|
1
|
Suomalainen A and Nunnari J: Mitochondria
at the crossroads of health and disease. Cell. 187:2601–2627. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Caron C and Bertolin G: Cristae shaping
and dynamics in mitochondrial function. J Cell Sci.
137:jcs2609862024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kondadi AK and Reichert AS: Mitochondrial
dynamics at different levels: From cristae dynamics to
interorganellar cross talk. Annu Rev Biophys. 53:147–168. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang Y, Wu Y, Zhang M, Li Z, Liu B, Liu
H, Hao J and Li X: Synergistic mechanism between the endoplasmic
reticulum and mitochondria and their crosstalk with other
organelles. Cell Death Discov. 9:512023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wu H, Chen W, Chen Z, Li X and Wang M:
Novel tumor therapy strategies targeting endoplasmic
reticulum-mitochondria signal pathways. Ageing Res Rev.
88:1019512023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Daw CC, Ramachandran K, Enslow BT, Maity
S, Bursic B, Novello MJ, Rubannelsonkumar CS, Mashal AH,
Ravichandran J, Bakewell TM, et al: Lactate elicits
ER-mitochondrial Mg(2+) dynamics to integrate cellular metabolism.
Cell. 183:474–489. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mannella CA, Buttle K, Rath BK and Marko
M: Electron microscopic tomography of rat-liver mitochondria and
their interaction with the endoplasmic reticulum. Biofactors.
8:225–228. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Csordas G, Renken C, Varnai P, Walter L,
Weaver D, Buttle KF, Balla T, Mannella CA and Hajnóczky G:
Structural and functional features and significance of the physical
linkage between ER and mitochondria. J Cell Biol. 174:915–921.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kornmann B, Currie E, Collins SR,
Schuldiner M, Nunnari J, Weissman JS and Walter P: An
ER-mitochondria tethering complex revealed by a synthetic biology
screen. Science. 325:477–481. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Giacomello M, Pyakurel A, Glytsou C and
Scorrano L: The cell biology of mitochondrial membrane dynamics.
Nat Rev Mol Cell Biol. 21:204–224. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR
and Tyrrell DJ: Cardiovascular aging: Spotlight on mitochondria. Am
J Physiol Heart Circ Physiol. 326:H317–H333. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen Z and Zhang SL: Endoplasmic reticulum
stress: A key regulator of cardiovascular disease. DNA Cell Biol.
42:322–335. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hernandez-Alvarez MI, Sebastian D, Vives
S, Ivanova S, Bartoccioni P, Kakimoto P, Plana N, Veiga SR,
Hernández V, Vasconcelos N, et al: Deficient endoplasmic
reticulum-mitochondrial phosphatidylserine transfer causes liver
disease. Cell. 177:881–895. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mao H, Chen W, Chen L and Li L: Potential
role of mitochondria-associated endoplasmic reticulum membrane
proteins in diseases. Biochem Pharmacol. 199:1150112022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Salvador-Gallego R, Hoyer MJ and Voeltz
GK: SnapShot: Functions of endoplasmic reticulum membrane contact
sites. Cell. 171:1224. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhao WB and Sheng R: The correlation
between mitochondria-associated endoplasmic reticulum membranes
(MAMs) and Ca(2+) transport in the pathogenesis of diseases. Acta
Pharmacol Sin. 46:271–291. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L
and Gao Y: The MAMs structure and its role in cell death. Cells.
10:6572021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Barbuti PA, Guardia-Laguarta C, Yun T,
Chatila ZK, Flowers X, Santos BF, Larsen SB, Hattori N, Bradshaw E,
Dettmer U, et al: The role of alpha-synuclein in synucleinopathy:
Impact on lipid regulation at mitochondria-ER membranes. NPJ
Parkinsons Dis. 11:1032025. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Elwakiel A, Mathew A and Isermann B: The
role of endoplasmic reticulum-mitochondria-associated membranes in
diabetic kidney disease. Cardiovasc Res. 119:2875–2883. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang
H, Fan H, Meng T, He Z, Huang H, et al: The AMPK-MFN2 axis
regulates MAM dynamics and autophagy induced by energy stresses.
