Open Access

BCL9, a coactivator for Wnt/β‑catenin transcription, is targeted by miR‑30c and is associated with prostate cancer progression

  • Authors:
    • Xiao‑Hui Ling
    • Zhi‑Yun Chen
    • Hong‑Wei Luo
    • Ze‑Zhen Liu
    • Ying‑Ke Liang
    • Guan‑Xing Chen
    • Fu‑Neng Jiang
    • Wei‑De Zhong
  • View Affiliations

  • Published online on: January 29, 2016     https://doi.org/10.3892/ol.2016.4161
  • Pages: 2001-2008
  • Copyright: © Ling et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

B‑cell lymphoma 9 (BCL9), a component of aberrantly activated Wnt signaling, is an important contributing factor to tumor progression. Our previous data indicated that downregulation of the tumor suppressor microRNA‑30c (miR‑30c) was a frequent pathogenetic event in prostate cancer (PCa). However, a functional link between miR‑30c and BCL9/Wnt signaling, and their clinical and pathological significance in PCa, have not been well established. The present study demonstrated that miR‑30c serves as a key negative regulator targeting BCL9 transcription in PCa cells. Ectopic expression of miR‑30c was associated with reduced expression of Wnt pathway downstream targets, including c‑Myc, cluster of differentiation 44 and sex determining region Y‑box 9 in DU145 human PCa cells. Examination of clinical prostate specimens revealed higher levels of BCL9 expression in PCa compared with that in benign prostate tissues. After substantiating this finding by patient sample analysis, BCL9 expression or activity was observed to be closely correlated with PCa biochemical recurrence (BCR) and disease progression, whereas it was inversely associated with miR‑30c. Furthermore, overexpression of BCL9 in PCa acted cooperatively with miR‑30c low expression to predict earlier BCR in PCa. These findings indicate that inhibition of BCL9/Wnt signaling by miR‑30c is important in the progression of PCa. Furthermore, the combined analysis of miR‑30c and BCL9 may be valuable tool for prediction of BCR in PCa patients following radical prostatectomy.

References

1 

Kakehi Y: Watchful waiting as a treatment option for localized prostate cancer in the PSA era. Jpn J Clin Oncol. 33:1–5. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G and Ye CJ: Genetic and epigenetic heterogeneity in cancer: A genome-centric perspective. J Cell Physiol. 220:538–547. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, et al: The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem. 287:25173–25190. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Plaisier CL, Pan M and Baliga NS: A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res. 22:2302–2314. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Kent OA and Mendell JT: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 25:6188–6196. 2006. View Article : Google Scholar : PubMed/NCBI

6 

He HC, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, Deng YH, Qin GQ, Cai C, Chen JH, et al: Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. BMC Genomics. 14:7572013. View Article : Google Scholar : PubMed/NCBI

7 

Rane JK, Scaravilli M, Ylipää A, Pellacani D, Mann VM, Simms MS, Nykter M, Collins AT, Visakorpi T and Maitland NJ: MicroRNA Expression Profile of Primary Prostate Cancer Stem Cells as a Source of Biomarkers and Therapeutic Targets. Eur Urol. 67:7–10. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Ling XH, Han ZD, Xia D, He HC, Jiang FN, Lin ZY, Fu X, Deng YH, Dai QS, Cai C, et al: MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer. Mol Biol Rep. 41:2779–2788. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Yu F, Deng H, Yao H, Liu Q, Su F and Song E: Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 29:4194–4204. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Martinez I, Cazalla D, Almstead LL, Steitz JA and DiMaio D: miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci USA. 108:522–527. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Zhong Z, Xia Y, Wang P, Liu B and Chen Y: Low expression of microRNA-30c promotes invasion by inducing epithelial mesenchymal transition in non-small cell lung cancer. Mol Med Rep. 10:2575–2579. 2014.PubMed/NCBI

12 

Yun SI, Kim HH, Yoon JH, Park WS, Hahn MJ, Kim HC, Chung CH and Kim KK: Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol Oncol. 9:1834–1851. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Carotenuto M, De Antonellis P, Liguori L, Benvenuto G, Magliulo D, Alonzi A, Turino C, Attanasio C, Damiani V, Bello AM, et al: H-Prune through GSK-3β interaction sustains canonical WNT/β-catenin signaling enhancing cancer progression in NSCLC. Oncotarget. 5:5736–5749. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S and Basler K: Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell. 109:47–60. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Townsley FM, Cliffe A and Bienz M: Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol. 6:626–633. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Willis TG, Zalcberg IR, Coignet LJ, Wlodarska I, Stul M, Jadayel DM, Bastard C, Treleaven JG, Catovsky D, Silva ML, et al: Molecular cloning of translocation t(1;14)(q21;q32) defines a novel gene (BCL9) at chromosome 1q21. Blood. 91:1873–1881. 1998.PubMed/NCBI

