You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Crispo E, Moore JS, Lee-Yaw JA, Gray SM and Haller BC: Broken barriers: Human-induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. Bioessays. 33:508–518. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Verde C, di Prisco G and Convey P: Molecular and genetic advances to understanding evolution and biodiversity in the polar regions. Mar Genomics. 8:1–2. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, Li TJ, Li X, Wu XY, Tai Y, et al: Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 8:e632432013. View Article : Google Scholar : PubMed/NCBI | |
|
Xing F, Saidou J and Watabe K: Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 15:166–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Franco OE, Shaw AK, Strand DW and Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 21:33–39. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Castello-Cros R, Bonnuccelli G, Molchansky A, Capozza F, Witkiewicz AK, Birbe RC, Howell A, Pestell RG, Whitaker-Menezes D, Sotgia F and Lisanti MP: Matrix remodeling stimulates stromal autophagy, ‘fueling’ cancer cell mitochondrial metabolism and metastasis. Cell Cycle. 10:2021–2034. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A, et al: Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: Understanding the aging and cancer connection. Cell Cycle. 10:4065–4073. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 9:3506–3514. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M, Trivett M, Thompson ER, Ramakrishna M, Gorringe KL, et al: No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 40:650–655. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bauer M, Su G, Casper C, He R, Rehrauer W and Friedl A: Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene. 29:1732–1740. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW Jr, de la Chapelle A and Frankel WL: Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 23:7366–7377. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sato N, Maehara N and Goggins M: Gene expression profiling of tumor-stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Res. 64:6950–6956. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada C, Aikawa T, Okuno E, Miyagawa K, Amano K, Takahata S, Kimata M, Okura M, Iida S and Kogo M: TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts. Int J Oncol. 49:499–508. 2016.PubMed/NCBI | |
|
Singer CF, Gschwantler-Kaulich D, Fink-Retter A, Haas C, Hudelist G, Czerwenka K and Kubista E: Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat. 110:273–281. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M, et al: Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA. 108:7160–7165. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Wakefield LM and Roberts AB: TGF-beta signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zavadil J and Böttinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Katsuno Y, Lamouille S and Derynck R: TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Herrera M, Islam AB, Herrera A, Martín P, García V, Silva J, Garcia JM, Salas C, Casal I, de Herreros AG, et al: Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 19:5914–5926. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, et al: Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle. 9:2412–2422. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Leiherer A, Geiger K, Muendlein A and Drexel H: Hypoxia induces a HIF-1α dependent signalling cascade to make a complex metabolic switch in SGBS-adipocytes. Mol Cell Endocrinol. 383:21–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Wang Z, Zhai L, Yang M, Shan L, Chai C, Liu M and Wang L: Effects of cancer-associated fibroblasts on the migration and invasion abilities of SGC-7901 gastric cancer cells. Oncol Lett. 5:609–612. 2013.PubMed/NCBI | |
|
Kim SH, Choe C, Shin YS, Jeon MJ, Choi SJ, Lee J, Bae GY, Cha HJ and Kim J: Human lung cancer-associated fibroblasts enhance motility of non-small cell lung cancer cells in co-culture. Anticancer Res. 33:2001–2009. 2013.PubMed/NCBI | |
|
Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, Yoshimura A, Cai L and Gemma A: MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 41:869–875. 2012.PubMed/NCBI | |
|
Schveigert D, Cicenas S, Bruzas S, Samalavicius NE, Gudleviciene Z and Didziapetriene J: The value of MMP-9 for breast and non-small cell lung cancer patients' survival. Adv Med Sci. 58:73–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M and Takeyama H: Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 110:469–478. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Ansari MM, Hendrayani SF, Tulbah A, Al-Tweigeri T, Shehata AI and Aboussekhra A: P16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia. 14:1269–1277. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 14:518–527. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sadlonova A, Bowe DB, Novak Z, Mukherjee S, Duncan VE, Page GP and Frost AR: Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron. 2:9–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC and Puré E: Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 5:392012. View Article : Google Scholar : PubMed/NCBI | |
