|
1
|
Global Burden of Disease Cancer
Collaboration. Fitzmaurice C, Dicker D, Pain A, et al: The global
burden of cancer 2013. JAMA Oncol. 1:505–527. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Janic B and Arbab AS: The role and
therapeutic potential of endothelial progenitor cells in tumor
neovascularization. Scientific World Journal. 10:1088–1099. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kerbel RS: Tumor angiogenesis: Past,
present and the near future. Carcinogenesis. 21:505–515. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Folkman J and Shing Y: Angiogenesis. J
Biol Chem. 267:10931–10934. 1992.PubMed/NCBI
|
|
5
|
Folkman J: Seminars in medicine of the
Beth Israel Hospital, Boston. Clinical applications of research on
angiogenesis. N Engl J Med. 333:1757–1763. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Asahara T, Murohara T, Sullivan A, Silver
M, van der Zee R, Li T, Witzenbichler B, Schatteman G and Isner JM:
Isolation of putative progenitor endothelial cells for
angiogenesis. Science. 275:964–967. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Moubarik C, Guillet B, Youssef B,
Codaccioni JL, Piercecchi MD, Sabatier F, Lionel P, Dou L,
Foucault-Bertaud A, Velly L, et al: Transplanted late outgrowth
endothelial progenitor cells as cell therapy product for stroke.
Stem Cell Rev. 7:208–220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi
JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA,
Benezra R and Mittal V: Bone marrow-derived endothelial progenitor
cells are a major determinant of nascent tumor neovascularization.
Genes Dev. 21:1546–1558. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Folkins C, Shaked Y, Man S, Tang T, Lee
CR, Zhu Z, Hoffman RM and Kerbel RS: Glioma tumor stem-like cells
promote tumor angiogenesis and vasculogenesis via vascular
endothelial growth factor and stromal-derived factor 1. Cancer Res.
69:7243–7251. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang HR, Chen FL, Xu CP, Ping YF, Wang
QL, Liang ZQ, Wang JM and Bian XW: Incorporation of endothelial
progenitor cells into the neovasculature of malignant glioma
xenograft. J Neurooncol. 93:165–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen X, Fang J, Wang S, Liu H, Du X, Chen
J, Li X, Yang Y, Zhang B and Zhang W: A new mosaic pattern in
glioma vascularization: Exogenous endothelial progenitor cells
integrating into the vessels containing tumor-derived endothelial
cells. Oncotarget. 5:1955–1968. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Russell JS and Brown JM: Circulating mouse
Flk1+/c-Kit+/CD45− cells function
as endothelial progenitors cells (EPCs) and stimulate the growth of
human tumor xenografts. Mol Cancer. 13:1772014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee PS and Poh KK: Endothelial progenitor
cells in cardiovascular diseases. World J Stem Cells. 6:355–366.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rouhl RP, van Oostenbrugge RJ, Damoiseaux
J, Tervaert JW and Lodder J: Endothelial progenitor cell research
in stroke: A potential shift in pathophysiological and
therapeutical concepts. Stroke. 39:2158–2165. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fadini GP, Losordo D and Dimmeler S:
Critical reevaluation of endothelial progenitor cell phenotypes for
therapeutic and diagnostic use. Circ Res. 110:624–637. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ,
Hwang KK, Oh BH, Lee MM and Park YB: Characterization of two types
of endothelial progenitor cells and their different contributions
to neovasculogenesis. Arterioscler Thromb Vasc Biol. 24:288–293.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hristov M, Erl W and Weber PC: Endothelial
progenitor cells: Mobilization, differentiation and homing.
Arterioscler Thromb Vasc Biol. 23:1185–1189. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Walenta KL, Bettink S, Böhm M and
Friedrich EB: Differential chemokine receptor expression regulates
functional specialization of endothelial progenitor cell
subpopulations. Basic Res Cardiol. 106:299–305. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gehling UM, Ergün S, Schumacher U, Wagener
C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, et
al: In vitro differentiation of endothelial cells from
AC133-positive progenitor cells. Blood. 95:3106–3112.
2000.PubMed/NCBI
|
|
20
|
Peichev M, Naiyer AJ, Pereira D, Zhu Z,
Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA and Rafii
S: Expression of VEGFR-2 and AC133 by circulating human CD34(+)
cells identifies a population of functional endothelial precursors.