Autophagy. 17:1142–1156. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cao Y, Chen Z, Hu J, Feng J, Zhu Z, Fan Y,
Lin Q and Ding G: Mfn2 regulates high glucose-induced MAMs
dysfunction and apoptosis in podocytes via PERK pathway. Front Cell
Dev Biol. 9:7692132021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yao H, Xie Y, Li C, Liu W and Yi G:
Mitochondria-Associated organelle crosstalk in myocardial
ischemia/reperfusion injury. J Cardiovasc Transl Res. 17:1106–1118.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang M, Ding Y, Hu Y and Li Z, Luo W, Liu
P and Li Z: SIRT3 improved peroxisomes-mitochondria interplay and
prevented cardiac hypertrophy via preserving PEX5 expression. Redox
Biol. 62:1026522023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu L, Tang D, Qi B, Guo D, Wang Y, Geng J,
Zhang X, Song L, Chang P, Chen W, et al: Mfn2/Hsc70 complex
mediates the formation of mitochondria-lipid droplets membrane
contact and regulates myocardial lipid metabolism. Adv Sci (Weinh).
11:e23077492024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Vance JE: MAM (mitochondria-associated
membranes) in mammalian cells: Lipids and beyond. Biochim Biophys
Acta. 1841:595–609. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lang A, Peter AT and Kornmann B:
ER-mitochondria contact sites in yeast: Beyond the myths of ERMES.
Curr Opin Cell Biol. 35:7–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Naon D and Scorrano L: At the right
distance: ER-mitochondria juxtaposition in cell life and death.
Biochim Biophys Acta. 1843:2184–2194. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Prudent J and McBride HM: The
mitochondria-endoplasmic reticulum contact sites: A signalling
platform for cell death. Curr Opin Cell Biol. 47:52–63. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Barazzuol L, Giamogante F and Cali T:
Mitochondria associated membranes (MAMs): Architecture and
physiopathological role. Cell Calcium. 94:1023432021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Poston CN, Krishnan SC and Bazemore-Walker
CR: In-depth proteomic analysis of mammalian
mitochondria-associated membranes (MAM). J Proteomics. 79:219–230.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang X, Wen Y, Dong J, Cao C and Yuan S:
Systematic in-depth proteomic analysis of mitochondria-associated
endoplasmic reticulum membranes in mouse and human testes.
Proteomics. 18:e17004782018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Z, Hu O, Xu S, Lin C, Yu W, Ma D, Lu J
and Liu P: The SIRT3-ATAD3A axis regulates MAM dynamics and
mitochondrial calcium homeostasis in cardiac hypertrophy. Int J
Biol Sci. 20:831–847. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Woll KA and Van Petegem F: Calcium-release
channels: Structure and function of IP(3) receptors and ryanodine
receptors. Physiol Rev. 102:209–268. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Massa R, Marliera LN, Martorana A, Cicconi
S, Pierucci D, Giacomini P, De Pinto V and Castellani L:
Intracellular localization and isoform expression of the
voltage-dependent anion channel (VDAC) in normal and dystrophic
skeletal muscle. J Muscle Res Cell Motil. 21:433–442. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad
A, Fisher M, Terasaki M and Machaca K: Mitochondria-ER contact
sites expand during mitosis. iScience. 27:1093792024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Narayanan D, Adebiyi A and Jaggar JH:
Inositol trisphosphate receptors in smooth muscle cells. Am J
Physiol Heart Circ Physiol. 302:H2190–H2210. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Garcia MI and Boehning D: Cardiac inositol
1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res.
