hoshino H, Sakai N, Okada Y, Origasa H, Naritomi H, et al: Dual antiplatelet therapy with cilostazol for secondary prevention in lacunar stroke: Subanalysis of the CSPS.com trial. Stroke. 54:697–705. 2023. View Article : Google Scholar : PubMed/NCBI | |
Uchiyama S: Results of the Cilostazol Stroke Prevention Study II (CSPS II): A randomized controlled trial for the comparison of cilostazol and aspirin in stroke patients. Rinsho Shinkeigaku. 50:832–834. 2010.(In Japanese). View Article : Google Scholar : PubMed/NCBI | |
Nonaka Y, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T and Hara H: Cilostazol protects against hemorrhagic transformation in mice transient focal cerebral ischemia-induced brain damage. Neurosci Lett. 452:156–161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hase Y, Okamoto Y, Fujita Y, Kitamura A, Nakabayashi H, Ito H, Maki T, Washida K, Takahashi R and Ihara M: Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia. Exp Neurol. 233:523–533. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kasahara Y, Nakagomi T, Matsuyama T, Stern D and Taguchi A: Cilostazol reduces the risk of hemorrhagic infarction after administration of tissue-type plasminogen activator in a murine stroke model. Stroke. 43:499–506. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chuang SY, Yang SH, Chen TY and Pang JH: Cilostazol inhibits matrix invasion and modulates the gene expressions of MMP-9 and TIMP-1 in PMA-differentiated THP-1 cells. Eur J Pharmacol. 670:419–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
da Motta NA and de Brito FC: Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundam Clin Pharmacol. 30:327–337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kitashoji A, Egashira Y, Mishiro K, Suzuki Y, Ito H, Tsuruma K, Shimazawa M and Hara H: Cilostazol ameliorates warfarin-induced hemorrhagic transformation after cerebral ischemia in mice. Stroke. 44:2862–2868. 2013. View Article : Google Scholar : PubMed/NCBI |