|
Ma XJ, Dahiya S, Richardson E, Erlander M and Sgroi DC: Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11:R72009. View Article : Google Scholar : PubMed/NCBI | |
|
Park SU, Choi ES, Jang YS, Hong SH, Kim IH and Chang DK: Effects of chromosomal polyploidy on survival of colon cancer cells. Korean J Gastroenterol. 57:150–157. 2011.(In Korean). View Article : Google Scholar : PubMed/NCBI | |
|
Zheng XH, Liu Y, Zhou HM, Chen QM and Li BQ: Analysis of chromosome karyotype of oral carcinoma-associated Fibroblasts. Hua Xi Kou Qiang Yi Xue Za Zhi. 23:159–160. 2005.(In Chinese). PubMed/NCBI | |
|
Dudley AC, Shih SC, Cliffe AR, Hida K and Klagsbrun M: Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br J Cancer. 99:118–125. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, Mercado-Uribe I and Liu J: The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA. 103:16472–16477. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A, Sneddon S, Pestell RG, Martinez-Outschoorn U, Lisanti MP and Sotgia F: CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle. 11:2272–2284. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Erenpreisa J and Cragg MS: Three steps to the immortality of cancer cells: Senescence, polyploidy and self-renewal. Cancer Cell Int. 13:922013. View Article : Google Scholar : PubMed/NCBI | |
|
Bowcock AM: Invited review DNA copy number changes as diagnostic tools for lung cancer. Thorax. 69:495–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tuhkanen H, Anttila M, Kosma VM, Heinonen S, Juhola M, Helisalmi S, Kataja V and Mannermaa A: Frequent gene dosage alterations in stromal cells of epithelial ovarian carcinomas. Int J Cancer. 119:1345–1353. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pelham RJ, Rodgers L, Hall I, Lucito R, Nguyen KC, Navin N, Hicks J, Mu D, Powers S, Wigler M and Botstein D: Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc Natl Acad Sci USA. 103:19848–19853. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Carles-Kinch K, Kilpatrick KE, Stewart JC and Kinch MS: Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 62:2840–2847. 2002.PubMed/NCBI | |
|
Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H and Polakis P: EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 64:781–788. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rummel S, Valente AL, Kane JL, Shriver CD and Ellsworth RE: Genomic (in)stability of the breast tumor microenvironment. Mol Cancer Res. 10:1526–1531. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rohrbach H, Haas CJ, Baretton GB, Hirschmann A, Diebold J, Behrendt RP and Löhrs U: Microsatellite instability and loss of heterozygosity in prostatic carcinomas: Comparison of primary tumors and of corresponding recurrences after androgen-deprivation therapy and lymph-node metastases. Prostate. 40:20–27. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Smith HS, Lu Y, Deng G, Martinez O, Krams S, Ljung BM, Thor A and Lagios M: Molecular aspects of early stages of breast cancer progression. J Cell Biochem Suppl 17G. 144–152. 1993. View Article : Google Scholar | |
|
Agapova LS, Ivanov AV, Sablina AA, Kopnin PB, Sokova OI, Chumakov PM and Kopnin BP: P53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. Oncogene. 18:3135–3142. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto N, Yoshida T and Okayasu I: High epithelial and stromal genetic instability of chromosome 17 in ulcerative colitis-associated carcinogenesis. Cancer Res. 63:6158–6161. 2003.PubMed/NCBI | |
|
Wernert N, Löcherbach C, Wellmann A, Behrens P and Hügel A: Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Res. 21:2259–2264. 2001.PubMed/NCBI | |
|
Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M and Tavassoli FA: Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: Implications for tumorigenesis. Cancer Res. 60:2562–2566. 2000.PubMed/NCBI | |
|
Paterson RF, Ulbright TM, MacLennan GT, Zhang S, Pan CX, Sweeney CJ, Moore CR, Foster RS, Koch MO, Eble JN and Cheng L: Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer. 98:1830–1836. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Tuhkanen H, Anttila M, Kosma VM, Ylä-Herttuala S, Heinonen S, Kuronen A, Juhola M, Tammi R, Tammi M and Mannermaa A: Genetic alterations in the peritumoral stromal cells of malignant and borderline epithelial ovarian tumors as indicated by allelic imbalance on chromosome 3p. Int J Cancer. 109:247–252. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP and Eng C: Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet. 32:355–357. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, Platzer P and Eng C: Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med. 357:2543–2551. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Fukino K, Shen L, Patocs A, Mutter GL and Eng C: Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA. 297:2103–2111. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL and Eng C: Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res. 64:7231–7236. