Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma

  • Authors:
    • Rumi Yoshihama
    • Koujiro Yamaguchi
    • Ikumi Imajyo
    • Mariko Mine
    • Naomi Hiyake
    • Naonari Akimoto
    • Yosuke Kobayashi
    • Satomi Chigita
    • Wataru Kumamaru
    • Tamotsu Kiyoshima
    • Yoshihide Mori
    • Tsuyoshi Sugiura
  • View Affiliations

  • Published online on: December 22, 2015     https://doi.org/10.3892/ol.2015.4047
  • Pages: 1435-1446
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The prognosis of oral squamous cell carcinoma (OSCC) patients is affected by tumor recurrence and metastasis, and cancer stem cells are hypothesized to be involved in these processes. Thus, the aim of the present study was to determine whether the expression levels of five stem cell‑related transcription factors, sex determining region Y‑box 2 (SOX2), octamer‑binding transcription factor 4 (Oct4), avian myelocytomatosis viral oncogene homolog (c‑Myc), Krüppel‑like factor 4 (KLF4) and brachyury, are associated with metastasis and survival in OSCC. Immunohistochemistry was performed to analyze the expression of these proteins in biopsy specimens obtained from 108 OSCC patients. The results revealed that the expression of SOX2, Oct4, KLF4 and brachyury were significantly associated with lymph node metastasis (P=0.002, P=0.031, P=0.003 and P=0.007, respectively). In addition, the expression of KLF4 and brachyury were significantly associated with distant metastasis (P=0.014 and P=0.012, respectively). Furthermore, multivariate analysis revealed that SOX2 and KLF4 are predictive factors for lymph node metastasis [odds ratios (ORs), 4.526 and 4.851, respectively], and KLF4 is also a predictive factor for distant metastasis (OR, 9.607). In addition, OSCC patients with low co‑expression of SOX2, KLF4 and brachyury exhibited a significantly lower disease‑specific survival rate (78.6 vs. 100%; P=0.025; χ2=5.033) and disease‑free survival rate (60.7 vs. 90.9%; P=0.015; χ2=5.897) when compared with OSCC patients with high co‑expression of these factors. The results indicate that SOX2, KLF4 and brachyury serve important roles in tumor progression, and these transcription factors may thus represent clinically useful prognostic markers for OSCC.

Introduction

Oral squamous cell carcinoma (OSCC) accounts for 90% of all malignant head and neck tumors worldwide (1). Furthermore, metastasis to regional lymph nodes and distant sites, which occurs in 40 and 10% of all OSCC cases, respectively, is associated with poor prognosis (2). Although the underlying mechanisms of metastasis remain unclear, recent studies have demonstrated that a small subset of tumor cells known as cancer stem cells (CSCs), which exhibit similar characteristics to normal stem cells (including self-renewal and pluripotency), may be involved in cancer invasion and metastasis (3).

Previous studies have revealed that the expression of four transcription factors [octamer-binding transcription factor 4 (Oct4), sex determining region Y-box 2 (SOX2), avian myelocytomatosis viral oncogene homolog (c-Myc) and Krüppel-like factor 4 (KLF4)] is sufficient to reprogram differentiated cells to pluripotency (4,5). SOX2 and Oct4 are important for maintaining self-renewal and pluripotency in pluripotent stem cells (6). KLF4, which is involved in tissue development, differentiation and maintenance of homeostasis, may act as either an oncogene or a tumor suppressor in certain types of cancer, including gastric adenocarcinoma and colon cancer (79). c-Myc is an oncogenic transcription factor that is involved in cell proliferation, differentiation and apoptosis (10). In addition, the expression of these transcription factors is associated with several types of malignant cancer, including oesophageal (11) breast (12), bladder (13) and lung cancer (14,15). However, the role of these genes in CSCs remains unclear.

Recently, the T-box transcription factor brachyury, which is essential for mesoderm formation during early development (16,17), has been found to regulate the epithelial-mesenchymal transition (EMT) and CSC potential in human salivary carcinoma cells (1821). In addition, brachyury expression was found to correlate with lymph node metastasis in OSCC (22). However, to date, the association between SOX2, Oct4, KLF4, c-Myc and brachyury expression in OSCC has not been investigated. Therefore, the aim of the present study was to determine whether these transcription factors may represent potential CSC markers and prognostic factors for OSCC.

Materials and methods

Patients and tumor specimens

A total of 108 OSCC patients who were treated at the Department of Oral and Maxillofacial Surgery, Kyushu University Hospital (Fukuoka, Japan) between March 2001 and December 2006 were retrospectively enrolled in the present study. Pretreatment biopsies were obtained from 108 patients. Clinicopathological information, including age, gender, tumor size and location, nodal status, treatments and the presence or absence of disease recurrence and metastasis, was obtained from patient records. The protocol for this study was approved by the Ethics Committee of Kyushu University.