17 

Mani M, Carrasco DE, Zhang Y, Takada K, Gatt ME, Dutta-Simmons J, Ikeda H, Diaz-Griffero F, Pena-Cruz V, Bertagnolli M, et al: BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res. 69:7577–7586. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Deka J, Wiedemann N, Anderle P, Murphy-Seiler F, Bultinck J, Eyckerman S, Stehle JC, André S, Vilain N, Zilian O, et al: Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Res. 70:6619–6628. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Zhao JJ, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, et al: miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res. 74:1801–1813. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Jia W, Eneh JO, Ratnaparkhe S, Altman MK and Murph MM: MicroRNA-30c-2* expressed in ovarian cancer cells suppresses growth factor-induced cellular proliferation and downregulates the oncogene BCL9. Mol Cancer Res. 9:1732–1745. 2011. View Article : Google Scholar : PubMed/NCBI

21 

World Health Organization. HO (2010) International statistical classification of diseases and related health problems. 10th revision. 2:2010.simplehttp://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdfAccessed. August 10–2012

22 

International Union Against Cancer (UICC): Urological Tumors, Prostate. TNM Classification of Malignant Tumours (6th). Sobin LH and Wittekind Ch: (New York, NY). Wiley-Liss. 184–187. 2002.

23 

Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G and Algaba F: Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: Contemporary approach, current clinical significance and sources of pathology discrepancies. BJU Int. 95:1146–1152. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM and Chen YL: MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis. 34:530–538. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L and Nelson PS: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 18:1359–1368. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Femia AP, Dolara P, Giannini A, Salvadori M, Biggeri A and Caderni G: Frequent mutation of Apc gene in rat colon tumors and mucin-depleted foci, preneoplastic lesions in experimental colon carcinogenesis. Cancer Res. 67:445–449. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Yardy GW, Bicknell DC, Wilding JL, Bartlett S, Liu Y, Winney B, Turner GD, Brewster SF and Bodmer WF: Mutations in the AXIN1 gene in advanced prostate cancer. Eur Urol. 56:486–494. 2009. View Article : Google Scholar : PubMed/NCBI

29 

de la Roche M, Worm J and Bienz M: The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells. BMC Cancer. 8:1992008. View Article : Google Scholar : PubMed/NCBI

30 

Adachi S, Jigami T, Yasui T, Nakano T, Ohwada S, Omori Y, Sugano S, Ohkawara B, Shibuya H, Nakamura T, et al: Role of a BCL9-related beta-catenin-binding protein, B9L, in tumorigenesis induced by aberrant activation of Wnt signaling. Cancer Res. 64:8496–8501. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Mieszczanek J, de la Roche M and Bienz M: A role of Pygopus as an anti-repressor in facilitating Wnt-dependent transcription. Proc Natl Acad Sci USA. 105:19324–19329. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Hyeon J, Ahn S, Lee JJ, Song DH and Park CK: Prognostic Significance of BCL9 Expression in Hepatocellular Carcinoma. Korean J Pathol. 47:130–136. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Zhong K, Chen K, Han L and Li B: MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer. 14:7032014. View Article : Google Scholar : PubMed/NCBI

34 

Bockhorn J, Yee K, Chang YF, Prat A, Huo D, Nwachukwu C, Dalton R, Huang S, Swanson KE, Perou CM, et al: MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res Treat. 137:373–382. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2016
Volume 11 Issue 3

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ling, X., Chen, Z., Luo, H., Liu, Z., Liang, Y., Chen, G. ... Zhong, W. (2016). BCL9, a coactivator for Wnt/β‑catenin transcription, is targeted by miR‑30c and is associated with prostate cancer progression. Oncology Letters, 11, 2001-2008. https://doi.org/10.3892/ol.2016.4161
MLA
Ling, X., Chen, Z., Luo, H., Liu, Z., Liang, Y., Chen, G., Jiang, F., Zhong, W."BCL9, a coactivator for Wnt/β‑catenin transcription, is targeted by miR‑30c and is associated with prostate cancer progression". Oncology Letters 11.3 (2016): 2001-2008.
Chicago
Ling, X., Chen, Z., Luo, H., Liu, Z., Liang, Y., Chen, G., Jiang, F., Zhong, W."BCL9, a coactivator for Wnt/β‑catenin transcription, is targeted by miR‑30c and is associated with prostate cancer progression". Oncology Letters 11, no. 3 (2016): 2001-2008. https://doi.org/10.3892/ol.2016.4161