1864:907–914. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim JC, Son MJ, Subedi KP, Li Y, Ahn JR
and Woo SH: Atrial local Ca2+ signaling and inositol
1,4,5-trisphosphate receptors. Prog Biophys Mol Biol. 103:59–70.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nandwani A, Rathore S and Datta M: LncRNA
H19 inhibition impairs endoplasmic reticulum-mitochondria contact
in hepatic cells and augments gluconeogenesis by increasing VDAC1
levels. Redox Biol. 69:1029892024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Honrath B, Metz I, Bendridi N, Rieusset J,
Culmsee C and Dolga AM: Glucose-regulated protein 75 determines
ER-mitochondrial coupling and sensitivity to oxidative stress in
neuronal cells. Cell Death Discov. 3:170762017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang C, Liu B, Sheng J, Wang J, Zhu W,
Xie C, Zhou X, Zhang Y, Meng Q and Li Y: Potential targets for the
treatment of MI: GRP75-mediated Ca(2+) transfer in MAM. Eur J
Pharmacol. 971:1765302024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Zhu L, Cai MX, Wang ZL, Zhuang M,
Tan CY, Xie TH, Yao Y and Wei TT: TGR5 supresses cGAS/STING pathway
by inhibiting GRP75-mediated endoplasmic reticulum-mitochondrial
coupling in diabetic retinopathy. Cell Death Dis. 14:5832023.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Basso V, Marchesan E and Ziviani E: A trio
has turned into a quartet: DJ-1 interacts with the IP3R-Grp75-VDAC
complex to control ER-mitochondria interaction. Cell Calcium.
87:1021862020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu Y, Ma X, Fujioka H, Liu J, Chen S and
Zhu X: DJ-1 regulates the integrity and function of ER-mitochondria
association through interaction with IP3R3-Grp75-VDAC1. Proc Natl
Acad Sci USA. 116:25322–25328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li
Y, Dai Y, Lin L, Lv J, Liu Y and Zhang C: Modulation of
ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic
targets for aging-associated diseases. Ageing Res Rev.
98:1023202024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Obara CJ, Nixon-Abell J, Moore AS, Riccio
F, Hoffman DP, Shtengel G, Xu CS, Schaefer K, Pasolli HA, Masson
JB, et al: Motion of VAPB molecules reveals ER-mitochondria contact
site subdomains. Nature. 626:169–176. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Galmes R, Houcine A, van Vliet AR,
Agostinis P, Jackson CL and Giordano F: ORP5/ORP8 localize to
endoplasmic reticulum-mitochondria contacts and are involved in
mitochondrial function. EMBO Rep. 17:800–810. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li M, Zhang Y, Yu G, Gu L, Zhu H, Feng S,
Xiong X and Jian Z: Mitochondria-associated endoplasmic reticulum
membranes tethering protein VAPB-PTPIP51 protects against ischemic
stroke through inhibiting the activation of autophagy. CNS Neurosci
Ther. 30:e147072024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kalarikkal M, Saikia R, Oliveira L,
Bhorkar Y, Lonare A, Varshney P, Dhamale P, Majumdar A and Joseph
J: Nup358 restricts ER-mitochondria connectivity by modulating
mTORC2/Akt/GSK3β signalling. EMBO Rep. 25:4226–4251. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gomez-Suaga P, Paillusson S, Stoica R,
Noble W, Hanger DP and Miller CCJ: The ER-mitochondria tethering
complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 27:371–385.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Paillusson S, Gomez-Suaga P, Stoica R,
Little D, Gissen P, Devine MJ, Noble W, Hanger DP and Miller CCJ:
α-Synuclein binds to the ER-mitochondria tethering protein VAPB to
disrupt Ca2+ homeostasis and mitochondrial ATP
production. Acta Neuropathol. 134:129–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
de Brito OM and Scorrano L: Mitofusin 2
tethers endoplasmic reticulum to mitochondria. Nature. 456:605–610.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang T, Zhu Q, Cao B, Cai Y, Wen S, Bian
J, Zou H, Song R, Gu J, Liu X, et al: Ca2+ transfer via
the ER-mitochondria tethering complex in neuronal cells contribute
to cadmium-induced autophagy. Cell Biol Toxicol. 38:469–485. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Naon D, Hernandez-Alvarez MI, Shinjo S,
Wieczor M, Ivanova S, de Brito OM, Quintana A, Hidalgo J, Palacín
M, Aparicio P, et al: Splice variants of mitofusin 2 shape the
endoplasmic reticulum and tether it to mitochondria. Science.