Blood. 95:952–958. 2000.PubMed/NCBI
|
|
21
|
Khakoo AY and Finkel T: Endothelial
progenitor cells. Annu Rev Med. 56:79–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shantsila E, Watson T and Lip GY:
Endothelial progenitor cells in cardiovascular disorders. J Am Coll
Cardiol. 49:741–752. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi
JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM and
Asahara T: Therapeutic potential of ex vivo expanded endothelial
progenitor cells for myocardial ischemia. Circulation. 103:634–637.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kawamoto A, Tkebuchava T, Yamaguchi J,
Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma
H, et al: Intramyocardial transplantation of autologous endothelial
progenitor cells for therapeutic neovascularization of myocardial
ischemia. Circulation. 107:461–468. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang ZG, Zhang L, Jiang Q and Chopp M:
Bone marrow-derived endothelial progenitor cells participate in
cerebral neovascularization after focal cerebral ischemia in the
adult mouse. Circ Res. 90:284–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu
J, Chen Y, Su H, Young WL and Yang GY: Endothelial progenitor cell
transplantation improves long-term stroke outcome in mice. Ann
Neurol. 67:488–497. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yamaguchi J, Kusano KF, Masuo O, Kawamoto
A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner
JM and Asahara T: Stromal cell-derived factor-1 effects on ex vivo
expanded endothelial progenitor cell recruitment for ischemic
neovascularization. Circulation. 107:1322–1328. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu ZJ and Velazquez OC: Hyperoxia,
endothelial progenitor cell mobilization, and diabetic wound
healing. Antioxid Redox Signal. 10:1869–1882. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dome B, Timar J, Ladanyi A, Paku S,
Renyi-Vamos F, Klepetko W, Lang G, Dome P, Bogos K and Tovari J:
Circulating endothelial cells, bone marrow-derived endothelial
progenitor cells and proangiogenic hematopoietic cells in cancer:
From biology to therapy. Crit Rev Oncol Hematol. 69:108–124. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
de la Puente P, Muz B, Azab F and Azab AK:
Cell trafficking of endothelial progenitor cells in tumor
progression. Clin Cancer Res. 19:3360–3368. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tazzyman S, Lewis CE and Murdoch C:
Neutrophils: Key mediators of tumour angiogenesis. Int J Exp
Pathol. 90:222–231. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Folkman J: Role of angiogenesis in tumor
growth and metastasis. Semin Oncol. 29(6 Suppl 16): S15–S18. 2002.
View Article : Google Scholar
|
|
33
|
Rak J, Filmus J and Kerbel RS: Reciprocal
paracrine interactions between tumour cells and endothelial cells:
The ‘angiogenesis progression’ hypothesis. Eur J Cancer.
32A:2438–2450. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Folkman J: Angiogenesis-dependent
diseases. Semin Oncol. 28:536–542. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Folkman J: Angiogenesis and apoptosis.
Semin Cancer Biol. 13:159–167. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fidler IJ and Ellis LM: The implications
of angiogenesis for the biology and therapy of cancer metastasis.
Cell. 79:185–188. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Urbich C and Dimmeler S: Endothelial
progenitor cells: Characterization and role in vascular biology.
Circ Res. 95:343–353. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li Calzi S, Neu MB, Shaw LC, Kielczewski
JL, Moldovan NI and Grant MB: EPCs and pathological angiogenesis:
When good cells go bad. Microvasc Res. 79:207–216. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu XH, Pan W, Kang LH, Feng H and Song YQ:
Association of annexin A2 with cancer development (Review). Oncol
Rep. 33:2121–2128. 2015.PubMed/NCBI
|
|
40
|
Urbich C, Aicher A, Heeschen C, Dernbach
E, Hofmann WK, Zeiher AM and Dimmeler S: Soluble factors released
by endothelial progenitor cells promote migration of endothelial
cells and cardiac resident progenitor cells. J Mol Cell Cardiol.
39:733–742. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lyden D, Hattori K, Dias S, Costa C,
Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et
al: Impaired recruitment of bone-marrow-derived endothelial and
hematopoietic precursor cells blocks tumor angiogenesis and growth.
