1
|
Rudolph R and Zelac DE: Squamous cell
carcinoma of the skin. Plast Reconstr Surg. 114:82e–94e. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Joshi SK, Bhadauria RS, Jadon G and
Diwaker AK: Introduction to neoplasm: ‘Tumor classificatio’/. A
review article. IJARPB. 2:227–263. 2012.
|
3
|
Padilla RS, Sebastian S, Jiang Z, Nindl I
and Larson R: Gene expression patterns of normal human skin,
actinic keratosis, and squamous cell carcinoma: A spectrum of
disease progression. Arch Dermatol. 146:288–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Diepgen TL and Mahler V: The epidemiology
of skin cancer. Br J Dermatol. 146(Suppl 61): S1–S6. 2002.
View Article : Google Scholar
|
5
|
Armstrong BK and Kricker A: The
epidemiology of UV induced skin cancer. J Photochem Photobiol B.
63:8–18. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Owens P, Engelking E, Han G, Haeger SM and
Wang XJ: Epidermal Smad4 deletion results in aberrant wound
healing. Am J Pathol. 176:122–133. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nindl I, Dang C, Forschner T, Kuban RJ,
Meyer T, Sterry W and Stockfleth E: Identification of
differentially expressed genes in cutaneous squamous cell carcinoma
by microarray expression profiling. Mol Cancer. 5:302006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Streit M, Velasco P, Brown LF, Skobe M,
Richard L, Riccardi L, Lawler J and Detmar M: Overexpression of
thrombospondin-1 decreases angiogenesis and inhibits the growth of
human cutaneous squamous cell carcinomas. Am J Pathol. 155:441–452.
1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Snijders AM, Schmidt BL, Fridlyand J,
Dekker N, Pinkel D, Jordan RC and Albertson DG: Rare amplicons
implicate frequent deregulation of cell fate specification pathways
in oral squamous cell carcinoma. Oncogene. 24:4232–4242. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP:
Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 4:249–264.
2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Diboun I, Wernisch L, Orengo CA and
Koltzenburg M: Microarray analysis after RNA amplification can
detect pronounced differences in gene expression using limma. BMC
Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300.
1995.
|
13
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: The gene ontology consortium: Gene ontology: Tool for the
unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang DW, Sherman BT, Tan Q, Collins JR,
Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki
RA: The DAVID Gene Functional Classification Tool: A novel
biological module-centric algorithm to functionally analyze large
gene lists. Genome Biol. 8:R1832007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao M, Sun J and Zhao Z: TSGene: A web
resource for tumor suppressor genes. Nucleic Acids Res. 41(D1):
D970–D976. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen JS, Hung WS, Chan HH, Tsai SJ and Sun
HS: In silico identification of oncogenic potential of
fyn-related kinase in hepatocellular carcinoma. Bioinformatics.
29:420–427. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
von Mering C, Huynen M, Jaeggi D, Schmidt
S, Bork P and Snel B: STRING: A database of predicted functional
associations between proteins. Nucleic Acids Res. 31:258–261. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yook SH, Oltvai ZN and Barabási AL:
Functional and topological characterization of protein interaction
networks. Proteomics. 4:928–942. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
He X and Zhang J: Why do hubs tend to be
essential in protein networks? PLoS Genet. 2:e882006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Beisser D, Klau GW, Dandekar T, Müller T
and Dittrich MT: BioNet: An R-Package for the functional analysis
of biological networks. Bioinformatics. 26:1129–1130. 2010.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Feng G, Du P, Krett NL, Tessel M, Rosen S,
Kibbe WA and Lin SM: A collection of bioconductor methods to
visualize gene-list annotations. BMC Res Notes. 3:102010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP
and Wei WI: Mature miR-184 as potential oncogenic microRNA of
squamous cell carcinoma of tongue. Clin Cancer Res. 14:2588–2592.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Birchmeier W, Weidner KM, Hülsken J and
Behrens J: Molecular mechanisms leading to cell junction (cadherin)
deficiency in invasive carcinomas. Semin Cancer Biol. 4:231–239.