380:eadh93512023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhao Y, Shen W, Zhang M, Guo M, Dou Y, Han
S, Yu J, Cui M and Zhao Y: DDAH-1 maintains endoplasmic
reticulum-mitochondria contacts and protects dopaminergic neurons
in Parkinson's disease. Cell Death Dis. 15:3992024. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kirshenbaum LA, Dhingra R, Bravo-Sagua R
and Lavandero S: DIAPH1-MFN2 interaction decreases the endoplasmic
reticulum-mitochondrial distance and promotes cardiac injury
following myocardial ischemia. Nat Commun. 15:14692024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Han S, Zhao F, Hsia J, Ma X, Liu Y, Torres
S, Fujioka H and Zhu X: The role of Mfn2 in the structure and
function of endoplasmic reticulum-mitochondrial tethering in vivo.
J Cell Sci. 134:jcs2534432021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong
B, Wang K, Li S, Gao Y, Feng X, et al: SYNJ2BP ameliorates
intervertebral disc degeneration by facilitating
mitochondria-associated endoplasmic reticulum membrane formation
and mitochondrial Zn(2+) homeostasis. Free Radic Biol Med.
212:220–233. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu YT, Zhang H, Duan SB, Wang JW, Chen H,
Zhan M, Zhang W, Li AM, Liu Y, Yang Y and Yang S: Mitofusin2
ameliorated endoplasmic reticulum stress and mitochondrial reactive
oxygen species through maintaining mitochondria-associated
endoplasmic reticulum membrane integrity in cisplatin-induced acute
kidney injury. Antioxid Redox Signal. 40:16–39. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhao Y, Chang YH, Ren HR, Lou M, Jiang FW,
Wang JX, Chen MS, Liu S, Shi YS, Zhu HM and Li JL: Phthalates
induce neurotoxicity by disrupting the Mfn2-PERK axis-mediated
endoplasmic reticulum-mitochondria interaction. J Agric Food Chem.
72:7411–7422. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hinton A Jr, Katti P, Mungai M, Hall DD,
Koval O, Shao J, Vue Z, Lopez EG, Rostami R, Neikirk K, et al:
ATF4-dependent increase in mitochondrial-endoplasmic reticulum
tethering following OPA1 deletion in skeletal muscle. J Cell
Physiol. 239:e312042024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
van Vliet AR, Verfaillie T and Agostinis
P: New functions of mitochondria associated membranes in cellular
signaling. Biochim Biophys Acta. 1843:2253–2262. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xue M, Fang T, Sun H, Cheng Y, Li T, Xu C,
Tang C, Liu X, Sun B and Chen L: PACS-2 attenuates diabetic kidney
disease via the enhancement of mitochondria-associated endoplasmic
reticulum membrane formation. Cell Death Dis. 12:11072021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li C, Li L, Yang M, Yang J, Zhao C, Han Y,
Zhao H, Jiang N, Wei L, Xiao Y, et al: PACS-2 Ameliorates tubular
injury by facilitating endoplasmic reticulum-mitochondria contact
and mitophagy in diabetic nephropathy. Diabetes. 71:1034–1050.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu S, Han S, Wang C, Chen H, Xu Q, Feng
S, Wang Y, Yao J, Zhou Q, Tang X, et al: MAPK1 mediates MAM
disruption and mitochondrial dysfunction in diabetic kidney disease
via the PACS-2-dependent mechanism. Int J Biol Sci. 20:569–584.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Moulis M, Grousset E, Faccini J, Richetin
K, Thomas G and Vindis C: The multifunctional sorting protein
PACS-2 controls mitophagosome formation in human vascular smooth
muscle cells through mitochondria-ER contact sites. Cells.