Nat Med. 7:1194–1201. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hristov M and Weber C: Endothelial
progenitor cells: Characterization, pathophysiology, and possible
clinical relevance. J Cell Mol Med. 8:498–508. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hristov M, Erl W and Weber PC: Endothelial
progenitor cells: Isolation and characterization. Trends Cardiovasc
Med. 13:201–206. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Stoll BR, Migliorini C, Kadambi A, Munn LL
and Jain RK: A mathematical model of the contribution of
endothelial progenitor cells to angiogenesis in tumors:
Implications for antiangiogenic therapy. Blood. 102:2555–2561.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nozawa H, Chiu C and Hanahan D:
Infiltrating neutrophils mediate the initial angiogenic switch in a
mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA.
103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shojaei F, Wu X, Malik AK, Zhong C,
Baldwin ME, Schanz S, Fuh G, Gerber HP and Ferrara N: Tumor
refractoriness to anti-VEGF treatment is mediated by
CD11b+Gr1+ myeloid cells. Nat Biotechnol.
25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li DW, Liu ZQ, Wei J, Liu Y and Hu LS:
Contribution of endothelial progenitor cells to neovascularization
(Review). Int J Mol Med. 30:1000–1006. 2012.PubMed/NCBI
|
|
48
|
Lapidot T and Petit I: Current
understanding of stem cell mobilization: The roles of chemokines,
proteolytic enzymes, adhesion molecules, cytokines and stromal
cells. Exp Hematol. 30:973–981. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lapidot T, Dar A and Kollet O: How do stem
cells find their way home? Blood. 106:1901–1910. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ferrara N and Alitalo K: Clinical
applications of angiogenic growth factors and their inhibitors. Nat
Med. 5:1359–1364. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
51
|
Asahara T, Takahashi T, Masuda H, Kalka C,
Chen D, Iwaguro H, Inai Y, Silver M, Isner JM, et al: VEGF
contributes to postnatal neovascularization by mobilizing bone
marrow-derived endothelial progenitor cells. EMBO J. 18:3964–3972.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kalka C, Masuda H, Takahashi T, Gordon R,
Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM
and Asahara T: Vascular endothelial growth factor(165) gene
transfer augments circulating endothelial progenitor cells in human
subjects. Circ Res. 86:1198–1202. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hattori K, Dias S, Heissig B, Hackett NR,
Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, et al:
Vascular endothelial growth factor and angiopoietin-1 stimulate
postnatal hematopoiesis by recruitment of vasculogenic and
hematopoietic stem cells. J Exp Med. 193:1005–1014. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kopp HG, Ramos CA and Rafii S:
Contribution of endothelial progenitors and proangiogenic
hematopoietic cells to vascularization of tumor and ischemic
tissue. Curr Opin Hematol. 13:175–181. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kopp HG, Avecilla ST, Hooper AT and Rafii
S: The bone marrow vascular niche: Home of HSC differentiation and
mobilization. Physiology (Bethesda). 20:349–356. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Heissig B, Hattori K, Dias S, Friedrich M,
Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et
al: Recruitment of stem and progenitor cells from the bone marrow
niche requires MMP-9 mediated release of kit-ligand. Cell.
109:625–637. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Powell TM, Paul JD, Hill JM, Thompson M,
Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, et
al: Granulocyte colony-stimulating factor mobilizes functional
endothelial progenitor cells in patients with coronary artery
disease. Arterioscler Thromb Vasc Biol. 25:296–301. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lévesque JP, Takamatsu Y, Nilsson SK,
Haylock DN and Simmons PJ: Vascular cell adhesion molecule-1
(CD106) is cleaved by neutrophil proteases in the bone marrow
following hematopoietic progenitor cell mobilization by granulocyte
colony-stimulating factor. Blood. 98:1289–1297. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chang EI, Chang EI, Thangarajah H, Hamou C
and Gurtner GC: Hypoxia, hormones, and endothelial progenitor cells
in hemangioma. Lymphat Res Biol. 5:237–243. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ling CC, Ng KT, Shao Y, Geng W, Xiao JW,
Liu H, Li CX, Liu XB, Ma YY, Yeung WH, et al: Post-transplant
endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling
promotes liver tumor growth. J Hepatol. 60:103–109. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spring H, Schüler T, Arnold B, Hämmerling
GJ and Ganss R: Chemokines direct endothelial progenitors into
tumor neovessels. Proc Natl Acad Sci USA. 102:18111–18116. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shibata R, Skurk C, Ouchi N, Galasso G,
Kondo K, Ohashi T, Shimano M, Kihara S, Murohara T and Walsh K:
Adiponectin promotes endothelial progenitor cell number and
function. FEBS Lett. 582:1607–1612. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nakamura N, Naruse K, Matsuki T, Hamada Y,
Nakashima E, Kamiya H, Matsubara T, Enomoto A, Takahashi M, Oiso Y
and Nakamura J: Adiponectin promotes migration activities of
endothelial progenitor cells via Cdc42/Rac1. FEBS Lett.
