Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2025 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 32 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation

  • Authors:
    • Chuan Lu
    • Xingguo Peng
    • Binbin Zhang
    • Qi Yan
    • Bin Dou
    • Gabriele Karanis
    • Wenzhuo Gu
    • Panagiotis Karanis
    • Kewen Li
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics and Joint Surgery, Qinghai University Affiliated Hospital, Qinghai University, Xining, Qinghai 810000, P.R. China, Praxis Pekar, D‑59939 Olsberg, Germany, Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
    Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 277
    |
    Published online on: July 31, 2025
       https://doi.org/10.3892/mmr.2025.13642
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Senescent bone mesenchymal stromal cells (BMSCs) play an essential role in bone homeostasis imbalance in osteoporosis; however, the mechanisms through which they regulate osteoclast activation remain unclear. In the present study, highly expressed genes in BMSCs from patients with osteoporosis group were screened using transcriptomic data from the GSE35959 dataset. Subsequently, the AKT1, MAPK3, RELA and colony stimulating factor 1 genes were found to be linked to the PI3K/AKT and MAPK signaling pathways and osteoclast differentiation following Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Principal component analysis revealed a distinct clustering of samples by age and disease status. Gene Set Enrichment Analysis further identified significant enrichment of the PI3K/AKT signaling pathway in osteoporosis progression. Considering the notable involvement of the PI3K/AKT signaling pathway in various cellular ageing processes, AKT1 was prioritized for further investigation. Analysis of a replicative ageing model of mouse BMSCs showed that AKT1 protein expression was increased in senescent BMSCs and that overexpression of AKT1 accelerated the initiation of replicative senescence in this model. Finally, the expression levels of osteoclast differentiation markers (receptor activator of nuclear factor κB, nuclear factor of activated T cells, cytoplasmic 1 and tumor necrosis factor receptor‑associated factor 6) were assessed using tartrate‑resistant acid phosphatase staining. The results from the present study suggested that AKT1 plays a role in fostering the replicative senescence of BMSCs and that AKT1 activation in senescent BMSCs contributes to osteoclast differentiation. To the best of the authors' knowledge, the present study is the first to demonstrate that AKT1 upregulation in BMSCs with replicative ageing exacerbates senescence and enhances osteoclast differentiation, offering a novel mechanistic insight into senile osteoporosis.
View Figures

Figure 1

Differential gene screening in BMSCs
from G2 (79–89 year non-osteoporotic control group, mean age
81.75±4.86 years) and G3 (79–94 year osteoporosis patient group,
mean age 86.2±5.89 years). (A) Normalization of the expression in
the GSE35959 samples. (B and C) Volcano and volcano maps of the
differential genes. In the schematic, the outermost circle
represents the samples selected in G3 and the innermost circle
represents the samples selected in G2. The dendrogram represents
the clustering visualization results of the differentially
expressed genes. BMSCs, bone mesenchymal stromal cells.

Figure 2

GO and KEGG enrichment analyses. (A)
GO and (B) KEGG analyses of the highly expressed genes in BMSCs
from G3 (79–94 year osteoporosis patient group, mean age 86.2±5.89
years). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BMSCs, bone mesenchymal stromal cells.

Figure 3

Changes in the AKT1 expression level
in replicative-aged BMSCs. (A) SA-β-gal staining to observe
cellular senescence. Scale bar, 75 µm. (B) WB detection of the
protein expression levels of the cellular senescence markers, p21
and p16, in the P10-MSCs group and P3-MSCs group. (C) WB and PCR
were used to detect the relative AKT1 protein and mRNA levels,
respectively. **P<0.01, ***P<0.001, ****P<0.0001. BMSCs,
bone mesenchymal stromal cells; SA-β-gal, senescence-associated
β-galactosidase; WB, western blotting.

Figure 4

Overexpression efficiency of AKT1 was
detected by WB and PCR. (A) Detection of the protein expression
levels of AKT1, p16 and p21 through WB. (B) AKT1 protein expression
in the four groups (P10-MSCs, P3-MSCs, P10-MSCs + pcDNA NC and
P10-MSCs + pcDNA AKT1). (C) AKT1 mRNA expression in the four
groups (P10-MSCs, P3-MSCs, P10-MSCs + pcDNA NC and P10-MSCs + pcDNA
AKT1). *P<0.05, ****P<0.0001. WB, western blotting.