8:6382019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hayashi T and Su TP: Sigma-1 receptor
chaperones at the ER-mitochondrion interface regulate Ca(2+)
signaling and cell survival. Cell. 131:596–610. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Leonard A, Grose V, Paton AW, Paton JC,
Yule DI, Rahman A and Fazal F: Selective inactivation of
intracellular BiP/GRP78 attenuates endothelial inflammation and
permeability in acute lung injury. Sci Rep. 9:20962019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hayashi T, Lewis A, Hayashi E, Betenbaugh
MJ and Su TP: Antigen retrieval to improve the immunocytochemistry
detection of sigma-1 receptors and ER chaperones. Histochem Cell
Biol. 135:627–637. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mahamed Z, Shadab M, Najar RA, Millar MW,
Bal J, Pressley T and Fazal F: The protective role of
mitochondria-associated endoplasmic reticulum membrane (MAM)
protein sigma-1 receptor in regulating endothelial inflammation and
permeability associated with acute lung injury. Cells. 13:52023.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang Z, Zhou H, Gu W, Wei Y, Mou S, Wang
Y, Zhang J and Zhong Q: CGI1746 targets σ1R to modulate
ferroptosis through mitochondria-associated membranes. Nat Chem
Biol. 20:699–709. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bui M, Gilady SY, Fitzsimmons RE, Benson
MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD and Simmen T:
Rab32 modulates apoptosis onset and mitochondria-associated
membrane (MAM) properties. J Biol Chem. 285:31590–31602. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Herrera-Cruz MS, Yap MC, Tahbaz N,
Phillips K, Thomas L, Thomas G and Simmen T: Rab32 uses its
effector reticulon 3L to trigger autophagic degradation of
mitochondria-associated membrane (MAM) proteins. Biol Direct.
16:222021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ortiz-Sandoval CG, Hughes SC, Dacks JB and
Simmen T: Interaction with the effector dynamin-related protein 1
(Drp1) is an ancient function of Rab32 subfamily proteins. Cell
Logist. 4:e9863992014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rampelt H, Zerbes RM, van der Laan M and
Pfanner N: Role of the mitochondrial contact site and cristae
organizing system in membrane architecture and dynamics. Biochim
Biophys Acta Mol Cell Res. 1864:737–746. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tang J, Zhang K, Dong J, Yan C, Hu C, Ji
H, Chen L, Chen S, Zhao H and Song Z: Sam50-Mic19-Mic60 axis
determines mitochondrial cristae architecture by mediating
mitochondrial outer and inner membrane contact. Cell Death Differ.
27:146–160. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Dong J, Chen L, Ye F, Tang J, Liu B, Lin
J, Zhou PH, Lu B, Wu M, Lu JH, et al: Mic19 depletion impairs
endoplasmic reticulum-mitochondrial contacts and mitochondrial
lipid metabolism and triggers liver disease. Nat Commun.
15:1682024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Vance JE: Phospholipid synthesis in a
membrane fraction associated with mitochondria. J Biol Chem.
265:7248–7256. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wozny MR, Di Luca A, Morado DR, Picco A,
Khaddaj R, Campomanes P, Ivanović L, Hoffmann PC, Miller EA, Vanni
S and Kukulski W: In situ architecture of the ER-mitochondria
encounter structure. Nature. 618:188–192. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Peter AT, Petrungaro C, Peter M and
Kornmann B: METALIC reveals interorganelle lipid flux in live cells
by enzymatic mass tagging. Nat Cell Biol. 24:996–1004. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Koch C, Lenhard S, Raschle M,
Prescianotto-Baschong C, Spang A and Herrmann JM: The ER-SURF
pathway uses ER-mitochondria contact sites for protein targeting to
mitochondria. EMBO Rep. 25:2071–2096. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chakraborty N, Jain BK, Shembekar S and
Bhattacharyya D: ER exit sites (ERES) and ER-mitochondria encounter
structures (ERMES) often localize proximally. FEBS Lett.