1993.PubMed/NCBI
|
26
|
Waugh DJ and Wilson C: The interleukin-8
pathway in cancer. Clin Cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Richards BL, Eisma RJ, Spiro JD, Lindquist
RL and Kreutzer DL: Coexpression of interleukin-8 receptors in head
and neck squamous cell carcinoma. Am J Surg. 174:507–512. 1997.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Smith DR, Polverini PJ, Kunkel SL,
Orringer MB, Whyte RI, Burdick MD, Wilke CA and Strieter RM:
Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic
carcinoma. J Exp Med. 179:1409–1415. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kurahara S, Shinohara M, Ikebe T, Nakamura
S, Beppu M, Hiraki A, Takeuchi H and Shirasuna K: Expression of
MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral
cavity: Correlations with tumor invasion and metastasis. Head Neck.
21:627–638. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tsuchiya N, Narita S, Kumazawa T, Inoue T,
Ma Z, Tsuruta H, Saito M, Horikawa Y, Yuasa T, Satoh S, et al:
Clinical significance of a single nucleotide polymorphism and
allelic imbalance of matrix metalloproteinase-1 promoter region in
prostate cancer. Oncol Rep. 22:493–499. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Semenza GL: HIF-1: Mediator of
physiological and pathophysiological responses to hypoxia. J Appl
Physiol (1985). 88:1474–1480. 2000.PubMed/NCBI
|
32
|
Yu ZT, Zhao HF and Shang XB: Expression of
hypoxia-inducible factor-1alpha and vessel endothelial growth
factor in esophageal squamous cell carcinoma and
clinico-pathological significance thereof. Zhonghua Yi Xue Za Zhi.
88:2465–2469. 2008.(In Chinese). PubMed/NCBI
|
33
|
Fillies T, Werkmeister R, van Diest PJ,
Brandt B, Joos U and Buerger H: HIF1-alpha overexpression indicates
a good prognosis in early stage squamous cell carcinomas of the
oral floor. BMC Cancer. 5:842005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pawar SC, Demetriou MC, Nagle RB, Bowden
GT and Cress AE: Integrin alpha6 cleavage: A novel modification to
modulate cell migration. Exp Cell Res. 313:1080–1089. 2007.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Miranti CK and Brugge JS: Sensing the
environment: A historical perspective on integrin signal
transduction. Nat Cell Biol. 4:E83–E90. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jauliac S, López-Rodriguez C, Shaw LM,
Brown LF, Rao A and Toker A: The role of NFAT transcription factors
in integrin-mediated carcinoma invasion. Nat Cell Biol. 4:540–544.
2002. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Friedrichs K, Ruiz P, Franke F, Gille I,
Terpe HJ and Imhof BA: High expression level of alpha 6 integrin in
human breast carcinoma is correlated with reduced survival. Cancer
Res. 55:901–906. 1995.PubMed/NCBI
|
38
|
Kwon J, Lee TS, Lee HW, Kang MC, Yoon HJ,
Kim JH and Park JH: Integrin alpha 6: A novel therapeutic target in
esophageal squamous cell carcinoma. Int J Oncol. 43:1523–1530.
2013.PubMed/NCBI
|
39
|
Gürkan A, Emingil G, Afacan B, Berdeli A
and Atilla G: Alpha 2 integrin gene (ITGA2) polymorphism in renal
transplant recipients with and without drug induced gingival
overgrowth. Arch oral biol. 59:283–288. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gerger A, Hofmann G, Langsenlehner U,
Renner W, Weitzer W, Wehrschütz M, Wascher T, Samonigg H and Krippl
P: Integrin alpha-2 and beta-3 gene polymorphisms and colorectal
cancer risk. Int J Colorectal Dis. 24:159–163. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Langsenlehner U, Renner W, Yazdani-Biuki
B, Eder T, Wascher TC, Paulweber B, Clar H, Hofmann G, Samonigg H
and Krippl P: Integrin alpha-2 and beta-3 gene polymorphisms and
breast cancer risk. Breast Cancer Res Treat. 97:67–72. 2006.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Beaulieu JF: Integrins and human
intestinal cell functions. Front Biosci. 4:D310–D321. 1999.
View Article : Google Scholar : PubMed/NCBI
|