Histopathology and immunohistochemistry

Consecutive 4-µm sections were cut from formalin-fixed paraffin-embedded (FFPE) biopsy samples and deparaffinized with xylene, rehydrated in a graded alcohol series, and heat-treated with Target Retrieval Solution (Dako, Carpinteria, CA, USA) prior to histopathological and immunohistochemical analyses. Tumors were staged according to the International Union for Cancer Control tumor-node-metastasis classification system (7th edition) (23). In addition, tumors were graded using World Health Organization criteria (24) and Anneroth's multifactorial classification system (25,26).

Immunohistochemistry was performed to analyze the expression patterns of SOX2, Oct4, c-Myc, KLF4 and brachyury in OSCC samples. FFPE sections were treated with 3% H2O2 and serum-free protein in phosphate-buffered saline with 0.015 M sodium azide to block endogenous peroxide activity and nonspecific antibody binding. The sections were then incubated overnight at 4°C with the following primary antibodies: Monoclonal rabbit anti-human SOX2 (clone D6D9; #3579; 1:50; Cell Signaling Technology, Inc., Danvers, MA, USA), polyclonal rabbit anti-human Oct4 (clone POU5F1; #2750; 1:100; Cell Signaling Technology, Inc.), polyclonal rabbit anti-brachyury (clone H-210; #sc-20109; 1:200; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), monoclonal mouse anti-human c-Myc (clone 9E10; #sc-40; 1:200; Santa Cruz Biotechnology, Inc.) and monoclonal mouse anti-human KLF4 (clone AT4E6; #NBP1-50367; 1:100; Novus Biologicals, LLC, Littleton, CO, USA). Subsequently, immunostaining was visualized with the CSA II Biotin-Free Tyramide Signal Amplification System (Dako), CSA II Rabbit Link amplification reagent (Dako) and 3,3-diaminobenzidine according to the manufacturer's instructions. Briefly, the sections were incubated with horseradish-peroxidase conjugated anti-mouse or rabbit IgG secondary antibodies (CSA II Biotin-Free Tyramide Signal Amplification System; Dako) for 15 min at room temperature, followed by incubation with CSA II amplification reagent (Dako) and 3,3′-diaminobenzidine. Finally, the sections were counterstained with 0.5% hematoxylin.

The staining pattern was evaluated at three randomly selected locations along the invasive edge of OSCC tumors using an optical microscope equipped with a charge-coupled device camera (BZ-9000; Keyence Corporation, Osaka, Japan). Specifically, the intensity of staining was quantified as the difference between the mean pixel density in 10 randomly selected stained carcinoma cells and that of the background using the BZ-II Analyzer (Keyence Corporation). To account for staining heterogeneity, the expression intensity (EI) of a protein was defined as the ratio of the immunostain density in the nuclei of tumor cells to that of normal basal epithelial cells in the same OSCC sample (Table IA; Fig. 1), according to the following formula: EI = (mean density of positive signal in OSCC cells - mean density of background staining) / (mean density of positive signal in normal cells - mean density of background staining). The results were classified into two groups (high or low expression) for each protein according to the mean value, as shown in Table IA.

Table I.

Classification of EI and positive ER.

Table I.

Classification of EI and positive ER.

A, EI classification

Relative mean pixel densitya

FactorLowCut-offHigh
SOX2, Oct4, KLF4, c-Myc, brachyury<1

B, Positive ER classification

Positively stained nuclei, %

FactorLowCut-off (median)High

SOX2<66.57
Oct4<54.74
KLF4<66.72
c-Myc<71.92
Brachyury<71.86

a Density ratio of immunostained OSCC cells to normal epithelium. EI, expression intensity; ER, expression ratio; SOX2, sex determining region Y-box 2; Oct4, octamer-binding transcription factor 4; c-Myc, avian myelocytomatosis viral oncogene homolog; KLF4, Krüppel-like factor 4.

The positive expression ratio (ER) was calculated as the ratio of positively stained nuclei to total number of carcinoma cells in each field. The results were classified into two groups (high or low expression) for each protein according to the median value, as shown in Table IB. All samples were scored by two independent pathologists who were blinded to the patient's clinical information and diagnosis.

Statistical analysis

The associations between protein expression and clinicopathological factors were assessed using the χ2 test and Fisher's exact test. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for lymph node and distant metastasis. Overall survival, disease-specific survival and disease-free survival were analyzed with the Kaplan-Meier method and the log-rank test. P<0.05 was considered to indicate a statistically significant difference. All statistical analyses were performed using SPSS 22.0 statistical software (SPSS, Inc., Chicago, IL, USA).