Figure 5

Effect of AKT1 overexpression
on the replicative senescence of BMSCs. (A) SA-β-gal staining to
observe cellular senescence. Scale bar, 75 µm. (B and C) Protein
expression of the cell ageing markers, p21 and p16, in the four
groups (P10-MSCs, P3-MSCs, P10-MSCs + pcDNA NC and P10-MSCs + pcDNA
AKT1). **P<0.01, ***P<0.001, ****P<0.0001. BMSCs, bone
mesenchymal stromal cells; SA-β-gal, senescence-associated
β-galactosidase.

Figure 6

Replicative-aged BMSCs regulate
osteoclast differentiation. (A) TRAP staining to detect osteoclast
differentiation (×200 magnification). (B) PCR to detect the mRNA
expression of the osteoblast markers, NFATc1, TRAF6 and
RANK, in each group. *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001. BMSCs, bone mesenchymal stromal cells; TRAP,
tartrate-resistant acid phosphatase; NFATc1, nuclear factor of
activated T cells, cytoplasmic 1; TRAF6, tumor necrosis factor
receptor-associated factor 6; RANK, receptor activator of nuclear
factor κB.
View References

1 

Roux C and Briot K: The crisis of inadequate treatment in osteoporosis. Lancet Rheumatol. 2:e110–e119. 2020. View Article : Google Scholar : PubMed/NCBI

2 

International Osteoporosis Foundation (IOF), . Epidemiology of osteoporosis and fragility fractures. IOF Official Report. 2024.https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fracturesMay 21–2025

3 

Salari N, Darvishi N, Bartina Y, Larti M, Kiaei A, Hemmati M, Shohaimi S and Mohammadi M: Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 16:6692021. View Article : Google Scholar : PubMed/NCBI

4 

Ogrodnik M: Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 20:e133382021. View Article : Google Scholar : PubMed/NCBI

5 

Zhu Y, Liu X, Ding X, Wang F and Geng X: Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 20:1–16. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Zhang F, Cui J, Liu X, Lv B, Liu X, Xie Z and Yu B: Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther. 6:1952015. View Article : Google Scholar : PubMed/NCBI

7 

Xiang K, Ren M, Liu F, Li Y, He P, Gong X, Chen T, Wu T, Huang Z, She H, et al: Tobacco toxins trigger bone marrow mesenchymal stem cells aging by inhibiting mitophagy. Ecotoxicol Environ Saf. 277:1163922024. View Article : Google Scholar : PubMed/NCBI

8 

Cheng Y, Wang S, Zhang H, Lee JS, Ni C, Guo J, Chen E, Wang S, Acharya A, Chang TC, et al: A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell. 187:4770–4789.e23. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O, Dickins RA, Narita M, Zhang M and Lowe SW: Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell. 17:376–387. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Liu G, Li X, Yang F, Qi J, Shang L, Zhang H, Li S, Xu F, Li L, Yu H, et al: C-phycocyanin ameliorates the senescence of mesenchymal stem cells through ZDHHC5-mediated autophagy via PI3K/AKT/mTOR pathway. Aging Dis. 14:1425–1440. 2023.PubMed/NCBI

11 

Wan D, Ai S, Ouyang H and Cheng L: Activation of 4-1BB signaling in bone marrow stromal cells triggers bone loss via the p-38 MAPK-DKK1 axis in aged mice. Exp Mol Med. 53:654–666. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Gao Q, Wang L, Wang S, Huang B, Jing Y and Su J: Bone marrow mesenchymal stromal cells: Identification, classification and differentiation. Front Cell Dev Biol. 9:7871182022. View Article : Google Scholar : PubMed/NCBI

13 

Infante A and Rodríguez CI: Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Res Ther. 9:2442018. View Article : Google Scholar : PubMed/NCBI

14 

Yin Y, Chen H, Wang Y, Zhang L and Wang X: Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles. 10:e121542021. View Article : Google Scholar : PubMed/NCBI

15 

Tian B, Li X, Li W, Shi Z, He X, Wang S, Zhu X, Shi N, Li Y, Wan P and Zhu C: CRYAB suppresses ferroptosis and promotes osteogenic differentiation of human bone marrow stem cells via binding and stabilizing FTH1. Aging (Albany NY). 16:8965–8979. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Gambari L, Grassi F, Roseti L, Grigolo B and Desando G: Learning from monocyte-macrophage fusion and multinucleation: Potential therapeutic targets for osteoporosis and rheumatoid arthritis. Int J Mol Sci. 21:60012020. View Article : Google Scholar : PubMed/NCBI