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH and Eng C: Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: Clues to tumour-microenvironment interactions. Hum Mol Genet. 10:1907–1913. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hill R, Song Y, Cardiff RD and Van Dyke T: Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell. 123:1001–1011. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, Al-Tweigeri T, Ajarim D, Alaiya A, Dermime S and Aboussekhra A: Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 68:2717–2725. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chung JH, Rho JK, Xu X, Lee JS, Yoon HI, Lee CT, Choi YJ, Kim HR, Kim CH and Lee JC: Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer. 73:176–182. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shang Y, Cai X and Fan D: Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets. 13:915–929. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schmid JO, Dong M, Haubeiss S, Friedel G, Bode S, Grabner A, Ott G, Mürdter TE, Oren M, Aulitzky WE and van der Kuip H: Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin. Cancer Res. 72:5824–5832. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Assadian S, El-Assaad W, Wang XQ, Gannon PO, Barrès V, Latour M, Mes-Masson AM, Saad F, Sado Y, Dostie J and Teodoro JG: P53 inhibits angiogenesis by inducing the production of Arresten. Cancer Res. 72:1270–1279. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ghahremani M Farhang, Goossens S, Nittner D, Bisteau X, Bartunkova S, Zwolinska A, Hulpiau P, Haigh K, Haenebalcke L, Drogat B, et al: P53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 20:888–897. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Teodoro JG, Parker AE, Zhu X and Green MR: P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 313:968–971. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Heinimann K: Toward a molecular classification of colorectal cancer: The role of microsatellite instability status. Front Oncol. 3:2722013. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto N, Yoshida T, Yamashita K, Numata Y and Okayasu I: Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma. Br J Cancer. 89:707–712. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yagishita H, Yoshida T, Ishiguro K, Numata Y and Okayasu I: Epithelial and stromal genetic instability linked to tumor suppressor genes in ulcerative colitis-associated tumorigenesis. Scand J Gastroenterol. 43:559–566. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Goldblum JR, Zhao Z, Landau M, Heald B, Pai R and Lin J: Distinct clinicohistologic features of inflammatory bowel disease-associated colorectal adenocarcinoma: in comparison with sporadic microsatellite-stable and Lynch syndrome-related colorectal adenocarcinoma. Am J Surg Pathol. 36:1228–1233. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shiraishi H, Mikami T, Yoshida T, Tanabe S, Kobayashi N, Watanabe M and Okayasu I: Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett's adenocarcinomas. J Gastroenterol. 41:1186–1196. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chomyn A and Attardi G: MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun. 304:519–529. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, Wong LC and Ngan HY: High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res. 61:5998–6001. 2001.PubMed/NCBI | |
|
Habano W, Sugai T, Nakamura SI, Uesugi N, Yoshida T and Sasou S: Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology. 118:835–841. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Habano W, Nakamura S and Sugai T: Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: Evidence for mismatch repair systems in mitochondrial genome. Oncogene. 17:1931–1937. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki M, Toyooka S, Miyajima K, Iizasa T, Fujisawa T, Bekele NB and Gazdar AF: Alterations in the mitochondrial displacement loop in lung cancers. Clin Cancer Res. 9:5636–5641. 2003.PubMed/NCBI | |
|
Kim HS, Lim HS, Lee SH, Lee JW, Nam SW, Park WS, Lee YS, Lee JY and Yoo NJ: Mitochondrial microsatellite instability of colorectal cancer stroma. Int J Cancer. 119:2607–2611. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dey P: Epigenetic changes in tumor microenvironment. Indian J Cancer. 48:507–512. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ting AH, McGarvey KM and Baylin SB: The cancer epigenome-components and functional correlates. Genes Dev. 20:3215–3231. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lund AH and van Lohuizen M: Epigenetics and cancer. Genes Dev. 18:2315–2335. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CZ: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Di Leva G and Croce CM: Roles of small RNAs in tumor formation. Trends Mol Med. 16:257–267. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Sun Y, Hou Y, Peng Q, Wang L, Luo H, Tang X, Zeng Z and Liu M: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer. Int J Biochem Cell Biol. 44:2051–2059. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, et al: Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol. 14:159–167. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rask L, Balslev E, Jørgensen S, Eriksen J, Flyger H, Møller S, Høgdall E, Litman T and Nielsen BS: High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS. 119:663–673. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pathmanathan N and Balleine RL: Ki67 and proliferation in breast cancer. J Clin Pathol. 66:512–516. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y, Fujita S, Mizutani T, Furukawa C, Fujishiro M, et al: Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res. 15:4009–4016. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nouraee N, Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F, Omidi AA, Calin GA and Mowla SJ: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One. 8:e730092013. View Article : Google Scholar : PubMed/NCBI | |
|
Dobreva G, Dambacher J and Grosschedl R: SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17:3048–3061. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Patani N, Jiang W, Mansel R, Newbold R and Mokbel K: The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int. 9:182009. View Article : Google Scholar : PubMed/NCBI | |
|
Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A and Niederhuber J: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Aprelikova O, Palla J, Hibler B, Yu X, Greer YE, Yi M, Stephens R, Maxwell GL, Jazaeri A, Risinger JI, et al: Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility. Oncogene. 32:3246–3253. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, Gottardi CJ, MacDougald OA and Varga J: Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma? Arthritis Rheum. 63:1707–1717. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Enkelmann A, Heinzelmann J, von Eggeling F, Walter M, Berndt A, Wunderlich H and Junker K: Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol. 137:751–759. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, Wiuf C, Sørensen FJ, Kruhøffer M, Laurberg S, et al: Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68:6416–6424. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT and Maitra A: Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 9:293–301. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C and Zheng ZM: Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI | |
|
Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME and Lengyel E: MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2:1100–1108. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, Chen Z and Zhu B: Autocrine CCL5 signaling promotes invasion and migration of CD133+ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells. 30:2309–2319. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Naito Y, Sakamoto N, Oue N, Yashiro M, Sentani K, Yanagihara K, Hirakawa K and Yasui W: MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 105:228–235. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 30:4231–4242. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sun P, Hu JW, Xiong WJ and Mi J: MiR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 15:4245–4250. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG and Lisanti MP: Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 13:2132011. View Article : Google Scholar : PubMed/NCBI | |
|
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S and Lisanti MP: Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu Rev Pathol. 7:423–467. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP and Lisanti MP: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem. 276:6727–6738. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI | |
|
Wilson AS, Power BE and Molloy PL: DNA hypomethylation and human diseases. Biochim Biophys Acta. 1775:138–162. 2007.PubMed/NCBI | |
|
Adany R, Heimer R, Caterson B, Sorrell JM and Iozzo RV: Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem. 265:11389–11396. 1990.PubMed/NCBI | |
|
Adany R and Iozzo RV: Altered methylation of versican proteoglycan gene in human colon carcinoma. Biochem Biophys Res Commun. 171:1402–1413. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Adany R and Iozzo RV: Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem J. 276:301–306. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Kekeeva TV, Popova OP, Shegaĭ PV, Alekseev BIa, Adnreeva IuIu, Zaletaev DV and Nemtsova MV: Abberant methylation of p16, HIC1, N33 and GSTP1 genes in tumor epitelium and tumor-associated stromal cells of prostate cancer. Mol Biol (Mosk). 41:79–85. 2007.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Canales J, Hanson JC, Tangrea MA, Erickson HS, Albert PS, Wallis BS, Richardson AM, Pinto PA, Linehan WM, Gillespie JW, et al: Identification of a unique epigenetic sub-microenvironment in prostate cancer. J Pathol. 211:410–419. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ye F, Zhang SF, Xie X and Lu WG: OPCML gene promoter methylation and gene expression in tumor and stroma cells of invasive cervical carcinoma. Cancer Invest. 26:569–574. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Matsunoki A, Kawakami K, Kotake M, Kaneko M, Kitamura H, Ooi A, Watanabe G and Minamoto T: LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer. 12:5742012. View Article : Google Scholar : PubMed/NCBI | |