Results

Patient characteristics

The patient cohort included 69 males and 39 females, with a median age of 62 years (range, 24–85 years). Primary OSCC tumors were most frequently identified on the tongue (55/108; 50.9%). Lymph node metastasis occurred in 40/108 patients (37.0%) and distant metastasis occurred in 9/108 patients (8.3%). The median follow-up period was 60 months (range, 5–60 months). Further patient characteristics are shown in Table II.

Table II.

Association between SOX2, Oct4, KLF4, c-Myc and brachyury expression intensity and clinicopathological factors in 108 oral squamous cell carcinoma patients.

Table II.

Association between SOX2, Oct4, KLF4, c-Myc and brachyury expression intensity and clinicopathological factors in 108 oral squamous cell carcinoma patients.

SOX2 expression, nOct4 expression, nKLF4 expression, nc-Myc expression, nBrachyury expression, n





Clinicopathological parameterCases, nLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-value
Age, years   0.870 0.341 0.055 0.610   0.190
  <65612536 3823 3625 4021 3526
  ≥65472027 2522 1928 3314 2126
Gender   0.919 0.611 0.956 0.784   0.130
  Male692940 3930 3534 4623 3237
  Female391623 2415 2019 2712 2415
Clinical stage   0.242 0.407 0.097 0.003a   0.158
  T118  810 13  5 12  6 16  2 11  7
  T2462323 2818 2620 3610 2818
  T321  516 1110 1011 1011   813
  T423  914 1112   716 1112   914
Primary tumor site   0.217 0.407 0.001a 0.481   0.390
  Buccal mucosa  8  6  2   5  3   1  7   6  2   4  4
  Upper gingiva12  5  7   5  7   4  8   9  3   7  5
  Lower gingiva22  715   913   814 1111   715
  Tongue552233 3718 3421 4114 3421
  Oral floor10  4  6   6  4 8  2   5  5   3  7
  Palate  1  1  0   1  0   0  1   1  0   1  0
Lymph node metastasis   0.002a 0.031a 0.003a 0.386   0.007a
  Positive40  931 1822 1327 2515 1426
  Negative683632 4523 4226 4820 4226
Distant metastasis   0.051 0.109 0.014a 0.322   0.012a
  Positive  9  1  8   3  6   1  8   54   1  8
  Negative994455 6039 5445 6831 5544
Tumor differentiation   0.263 0.232 0.213 0.057   0.660
  Well833746 5132 4538 6023 4439
  Moderate25  817 1213 1015 1312 1213
  Poor  0  0  0   0  0   0  0   0  0   0  0
Anneroth score <0.001a 0.007a 0.496 0.115 <0.001a
  1  7  4  3   6  1   6  1   7  0   5  2
  214  9  5   8  6   212   8  6 10  4
  3542925 3717 3123 3816 3420
  433  330 1221 1617 2013   726

a Significant. SOX2, sex determining region Y-box 2; Oct4, octamer-binding transcription factor 4; c-Myc, avian myelocytomatosis viral oncogene homolog; KLF4, Krüppel-like factor 4.

Subcellular localization of SOX2, Oct4, KLF4, c-Myc and brachyury expression

SOX2, Oct4, c-Myc and brachyury were predominantly localized to the nucleus of OSCC cells; however, in certain cases, they were localized to the cytoplasm and nucleus (Fig. 2). KLF4 was primarily localized to the cytoplasm and nucleus of OSCC cells. All proteins were also detected in the nucleus of normal basal epithelial cells.

Association between SOX2, Oct4, KLF4, c-Myc and brachyury expression and clinicopathological factors

The median ERs of SOX2, Oct4, KLF4, c-Myc and brachyury, which were used as the cut-off values for low or high expression, were 66.6, 54.7, 66.7, 71.9 and 71.9%, respectively (Fig. 3). The EIs and ERs of these transcription factors were found to be significantly associated with several clinicopathological factors (Tables IIIV). For example, c-Myc EI was significantly associated with clinical tumor stage (P=0.003), while SOX2, Oct4, KLF4 and brachyury EIs were significantly associated with lymph node metastasis (P=0.002, P=0.031, P=0.003 and P=0.007, respectively) (Table II). KLF4 and brachyury EIs were also significantly associated with distant metastasis (P=0.014 and P=0.012, respectively). However, no significant differences were identified between the EIs of these proteins and the degree of tumor differentiation. Notably, the EIs of SOX2, Oct4 and brachyury were significantly associated with Anneroth scores (P<0.001, P=0.007 and P<0.001, respectively). χ2 tests revealed that the EIs of SOX2, KLF4 and brachyury in tumors with an Anneroth score of 3 were significantly associated with lymph node metastasis (P=0.015, P=0.005 and P=0.025, respectively) (Table V). However, no significant differences were identified between EIs of SOX2, KLF4 and brachyury in tumors with Anneroth scores of 1, 2 or 4.