17 

Ma QL, Fang L, Jiang N, Zhang L, Wang Y, Zhang YM and Chen LH: Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces. Biomaterials. 154:234–247. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F and Lin Z: Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci. 16:412024. View Article : Google Scholar : PubMed/NCBI

19 

Li H, Qu J, Zhu H, Wang J, He H, Xie X, Wu R and Lu Q: CGRP regulates the age-related switch between osteoblast and adipocyte differentiation. Front Cell Dev Biol. 9:6755032021. View Article : Google Scholar : PubMed/NCBI

20 

Benisch P, Jakob F and Ebert R: Effects of aging, primary osteoporosis and cellular senescence on human mesenchymal stem cells. PLoS One. 7:e514522012.PubMed/NCBI

21 

R Core Team, . R: A language and environment for statistical computing (version 4.0.3). R Foundation for Statistical Computing; Vienna, Austria: 2020, https://www.R-project.org/October 16–2023

22 

Hu M, Xing L, Zhang L, Liu F, Wang S, Xie Y, Wang J, Jiang H, Guo J, Li X, et al: NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell. 21:e135512022. View Article : Google Scholar : PubMed/NCBI

23 

Yang Y, Zhang W, Wang X, Yang J, Cui Y, Song H, Li W, Li W, Wu L, Du Y, et al: A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Front Cell Dev Biol. 11:9986662023. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Pánczél Á, Nagy SP, Farkas J, Jakus Z, Győri DS and Mócsai A: Fluorescence-based real-time analysis of osteoclast development. Front Cell Dev Biol. 9:6579352021. View Article : Google Scholar : PubMed/NCBI

26 

Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, et al: Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev. 99:1022352024. View Article : Google Scholar : PubMed/NCBI

27 

Qi L, Fang X, Yan J, Pan C, Ge W, Wang J, Shen SG, Lin K and Zhang L: Magnesium-containing bioceramics stimulate exosomal miR-196a-5p secretion to promote senescent osteogenesis through targeting Hoxa7/MAPK signaling axis. Bioact Mater. 33:14–29. 2023.PubMed/NCBI

28 

Zheng Y, Wu S, Ke H, Peng S and Hu C: Secretion of IL-6 and IL-8 in the senescence of bone marrow mesenchymal stem cells is regulated by autophagy via FoxO3a. Exp Gerontol. 172:1120622023. View Article : Google Scholar : PubMed/NCBI

29 

Zhang W, Huang C, Sun A, Qiao L, Zhang X, Huang J, Sun X, Yang X and Sun S: Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo. Biomed Pharmacother. 106:1126–1134. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Hama S, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kukita T and Yamaza T: Suppression of AKT-mTOR signal pathway enhances osteogenic/dentinogenic capacity of stem cells from apical papilla. Stem Cell Res Ther. 9:3342018. View Article : Google Scholar : PubMed/NCBI

31 

Chen G, Wang S, Wei R, Liu Y, Xu T, Liu Z, Tan Z, Xie Y, Yang D, Liang Z, et al: Circular RNA circ-3626 promotes bone formation by modulating the miR-338-3p/Runx2 axis. Joint Bone Spine. 91:1056692024. View Article : Google Scholar : PubMed/NCBI

32 

Jin J, Huang R, Chang Y and Yi X: Roles and mechanisms of optineurin in bone metabolism. Biomed Pharmacother. 172:1162582024. View Article : Google Scholar : PubMed/NCBI

33 

Yin S, Lin S, Xu J, Yang G, Chen H and Jiang X: Dominoes with interlocking consequences triggered by zinc: Involvement of microelement-stimulated MSC-derived exosomes in senile osteogenesis and osteoclast dialogue. J Nanobiotechnol. 21:3462023. View Article : Google Scholar

34 

Prince EW, Apps JR, Jeang J, Chee K, Medlin S, Jackson EM, Dudley R, Limbrick D, Naftel R, Johnston J, et al: Unraveling the complexity of the senescence-associated secretory phenotype in adamantinomatous craniopharyngioma using multimodal machine learning analysis. Neuro Oncol. 26:1109–1123. 2024. View Article : Google Scholar : PubMed/NCBI

35 

Li J, Wang X, Nepovimova E, Wu Q and Kuca K: Deoxynivalenol induces cell senescence in RAW264.7 macrophages via HIF-1α-mediated activation of the p53/p21 pathway. Toxicology. 506:1538682024. View Article : Google Scholar : PubMed/NCBI