597:320–336. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cheema JY, He J, Wei W and Fu C: The
endoplasmic reticulum-mitochondria encounter structure and its
regulatory proteins. Contact (Thousand Oaks).
4:251525642110644912021.PubMed/NCBI
|
|
84
|
Szabadkai G, Bianchi K, Varnai P, De
Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto
R: Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Luo F, Fu M, Wang T, Qi Y, Zhong X, Li D
and Liu B: Down-regulation of the mitochondrial fusion protein
Opa1/Mfn2 promotes cardiomyocyte hypertrophy in
Su5416/hypoxia-induced pulmonary hypertension rats. Arch Biochem
Biophys. 747:1097432023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yepuri G, Ramirez LM, Theophall GG,
Reverdatto SV, Quadri N, Hasan SN, Bu L, Thiagarajan D, Wilson R,
Díez RL, et al: DIAPH1-MFN2 interaction regulates
mitochondria-SR/ER contact and modulates ischemic/hypoxic stress.
Nat Commun. 14:69002023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Paillard M, Tubbs E, Thiebaut PA, Gomez L,
Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand
A, et al: Depressing mitochondria-reticulum interactions protects
cardiomyocytes from lethal hypoxia-reoxygenation injury.
Circulation. 128:1555–1565. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yang J, Sun M, Chen R, Ye X, Wu B, Liu Z,
Zhang J, Gao X, Cheng R, He C, et al: Mitochondria-associated
membrane protein PACS2 maintains right cardiac function in
hypobaric hypoxia. iScience. 26:1063282023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang Y, Li X, Xu X, Qu X and Yang Y:
Transient receptor potential vanilloid type 1 protects against
pressure overload-induced cardiac hypertrophy by promoting
mitochondria-associated endoplasmic reticulum membranes. J
Cardiovasc Pharmacol. 80:430–441. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Song Z, Song H, Liu D, Yan B, Wang D,
Zhang Y, Zhao X, Tian X, Yan C and Han Y: Overexpression of MFN2
alleviates sorafenib-induced cardiomyocyte necroptosis via the
MAM-CaMKIIdelta pathway in vitro and in vivo. Theranostics.
12:1267–1285. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Bassot A, Chen J, Takahashi-Yamashiro K,
Yap MC, Gibhardt CS, Le GNT, Hario S, Nasu Y, Moore J, Gutiérrez T,
et al: The endoplasmic reticulum kinase PERK interacts with the
oxidoreductase ERO1 to metabolically adapt mitochondria. Cell Rep.
42:1118992023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
He W, Sun Z, Tong G, Zeng L, He W, Chen X,
Zhen C, Chen P, Tan N and He P: FUNDC1 alleviates
doxorubicin-induced cardiotoxicity by restoring
mitochondrial-endoplasmic reticulum contacts and blocked autophagic
flux. Theranostics. 14:3719–3738. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zeisbrich M, Yanes RE, Zhang H, Watanabe
R, Li Y, Brosig L, Hong J, Wallis BB, Giacomini JC and Assimes TL:
Hypermetabolic macrophages in rheumatoid arthritis and coronary
artery disease due to glycogen synthase kinase 3b inactivation. Ann
Rheum Dis. 77:1053–1062. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Assis LHP, Dorighello GG, Rentz T, de
Souza JC, Vercesi AE and de Oliveira HCF: In vivo pravastatin
treatment reverses hypercholesterolemia induced
mitochondria-associated membranes contact sites, foam cell
formation, and phagocytosis in macrophages. Front Mol Biosci.
9:8394282022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang LR, Zhang CX, Tian LB, Huang J, Jia
LJ, Tao H, Yu NW and Li BH: Identification and validation of
mitochondrial endoplasmic reticulum membrane-related genes in
atherosclerosis. Mamm Genome. 36:665–682. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X,
Huang K, Xie Z and Zou MH: Binding of FUN14 domain containing 1
with inositol 1,4,5-trisphosphate receptor in
mitochondria-associated endoplasmic reticulum membranes maintains
mitochondrial dynamics and function in hearts in vivo. Circulation.