Table IV.

Predictive factors for lymph node and distant metastasis in oral squamous cell carcinoma patients.

Table IV.

Predictive factors for lymph node and distant metastasis in oral squamous cell carcinoma patients.

Univariate analysisMultivariate analysis


Type of metastasisComparisonORP-value95% CIORP-value95% CI
Lymph node
  SOX2Low vs. high EI   3.8750.0031.604–9.3594.5260.011   1.404–14.588
  Oct4Low vs. high EI   2.3910.0331.074–5.3231.1480.7950.405–3.255
  KLF4Low vs. high EI   3.3550.0041.474–7.6394.8510.004   1.667–14.116
  c-MycLow vs. high EI   1.4400.3870.631–3.2880.5590.2840.193–1.622
  BrachyuryLow vs. high EI   3.0000.0081.330–6.7660.9990.9980.312–3.193
Distant
  SOX2Low vs. high EI   6.4000.086   0.771–53.1233.7660.314   0.285–49.820
  Oct4Low vs. high EI   3.0770.127   0.727–13.0301.0030.9970.188–5.359
  KLF4Low vs. high EI   9.6000.036   1.157–79.6739.6070.053   0.974–94.804
  c-MycLow vs. high EI   1.7550.4250.441–6.9870.5790.4940.121–2.775
  BrachyuryLow vs. high EI10.0000.033   1.205–83.0053.3010.360   0.256–42.542

[i] OR, odds ratio; CI, confidence interval; EI, expression intensity. SOX2, sex determining region Y-box 2; Oct4, octamer-binding transcription factor 4; c-Myc, avian myelocytomatosis viral oncogene homolog; KLF4, Krüppel-like factor 4.

Table V.

Association between SOX2, Oct4, KLF4, c-Myc and brachyru protein expression intensity and metastasis in oral squamous cell carcinoma patients according to Anneroth score.

Table V.

Association between SOX2, Oct4, KLF4, c-Myc and brachyru protein expression intensity and metastasis in oral squamous cell carcinoma patients according to Anneroth score.

SOX2 expression, nOct4 expression, nKLF4 expression, nc-Myc expression, nBrachyury expression, n





ParameterCases, nLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-value
Anneroth score=1
  Lymph node metastasis
    Positive  0  0  0   0  0   0  0   0  0   0  0
    Negative  7  4  3   6  1   6  1   7  0   5  2
  Distant metastasis
    Positive  0  0  0   0  0   0  0   0  0   0  0
    Negative  7  4  3   6  1   6  1   7  0   5  2
Anneroth score=2
  Lymph node metastasis 0.545 0.594 0.495 0.594 0.689
    Negative10  6  4   6  4   2  8   6  4   7  3
  Distant metastasis 0.110 0.165 0.725 0.165 0.066
    Positive  2  0  2   0  2   0  2   0  2   0  2
    Negative12  9  3   8  4   210   8  4 10  2
Anneroth score=3
  Lymph node metastasis 0.015a 0.095 0.005a 0.537 0.025a
    Positive17  512   9  8   512 11  6   710
    Negative372413 28  9 2611 2710 2710
  Distant metastasis 0.716 0.535 0.177 0.509 0.608
    Positive  2  1  1   1  1   0  2   1  1   1  1
    Negative522824 3616 3121 3715 3319
Anneroth score=4
  Lymph node metastasis 0.384 0.947 0.393 0.727 0.652
    Positive19  118   712   811 12  7   415
    Negative14  212   5  9   8  6   8  6   311
  Distant metastasis 0.600 0.612 0.187 0.331 0.277
    Positive  5  0  5   2  3   1  4   4  1   0  5
    Negative28  325 1018 1513 1612   721

a Statistically significant (P<0.05). SOX2, sex determining region Y-box 2; Oct4, octamer-binding transcription factor 4; c-Myc, avian myelocytomatosis viral oncogene homolog; KLF4, Krüppel-like factor 4.

In addition, clinical tumor stage was significantly associated with Oct4 and KLF4 ERs (P=0.048 and P=0.028, respectively) (Table III). Lymph node metastasis was significantly associated with Oct4 ER (P=0.046) and distant metastasis was significantly associated with SOX2 (P=0.016). Anneroth scores were significantly associated with SOX2, Oct4, KLF4, c-Myc and brachyury ERs (P=0.005, P=0.019, P=0.003, P=0.019 and P=0.010, respectively); however, only Oct4 expression was significantly associated with tumor differentiation (P=0.012).