583:2457–2463. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Landskroner-Eiger S, Qian B, Muise ES,
Nawrocki AR, Berger JP, Fine EJ, Koba W, Deng Y, Pollard JW and
Scherer PE: Proangiogenic contribution of adiponectin toward
mammary tumor growth in vivo. Clin Cancer Res. 15:3265–3276. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ceradini DJ, Kulkarni AR, Callaghan MJ,
Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP
and Gurtner GC: Progenitor cell trafficking is regulated by hypoxic
gradients through HIF-1 induction of SDF-1. Nat Med. 10:858–864.
2004. View
Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bhakta S, Hong P and Koc O: The surface
adhesion molecule CXCR4 stimulates mesenchymal stem cell migration
to stromal cell-derived factor-1 in vitro but does not decrease
apoptosis under serum deprivation. Cardiovasc Revasc Med. 7:19–24.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kryczek I, Lange A, Mottram P, Alvarez X,
Cheng P, Hogan M, Moons L, Wei S, Zou L, Machelon V, et al: CXCL12
and vascular endothelial growth factor synergistically induce
neoangiogenesis in human ovarian cancers. Cancer Res. 65:465–472.
2005.PubMed/NCBI
|
|
69
|
Darash-Yahana M, Pikarsky E, Abramovitch
R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E
and Peled A: Role of high expression levels of CXCR4 in tumor
growth, vascularization and metastasis. FASEB J. 18:1240–1242.
2004.PubMed/NCBI
|
|
70
|
Pugh CW and Ratcliffe PJ: Regulation of
angiogenesis by hypoxia: role of the HIF system. Nat Med.
9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kollet O, Shivtiel S, Chen YQ, Suriawinata
J, Thung SN, Dabeva MD, Kahn J, Spiegel A, Dar A, Samira S, et al:
HGF, SDF-1, and MMP-9 are involved in stress-induced human
CD34+ stem cell recruitment to the liver. J Clin Invest.
112:160–169. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Askari AT, Unzek S, Popovic ZB, Goldman
CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD,
DiCorleto PE, et al: Effect of stromal-cell-derived factor 1 on
stem-cell homing and tissue regeneration in ischaemic
cardiomyopathy. Lancet. 362:697–703. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Arbab AS, Janic B, Knight RA, Anderson SA,
Pawelczyk E, Rad AM, Read EJ, Pandit SD and Frank JA: Detection of
migration of locally implanted AC133+ stem cells by
cellular magnetic resonance imaging with histological findings.
FASEB J. 22:3234–3246. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gallagher KA, Liu ZJ, Xiao M, Chen H,
Goldstein LJ, Buerk DG, Nedeau A, Thom SR and Velazquez OC:
Diabetic impairments in NO-mediated endothelial progenitor cell
mobilization and homing are reversed by hyperoxia and SDF-1 alpha.
J Clin Invest. 117:1249–1259. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Abbott JD, Huang Y, Liu D, Hickey R,
Krause DS and Giordano FJ: Stromal cell-derived factor-1alpha plays
a critical role in stem cell recruitment to the heart after
myocardial infarction but is not sufficient to induce homing in the
absence of injury. Circulation. 110:3300–3305. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Walter DH, Haendeler J, Reinhold J,
Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R,
Arenzana-Seisdesdos F, et al: Impaired CXCR4 signaling contributes
to the reduced neovascularization capacity of endothelial
progenitor cells from patients with coronary artery disease. Circ
Res. 97:1142–1151. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sun X, Cheng G, Hao M, Zheng J, Zhou X,
Zhang J, Taichman RS, Pienta KJ and Wang J: CXCL12/CXCR4/CXCR7
chemokine axis and cancer progression. Cancer Metastasis Rev.