|
Fiegl H, Millinger S, Goebel G, Müller-Holzner E, Marth C, Laird PW and Widschwendter M: Breast cancer DNA methylation profiles in cancer cells and tumor stroma: Association with HER-2/neu status in primary breast cancer. Cancer Res. 66:29–33. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dawsey SP, Roth MJ, Adams L, Hu N, Wang QH, Taylor PR and Woodson K: COX-2 (PTGS2) gene methylation in epithelial, subepithelial lymphocyte and stromal tissue compartments in a spectrum of esophageal squamous neoplasia. Cancer Detect Prev. 32:135–139. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, et al: The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet. 8:e10025172012. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang L, Gonda TA, Gamble MV, Salas M, Seshan V, Tu S, Twaddell WS, Hegyi P, Lazar G, Steele I, et al: Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 68:9900–9908. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, Tulassay Z, Sledziewski AZ and Molnar B: Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer. 13:3982013. View Article : Google Scholar : PubMed/NCBI | |
|
Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, Libutti SK, Linehan WM and Woodson KG: Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst. 98:255–261. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YI, Fawaz K, Knox T, Lee YM, Norton R, Arora S, Paiva L and Mason JB: Colonic mucosal concentrations of folate correlate well with blood measurements of folate status in persons with colorectal polyps. Am J Clin Nutr. 68:866–872. 1998.PubMed/NCBI | |
|
Momparler RL: Cancer epigenetics. Oncogene. 22:6479–6483. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S and Nielsen HJ: High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 28:27–38. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dou L, Zheng D, Li J, Li Y, Gao L, Wang L and Yu L: Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene. 31:507–517. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Liao J, Yang M, Sheng J, Yang H, Wang Y, Pan E, Guo W, Pu Y, Kim SJ and Yin L: The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One. 7:e339872013. View Article : Google Scholar | |
|
Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J, Goss K, Fichera A, et al: EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res. 9:960–975. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Cai J, Wang J, Xiong C and Zhao J: MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 35:12743–12748. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Baumgartner C, Shields DC, Deng HW and Beckmann JS: Application of Clinical Bioinformatics. Springer; Netherlands: pp. 1262016 | |
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A and Panayiotidis MI: Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther. 145:103–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Corver WE, Ter Haar NT, Fleuren GJ and Oosting J: Cervical carcinoma-associated fibroblasts are DNA diploid and do not show evidence for somatic genetic alterations. Cell Oncol (Dordr). 34:553–563. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Walter K, Omura N, Hong SM, Griffith M and Goggins M: Pancreatic cancer associated fibroblasts display normal allelotypes. Cancer Biol Ther. 7:882–888. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, Flomenberg N, Howell A, Pestell RG, Lisanti MP and Sotgia F: Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle. 10:1784–1793. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Servais C and Erez N: From sentinel cells to inflammatory culprits: Cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 229:198–207. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shiels MS, Engels EA, Shi J, Landi MT, Albanes D, Chatterjee N, Chanock SJ, Caporaso NE and Chaturvedi AK: Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk. Cancer. 118:5630–5636. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, et al: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the ‘reverse Warburg effect’ a transcriptional informatics analysis with validation. Cell Cycle. 9:2201–2219. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann U and Kreipe H: Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods. 25:409–418. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Ale-Agha N, Dyballa-Rukes N, Jakob S, Altschmied J and Haendeler J: Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase-potential role in senescence and aging. Exp Gerontol. 56:189–193. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Urquidi V, Tarin D and Goodison S: Role of telomerase in cell senescence and oncogenesis. Annu Rev Med. 51:65–79. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Shawi M and Autexier C: Telomerase, senescence and ageing. Mech Ageing Dev. 129:3–10. 2008. View Article : Google Scholar : PubMed/NCBI |