Table III.

Association between SOX2, Oct4, KLF4, c-Myc and brachyury positive expression ratio and clinicopathological factors in 108 oral squamous cell carcinoma patients.

Table III.

Association between SOX2, Oct4, KLF4, c-Myc and brachyury positive expression ratio and clinicopathological factors in 108 oral squamous cell carcinoma patients.

SOX2 expression, nOct4 expression, nKLF4 expression, nc-Myc expression, nBrachyury expression, n





Clinicopathological parameterCases, nLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-valueLowHighP-value
Age, years 0.56 0.846 0.846 0.332 0.560
  <65612932 3130 3130 3328 3229
  ≥65472522 2324 2324 2126 2225
Gender 0.317 0.161 0.317 0.548 0.071
  Male693237 3138 3237 3336 3039
  Female392217 2316 2217 2118 2415
Clinical stage 0.550 0.048a 0.028a 0.845 0.420
  T11811  7 13  5 12  6   9  9 11  7
  T2462422 2224 2719 2521 2521
  T32110  1   615   912   912   813
  T423  914 1310   617 1112 1013
Primary tumor site 0.030a 0.465 0.329 0.091 0.045a
  Buccal mucosa  8  6  2   4  4   6  2   6  2   5  3
  Upper gingiva12  8  4   5  7   6  6   5  7   8  4
  Lower gingiva22  913 1111   814 1210 1012
  Tongue552926 3025 2827 2926 2926
  Oral floor10  1  9   3  7   6  4   1  9   2  8
  Palate  1  1  0   1  0   0  1   1  0   0  1
Lymph node metastasis 1.000 0.046a 0.425 0.111 0.425
  Positive402020 1525 1822 1624 1822
  Negative683434 3929 3632 3830 3632
Distant metastasis 0.016a 0.244 0.081 0.500 0.081
  Positive  9  1  8   3  6   2  7   4  5   2  7
  Negative995346 5148 5247 5049 5247
Tumor differentiation 0.254 0.012a 0.820 0.110 0.110
  Well834439 4736 4241 4538 4538
  Moderate251015   718 1213   916   916
  Poor  0  0  0 0  0   0  0   0  0   0  0
Anneroth score 0.005a 0.019a 0.003a 0.019a 0.010a
  1  7  3  4   6  1   5  2   4  3   5  2
  21412  2   6  8   9  5 10  4 10  4
  3543024 3123 3123 2925 2727
  433  924 1122   924 1122 1221

a Significant. SOX2, sex determining region Y-box 2; Oct4, octamer-binding transcription factor 4; c-Myc, avian myelocytomatosis viral oncogene homolog; KLF4, Krüppel-like factor 4.

Predictive factors for lymph node and distant metastasis

As the results of the present study indicated that lymph node and distant metastases were more significantly associated with EI than ER, whether SOX2, Oct4, KLF4, c-Myc and brachyury EIs are significant predictive factors for lymph node and distant metastases was investigated. Univariate analyses revealed that high SOX2, Oct4, KLF4 and brachyury EIs were significantly associated with lymph node metastasis [odds ratios (ORs), 3.875, 2.391, 3.355 and 3.000, respectively], and high KLF4 and brachyury EIs were associated with distant metastasis (ORs, 9.600 and 10.000, respectively) (Table IV). Multivariate analysis also revealed that high SOX2 and KLF4 EIs were significantly associated with lymph node metastasis (ORs, 4.526 and 4.851, respectively).

Correlation between SOX2, Oct4, KLF4, c-Myc and brachyury expression and survival in OSCC patients

No significant associations between the five-year overall survival rates of OSCC patients and the EIs of SOX2, Oct4, KLF4, c-Myc or brachyury were identified (Fig. 4A). However, the five-year disease-specific survival rates of OSCC patients with high SOX2 and brachyury expression were significantly decreased when compared with those exhibiting low expression [SOX2, 87.3% vs. 100%, respectively (P=0.015; χ2=5.891); brachyury, 86.5% vs. 98.2%, respectively (P=0.023; χ2=5.201); Fig. 4B]. In addition, the five-year disease-free survival rates of OSCC patients with high Oct4 and KLF4 expression were significantly decreased when compared with those exhibiting low expression [Oct4, 62.2% vs. 84.1%, respectively (P=0.006; χ2=7.519); KLF4, 66.0% vs. 83.6%, respectively (P=0.029; χ2=4.758); Fig. 4C].