36 

Tragoonlugkana P, Pruksapong C, Ontong P, Kamprom W and Supokawej A: Fibronectin and vitronectin alleviate adipose-derived stem cells senescence during long-term culture through the AKT/MDM2/P53 pathway. Sci Rep. 14:142422024. View Article : Google Scholar : PubMed/NCBI

37 

Bai L and Wang Y: Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Exp Cell Res. 441:1141702024. View Article : Google Scholar : PubMed/NCBI

38 

Wang L, Deng Z, Li Y, Wu Y, Yao R, Cao Y, Wang M, Zhou F, Zhu H and Kang H: Ameliorative effects of mesenchymal stromal cells on senescence associated phenotypes in naturally aged rats. J Transl Med. 22:7222024. View Article : Google Scholar : PubMed/NCBI

39 

Geng N, Xian M, Deng L, Kuang B, Pan Y, Liu K, Ye Y, Fan M, Bai Z and Guo F: Targeting the senescence-related genes MAPK12 and FOS to alleviate osteoarthritis. J Orthop Translat. 47:50–62. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Kohli J, Veenstra I and Demaria M: The struggle of a good friend getting old: Cellular senescence in viral responses and therapy. EMBO Rep. 22:e522432021. View Article : Google Scholar : PubMed/NCBI

41 

Zhang H, Xu R, Li B, Xin Z, Ling Z, Zhu W, Li X, Zhang P, Fu Y, Chen J, et al: LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ. 29:351–365. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Huang CY, Le HHT, Tsai HC, Tang CH and Yu JH: The effect of low-level laser therapy on osteoclast differentiation: Clinical implications for tooth movement and bone density. J Dent Sci. 19:1452–1460. 2024. View Article : Google Scholar : PubMed/NCBI

43 

Zhao Y, Wang C, Qiu F, Liu J, Xie Y, Lin Z, He J and Chen J: Trimethylamine-N-oxide promotes osteoclast differentiation and oxidative stress by activating NF-κB pathway. Aging (Albany NY). 16:9251–9263. 2024. View Article : Google Scholar : PubMed/NCBI

44 

Xie X, Hu L, Mi B, Panayi AC, Xue H, Hu Y, Liu G, Chen L, Yan C, Zha K, et al: SHIP1 activator AQX-1125 regulates osteogenesis and osteoclastogenesis through PI3K/Akt and NF-κb signaling. Front Cell Dev Biol. 10:8260232022. View Article : Google Scholar : PubMed/NCBI

45 

Li Y, Hu M, Xie J, Li S and Dai L: Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: Roles and therapeutic prospects. Stem Cell Res Ther. 14:1662023. View Article : Google Scholar : PubMed/NCBI

46 

Shen Y, Hong Y, Huang X, Chen J, Li Z, Qiu J, Liang X, Mai C, Li W, Li X and Zhang Y: ALDH2 regulates mesenchymal stem cell senescence via modulation of mitochondrial homeostasis. Free Radic Biol Med. 223:172–183. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lu C, Peng X, Zhang B, Yan Q, Dou B, Karanis G, Gu W, Karanis P and Li K: Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation. Mol Med Rep 32: 277, 2025.
APA
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G. ... Li, K. (2025). Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation. Molecular Medicine Reports, 32, 277. https://doi.org/10.3892/mmr.2025.13642
MLA
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G., Gu, W., Karanis, P., Li, K."Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation". Molecular Medicine Reports 32.4 (2025): 277.
Chicago
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G., Gu, W., Karanis, P., Li, K."Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation". Molecular Medicine Reports 32, no. 4 (2025): 277. https://doi.org/10.3892/mmr.2025.13642
Copy and paste a formatted citation
x
Spandidos Publications style
Lu C, Peng X, Zhang B, Yan Q, Dou B, Karanis G, Gu W, Karanis P and Li K: Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation. Mol Med Rep 32: 277, 2025.
APA
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G. ... Li, K. (2025). Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation. Molecular Medicine Reports, 32, 277. https://doi.org/10.3892/mmr.2025.13642
MLA
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G., Gu, W., Karanis, P., Li, K."Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation". Molecular Medicine Reports 32.4 (2025): 277.
Chicago
Lu, C., Peng, X., Zhang, B., Yan, Q., Dou, B., Karanis, G., Gu, W., Karanis, P., Li, K."Activation of AKT1 enhances the capacity of senescent BMSCs to regulate osteoclast activation". Molecular Medicine Reports 32, no. 4 (2025): 277. https://doi.org/10.3892/mmr.2025.13642
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team