29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Vajkoczy P, Blum S, Lamparter M,
Mailhammer R, Erber R, Engelhardt B, Vestweber D and Hatzopoulos
AK: Multistep nature of microvascular recruitment of ex
vivo-expanded embryonic endothelial progenitor cells during tumor
angiogenesis. J Exp Med. 197:1755–1765. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Di Santo S, Diehm N, Ortmann J, Völzmann
J, Yang Z, Keo HH, Baumgartner I and Kalka C: Oxidized low density
lipoprotein impairs endothelial progenitor cell function by
downregulation of E-selectin and integrin alpha(v)beta5. Biochem
Biophys Res Commun. 373:528–532. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lapidot T: Mechanism of human stem cell
migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice.
The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci. 938:83–95.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chavakis E, Aicher A, Heeschen C, Sasaki
K, Kaiser R, El Makhfi N, Urbich C, Peters T, Scharffetter-Kochanek
K, Zeiher AM, et al: Role of beta2-integrins for homing and
neovascularization capacity of endothelial progenitor cells. J Exp
Med. 201:63–72. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Carmona G, Chavakis E, Koehl U, Zeiher AM
and Dimmeler S: Activation of Epac stimulates integrin-dependent
homing of progenitor cells. Blood. 111:2640–2646. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bauters C, Marotte F, Hamon M, Oliviéro P,
Farhadian F, Robert V, Samuel JL and Rappaport L: Accumulation of
fetal fibronectin mRNAs after balloon denudation of rabbit
arteries. Circulation. 92:904–911. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chavakis E, Hain A, Vinci M, Carmona G,
Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T and Dimmeler S:
High-mobility group box 1 activates integrin-dependent homing of
endothelial progenitor cells. Circ Res. 100:204–212. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Caiado F and Dias S: Endothelial
progenitor cells and integrins: Adhesive needs. Fibrogenesis Tissue
Repair. 5:42012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hanjaya-Putra D, Yee J, Ceci D, Truitt R,
Yee D and Gerecht S: Vascular endothelial growth factor and
substrate mechanics regulate in vitro tubulogenesis of endothelial
progenitor cells. J Cell Mol Med. 14:2436–2447. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Jin H, Aiyer A, Su J, Borgstrom P, Stupack
D, Friedlander M and Varner J: A homing mechanism for bone
marrow-derived progenitor cell recruitment to the neovasculature. J
Clin Invest. 116:652–662. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Qin G, Ii M, Silver M, Wecker A, Bord E,
Ma H, Gavin M, Goukassian DA, Yoon YS, Papayannopoulou T, et al:
Functional disruption of alpha4 integrin mobilizes bone
marrow-derived endothelial progenitors and augments ischemic
neovascularization. J Exp Med. 203:153–163. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hall K and Ran S: Regulation of tumor
angiogenesis by the local environment. Front Biosci (Landmark Ed).
15:195–212. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
90
|
McKeage MJ and Baguley BC: Disrupting
established tumor blood vessels: An emerging therapeutic strategy
for cancer. Cancer. 116:1859–1871. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ribatti D, Vacca A and Dammacco F: The
role of the vascular phase in solid tumor growth: A historical
review. Neoplasia. 1:293–302. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tosetti F, Ferrari N, De Flora S and
Albini A: Angioprevention': Angiogenesis is a common and key target
for cancer chemopreventive agents. FASEB J. 16:2–14. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Albini A, Noonan DM and Ferrari N:
Molecular pathways for cancer angioprevention. Clin Cancer Res.
13:4320–4325. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li WW, Li VW, Hutnik M and Chiou AS: Tumor
angiogenesis as a target for dietary cancer prevention. J Oncol.
2012:8796232012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhao YH, Yuan B, Chen J, Feng DH, Zhao B,
Qin C and Chen YF: Endothelial progenitor cells: Therapeutic
perspective for ischemic stroke. CNS Neurosci Ther. 19:67–75. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Peters BA, Diaz LA, Polyak K, Meszler L,
Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein
B, et al: Contribution of bone marrow-derived endothelial cells to
human tumor vasculature. Nat Med. 11:261–262. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Murakami J, Li TS, Ueda K, Tanaka T and
Hamano K: Inhibition of accelerated tumor growth by blocking the
recruitment of mobilized endothelial progenitor cells after
chemotherapy. Int J Cancer. 124:1685–1692. 2009. View Article : Google Scholar : PubMed/NCBI
|