As SOX2, KLF4 and brachyury EIs were found to be associated with lymph node and distant metastasis in this study, the association between patient survival and the co-expression of SOX2, KLF4 and brachyury was also investigated. The results revealed that the co-expression of SOX2, KLF4 and brachyury was not significantly associated with overall survival (Fig. 5A). However, the five-year disease-specific survival rate of patients with high co-expression of these proteins was decreased when compared with that of patients exhibiting low co-expression (78.6% vs. 100%, respectively; P=0.025; χ2=5.033) (Fig. 5B). Similarly, the five-year disease-free survival rate of patients with high co-expression was decreased compared with that of patients exhibiting low co-expression (60.7% vs. 90.9%, respectively; P=0.015; χ2=5.897) (Fig. 5C).

Discussion

The self-renewal and pluripotent properties of CSCs, which are hypothesized to enable primary tumors to metastasize (27,28), indicate that their identification in tumor samples may be important for cancer diagnosis and treatment. However, to date, few CSC markers in OSCC have been identified (29,30). The results of the current study indicate that SOX2, KLF4 and brachyury may present clinically useful CSC markers, and their expression levels may be prognostic factors for OSCC. The expression levels of these transcription factors were quantified in terms of EI and ER, which reflect the level of protein expression and the number of cells expressing a protein, respectively. As high expression levels of CSC-related transcription factors may promote tumorigenesis (31,32), EI may also be a measure of tumor invasiveness and local metastasis. Similarly, as large numbers of CSCs increase the chance that some will maintain stemness when they disseminate to other sites (33), ER may be a measure of the likelihood of distant metastasis. Thus, the EI and ER of CSC-related transcription factors may be associated with survival outcomes in cancer patients.

The results of the present study revealed that SOX2 EI and ER were significantly associated with lymph node metastasis and distant metastasis, respectively, indicating that SOX2 expression is involved in OSCC metastasis. In addition, the significant association between high SOX2 expression and reduced five-year disease-specific survival rate indicates that SOX2 may be a prognostic factor in OSCC patients. These results are consistent with those of previous reports, which have revealed that SOX2 is associated with poor prognosis in several types of cancer (12,13,15,34,35). Furthermore, SOX2 regulates stemness (36) and upregulates CSC-related gene expression in skin squamous cell carcinoma, and helps maintain neural stem cells (37).

Similarly, a significant association between KLF4 EI and lymph node metastasis was identified in the present study; however, this association was not observed between KLF4 ER and distant metastasis, which indicates that KLF4 may be less important for metastasis than SOX2. Furthermore, the association identified between high KLF4 EI and decreased five-year disease-free survival rate in OSCC patients is consistent with the association between increased nuclear expression of KLF4 and poor prognosis in breast cancer and head and neck cancer patients, which has been reported in previous studies (38,39).

In the present study brachyury EI was found to significantly correlate with lymph node metastasis, distant metastasis and Anneroth scores, which indicates that brachyury is also involved in OSCC metastasis. These results are consistent with those of previous studies, which revealed that silencing brachyury expression inhibits tumor formation and metastasis in human adenoid cystic carcinoma cells (19,20). In addition, a previous study revealed that brachyury expression is associated with EMT and lymph node metastasis in OSCC patients (22).

The results of the present study found that c-Myc EI and ER were not associated with lymph node or distant metastasis. By contrast, Oct4 EI and ER were significantly associated with lymph node metastasis and Anneroth scores, which suggests that Oct4 may be involved in tumor metastasis. c-Myc EI was only significantly associated with clinical tumor stage, which is consistent with its reported association with tumorigenesis and sustained tumor growth (40).

Two conclusions may be drawn from the results of the present study. Firstly, the EI of CSC markers is a better indicator of metastasis and survival than ER in OSCC patients. This may be due to the relative uniformity of ER in normal and tumor cells in biopsy specimens (data not shown). In addition, the normal expression level of the transcription factors examined in this study was higher in OSCC tissue samples than in noncancerous tissue samples. Secondly, high SOX2, KLF4 and brachyury expression is significantly associated with tumor invasion and metastasis, as well as decreased disease-specific survival and disease-free survival, in OSCC patients. Thus, these transcription factors may be involved in tumor progression, and may represent clinically useful prognostic markers in OSCC.

In conclusion, the expression of SOX2, KLF4 and brachyury may present novel prognostic factors in OSCC and thus, the combined use of these factors and classical prognostic factors, such as Anneroth score, may improve the accuracy of metastasis prediction. Therefore, future prospective studies investigating clinical intervention in OSCC patients with positive SOX2, KLF4 and brachyury expression are required.

Acknowledgements

This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (no. 23390465 to Professor Tsuyoshi Sugiura; no. 25861958 to Dr Yosuke Kobayashi; and no. 25893174 to Dr Satomi Chigita).