136:2248–2266. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Xu H, Yu W, Sun M, Bi Y, Wu NN, Zhou Y,
Yang Q, Zhang M, Ge J, Zhang Y and Ren J: Syntaxin17 contributes to
obesity cardiomyopathy through promoting mitochondrial
Ca2+ overload in a Parkin-MCUb-dependent manner.
Metabolism. 143:1555512023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu H, Wang X, Yu W, Sun S, Wu NN, Ge J,
Ren J and Zhang Y: Syntaxin 17 protects against heart failure
through recruitment of CDK1 to promote DRP1-dependent mitophagy.
JACC Basic Transl Sci. 8:1215–1239. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Janer A, Morris JL, Krols M, Antonicka H,
Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J and Shoubridge
EA: ESYT1 tethers the ER to mitochondria and is required for
mitochondrial lipid and calcium homeostasis. Life Sci Alliance.
7:e2023023352024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu IF, Lin TC, Wang SC, Yen CH, Li CY,
Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, et al: Long-term
administration of Western diet induced metabolic syndrome in mice
and causes cardiac microvascular dysfunction, cardiomyocyte
mitochondrial damage, and cardiac remodeling involving caveolae and
caveolin-1 expression. Biol Direct. 18:92023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Diokmetzidou A, Soumaka E, Kloukina I,
Tsikitis M, Makridakis M, Varela A, Davos CH, Georgopoulos S,
Anesti V, Vlahou A and Capetanaki Y: Desmin and αB-crystallin
interplay in the maintenance of mitochondrial homeostasis and
cardiomyocyte survival. J Cell Sci. 129:3705–3720. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Raj PS, Nair A, Rani MR, Rajankutty K,
Ranjith S and Raghu KG: Ferulic acid attenuates high
glucose-induced MAM alterations via PACS2/IP3R2/FUNDC1/VDAC1
pathway activating proapoptotic proteins and ameliorates
cardiomyopathy in diabetic rats. Int J Cardiol. 372:101–109. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yuan M, Gong M, He J, Xie B, Zhang Z, Meng
L, Tse G, Zhao Y, Bao Q, Zhang Y, et al: IP3R1/GRP75/VDAC1 complex
mediates endoplasmic reticulum stress-mitochondrial oxidative
stress in diabetic atrial remodeling. Redox Biol. 52:1022892022.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhang P, Yan X, Zhang X, Liu Y, Feng X,
Yang Z, Zhang J, Xu X, Zheng Q, Liang L and Han H: TMEM215 prevents
endothelial cell apoptosis in vessel regression by blunting
BIK-regulated ER-to-mitochondrial ca influx. Circ Res. 133:739–757.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tong M, Mukai R, Mareedu S, Zhai P, Oka
SI, Huang CY, Hsu CP, Yousufzai FAK, Fritzky L, Mizushima W, et al:
Distinct roles of DRP1 in conventional and alternative mitophagy in
obesity cardiomyopathy. Circ Res. 133:6–21. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lu X, Gong Y, Hu W, Mao Y, Wang T, Sun Z,
Su X, Fu G, Wang Y and Lai D: Ultrastructural and proteomic
profiling of mitochondria-associated endoplasmic reticulum
membranes reveal aging signatures in striated muscle. Cell Death
Dis. 13:2962022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li YE, Sowers JR, Hetz C and Ren J: Cell
death regulation by MAMs: From molecular mechanisms to therapeutic
implications in cardiovascular diseases. Cell Death Dis.
13:5042022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen X, Yang Y, Zhou Z, Yu H, Zhang S,
Huang S, Wei Z, Ren K and Jin Y: Unraveling the complex interplay
between mitochondria-associated membranes (MAMs) and cardiovascular
inflammation: Molecular mechanisms and therapeutic implications.
Int Immunopharmacol. 141:1129302024. View Article : Google Scholar : PubMed/NCBI
|