References

1 

Slootweg PJ and Eveson JW: Tumours of the oral cavity and oropharynx. World Health Organization Classification of Tumours. Pathology & Genetics of Head and Neck Tumours. Barnes L, Eveson JW, Reichart P and Sidransky D: (Lyon). IARC Press. 166–167. 2005.

2 

Genden EM, Ferlito A, Bradley PJ, Rinaldo A and Scully C: Neck disease and distant metastases. Oral Oncol. 39:207–212. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Kaichi S, Hasegawa K, Takaya T, et al: Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice. Cardiovasc Res. 88:314–323. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Chambers I and Tomlinson SR: The transcriptional foundation of pluripotency. Development. 136:2311–2322. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Evans PM and Liu C: Roles of Krüppel-like factor 4 in normal homeostasis cancer and stem cells. Acta Biochim Biophys Sin (Shanghai). 40:554–564. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Hsu LS, Chan CP, Chen CJ, Lin SH, Lai MT, Hsu JD, Yeh KT and Soon MS: Decreased Krüppel-like factor 4 (KLF4) expression may correlate with poor survival in gastric adenocarcinoma. Med Oncol. 30:6322013. View Article : Google Scholar : PubMed/NCBI

9 

Patel NV, Ghaleb AM, Nandan MO and Yang VW: Expression of the tumor suppressor Krüppel-like factor 4 as a prognostic predictor for colon cancer. Cancer Epidemiol Biomarkers Prev. 19:2631–2638. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Adhikary S and Eilers M: Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Bio. 6:635–645. 2005. View Article : Google Scholar

11 

He W, Li K, Wang F, Qin YR and Fan QX: Expression of OCT4 in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. World J Gastroenterol. 18:712–719. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Neumann J, Bahr F, Horst D, Kriegl L, Engel J, Luque RM, Gerhard M, Kirchner T and Jung A: SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer. 11:5182011. View Article : Google Scholar : PubMed/NCBI

13 

Ruan J, Wei B, Xu Z, Yang S, Zhou Y, Yu M, Liang J, Jin K, Huang X, Lu P and Cheng H: Predictive value of SOX2 expression in transurethral resection specimens in patients with T1 bladder cancer. Med Oncol. 30:4452013. View Article : Google Scholar : PubMed/NCBI

14 

Zhang X, Han B, Huang J, Zheng B, Geng Q, Aziz F and Dong Q: Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn J Clin Oncol. 40:961–966. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Sholl LM, Barletta JA, Yeap BY, Chirieac LR and Hornick JL: SOX2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. Am J Surg Pathol. 34:1193–1198. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Vidricaire G, Jardine K and McBurney MW: Expression of the brachyury gene during mesoderm development in differentiating embryonal carcinoma cell cultures. Development. 120:115–122. 1994.PubMed/NCBI

17 

Kispert A, Herrmann BG, Leptin M and Reuter R: Homologs of the mouse brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium and Locusta. Genes Dev. 8:2137–2150. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Ishii K, Shimoda M, Sugiura T, Seki K, Takahashi M, Abe M, Matsuki R, Inoue Y and Shirasuna K: Involvement of epithelial-mesenchymal transition in adenoid cystic carcinoma metastasis. Int J Oncol. 38:921–931. 2011.PubMed/NCBI

19 

Shimoda M, Sugiura T, Imajyo I, Ishii K, Chigita S, Seki K, Kobayashi Y and Shirasuna K: The T-box transcription factor brachyury regulates epithelial-mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells. BMC Cancer. 12:3772012. View Article : Google Scholar : PubMed/NCBI

20 

Kobayashi Y, Sugiura T, Imajyo I, Shimoda M, Ishii K, Akimoto N, Yoshihama N and Mori Y: Knockdown of the T-box transcription factor brachyury increases sensitivity of adenoid cystic carcinoma cells to chemotherapy and radiation in vitro, Implications for a new therapeutic principle. Int J Oncol. 44:1107–1117. 2014.PubMed/NCBI

21 

Fernando RI, Litzinger M, Trono P, Hamilton DH, Schlom J and Palena C: The T-box transcription factor brachyury promotes epithelial-mesenchymal transition in human tumor cells. J Clin Invest. 120:533–544. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Imajyo I, Sugiura T, Kobayashi Y, Shimoda M, Ishii K, Akimoto N, Yoshihama N, Kobayashi I and Mori Y: T-box transcription factor brachyury expression is correlated with epithelial-mesenchymal transition and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol. 41:1985–1995. 2012.PubMed/NCBI

23 

Sobin LH, Gospodarowicz MK and Wittekind C: TNM Classification of Malignant Tumours (7th). Hoboken, NJ: Wiley-Blackwell. 2009.

24 

Pindborg JJ, Reichart PA, Smith CJ and van der Waal I: World Health Organization International Histological Classification of Tumours. Histological Typing of Cancer and Precancer of the Oral Mucosa (Berlin). Springer-Verlag. 1997. View Article : Google Scholar

25 

Anneroth G, Hansen LS and Silverman S Jr: Malignancy grading in oral squamous cell carcinoma. I. Squamous cell carcinoma of the tongue and floor of mouth Histologic grading in the clinical evaluation. J Oral Pathol. 15:162–168. 1986. View Article : Google Scholar : PubMed/NCBI

26 

Anneroth G, Batsakis J and Luna M: Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dent Res. 95:229–249. 1987.PubMed/NCBI

27 

Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM and Saluja AK: CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget. 6:8313–8322. 2015. View Article : Google Scholar : PubMed/NCBI

28 

González-Moles MA, Scully C, Ruiz-Ávila I and Plaza-Campillo JJ: The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol. 49:738–746. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Yu CC, Hu FW, Yu CH and Chou MY: Targeting CD133 in the enhancement of chemosensitivity in oral squamous cell carcinoma-derived side population cancer stem cells. Head Neck Dec. 24:2014.(Epub ahead of print).

30 

Patel SS, Shah KA, Shah MJ, Kothari KC and Rawal RM: Cancer stem cells and stemness markers in oral squamous cell carcinomas. Asian Pac J Cancer Prev. 15:8549–8556. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J and Lan X: The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 25:1264–1271. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfield RA, Xiang R, Xiang R, Lv D and Li N: SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One. 7:e363262012. View Article : Google Scholar : PubMed/NCBI

33 

Forghanifard MM, Khales Ardalan S, Javdani-Mallak A, Rad A, Farshchian M and Abbaszadegan MR: Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Med Oncol. 31:9222014. View Article : Google Scholar : PubMed/NCBI

34 

Lengerke C, Fehm T, Kurth R, Neubauer H, Scheble V, Müller F, Schneider F, Petersen K, Wallwiener D, Kanz L, et al: Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer. 11:422011. View Article : Google Scholar : PubMed/NCBI

35 

Kitamura H, Torigoe T, Hirohashi Y, Asanuma H, Inoue R, Nishida S, Tanaka T, Fukuta F, Masumori N, Sato N and Tsukamoto T: Prognostic impact of the expression of ALDH1 and SOX2 in urothelial cancer of the upper urinary tract. Mod Pathol. 26:117–124. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, et al: SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 511:246–250. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Episkopou V: SOX2 functions in adult neural stem cells. Trends Neurosci. 28:219–221. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Tai SK, Yang MH, Chang SY, Chang YC, Li WY, Tsai TL, Wang YF, Chu PY and Hsieh SL: Persistent Krüppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci. 102:895–902. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Pandya AY, Talley LI, Frost AR, Fitzgerald TJ, Trivedi V, Chakravarthy M, Chhieng DC, Grizzle WE, Engler JA, Krontiras H, et al: Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res. 10:2709–2719. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Chen BJ, Wu YL, Tanaka Y and Zhang W: Small molecules targeting c-Myc oncogene, Promising anti-cancer therapeutics. Int J Biol Sci. 10:1084–1096. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February-2016
Volume 11 Issue 2

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Yoshihama R, Yamaguchi K, Imajyo I, Mine M, Hiyake N, Akimoto N, Kobayashi Y, Chigita S, Kumamaru W, Kiyoshima T, Kiyoshima T, et al: Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma. Oncol Lett 11: 1435-1446, 2016
APA
Yoshihama, R., Yamaguchi, K., Imajyo, I., Mine, M., Hiyake, N., Akimoto, N. ... Sugiura, T. (2016). Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma. Oncology Letters, 11, 1435-1446. https://doi.org/10.3892/ol.2015.4047
MLA
Yoshihama, R., Yamaguchi, K., Imajyo, I., Mine, M., Hiyake, N., Akimoto, N., Kobayashi, Y., Chigita, S., Kumamaru, W., Kiyoshima, T., Mori, Y., Sugiura, T."Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma". Oncology Letters 11.2 (2016): 1435-1446.
Chicago
Yoshihama, R., Yamaguchi, K., Imajyo, I., Mine, M., Hiyake, N., Akimoto, N., Kobayashi, Y., Chigita, S., Kumamaru, W., Kiyoshima, T., Mori, Y., Sugiura, T."Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma". Oncology Letters 11, no. 2 (2016): 1435-1446. https://doi.org/10.3892/ol.2015.4047