Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2017 Volume 13 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2017 Volume 13 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review)

  • Authors:
    • Heng Du
    • Guowei Che
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Du et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-12
    |
    Published online on: November 30, 2016
       https://doi.org/10.3892/ol.2016.5451
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer-associated fibroblasts (CAFs) are one major type of component identified in the tumor microenvironment. Studies have focused on the genetic and epigenetic status of CAFs, since they are critical in tumor progression and differ phenotypically and functionally from normal fibroblasts. The present review summarizes the recent achievements in understanding the gene profiles of CAFs and pays special attention to their possible epigenetic alterations. A total of 7 possible genetic alterations and epigenetic changes in CAFs are discussed, including gene differential expression, karyotype analysis, gene copy number variation, loss of heterozygosis, allelic imbalance, microsatellite instability, post‑transcriptional control and DNA methylation. These genetic and epigenetic characteristics are hypothesized to provide a deep understanding of CAFs and a perspective on their clinical significance.
View Figures

Figure 1

View References

1 

Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Crispo E, Moore JS, Lee-Yaw JA, Gray SM and Haller BC: Broken barriers: Human-induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. Bioessays. 33:508–518. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Verde C, di Prisco G and Convey P: Molecular and genetic advances to understanding evolution and biodiversity in the polar regions. Mar Genomics. 8:1–2. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY, Li TJ, Li X, Wu XY, Tai Y, et al: Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 8:e632432013. View Article : Google Scholar : PubMed/NCBI

5 

Xing F, Saidou J and Watabe K: Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 15:166–179. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Franco OE, Shaw AK, Strand DW and Hayward SW: Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 21:33–39. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Castello-Cros R, Bonnuccelli G, Molchansky A, Capozza F, Witkiewicz AK, Birbe RC, Howell A, Pestell RG, Whitaker-Menezes D, Sotgia F and Lisanti MP: Matrix remodeling stimulates stromal autophagy, ‘fueling’ cancer cell mitochondrial metabolism and metastasis. Cell Cycle. 10:2021–2034. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Chiavarina B, Pestell RG, Howell A, et al: Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: Understanding the aging and cancer connection. Cell Cycle. 10:4065–4073. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, et al: Ketones and lactate ‘fuel’ tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 9:3506–3514. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Qiu W, Hu M, Sridhar A, Opeskin K, Fox S, Shipitsin M, Trivett M, Thompson ER, Ramakrishna M, Gorringe KL, et al: No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 40:650–655. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Bauer M, Su G, Casper C, He R, Rehrauer W and Friedl A: Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast. Oncogene. 29:1732–1740. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW Jr, de la Chapelle A and Frankel WL: Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 23:7366–7377. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Sato N, Maehara N and Goggins M: Gene expression profiling of tumor-stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Res. 64:6950–6956. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Yamada C, Aikawa T, Okuno E, Miyagawa K, Amano K, Takahata S, Kimata M, Okura M, Iida S and Kogo M: TGF-β in jaw tumor fluids induces RANKL expression in stromal fibroblasts. Int J Oncol. 49:499–508. 2016.PubMed/NCBI

15 

Singer CF, Gschwantler-Kaulich D, Fink-Retter A, Haas C, Hudelist G, Czerwenka K and Kubista E: Differential gene expression profile in breast cancer-derived stromal fibroblasts. Breast Cancer Res Treat. 110:273–281. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M, et al: Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA. 108:7160–7165. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Grivennikov SI, Greten FR and Karin M: Immunity, inflammation and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Wakefield LM and Roberts AB: TGF-beta signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Zavadil J and Böttinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Katsuno Y, Lamouille S and Derynck R: TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Herrera M, Islam AB, Herrera A, Martín P, García V, Silva J, Garcia JM, Salas C, Casal I, de Herreros AG, et al: Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 19:5914–5926. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, et al: Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle. 9:2412–2422. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Leiherer A, Geiger K, Muendlein A and Drexel H: Hypoxia induces a HIF-1α dependent signalling cascade to make a complex metabolic switch in SGBS-adipocytes. Mol Cell Endocrinol. 383:21–31. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Hu C, Wang Z, Zhai L, Yang M, Shan L, Chai C, Liu M and Wang L: Effects of cancer-associated fibroblasts on the migration and invasion abilities of SGC-7901 gastric cancer cells. Oncol Lett. 5:609–612. 2013.PubMed/NCBI

26 

Kim SH, Choe C, Shin YS, Jeon MJ, Choi SJ, Lee J, Bae GY, Cha HJ and Kim J: Human lung cancer-associated fibroblasts enhance motility of non-small cell lung cancer cells in co-culture. Anticancer Res. 33:2001–2009. 2013.PubMed/NCBI

27 

Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, Noro R, Yoshimura A, Cai L and Gemma A: MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 41:869–875. 2012.PubMed/NCBI

28 

Schveigert D, Cicenas S, Bruzas S, Samalavicius NE, Gudleviciene Z and Didziapetriene J: The value of MMP-9 for breast and non-small cell lung cancer patients' survival. Adv Med Sci. 58:73–82. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M and Takeyama H: Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: Anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer. 110:469–478. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Al-Ansari MM, Hendrayani SF, Tulbah A, Al-Tweigeri T, Shehata AI and Aboussekhra A: P16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia. 14:1269–1277. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 14:518–527. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Sadlonova A, Bowe DB, Novak Z, Mukherjee S, Duncan VE, Page GP and Frost AR: Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron. 2:9–21. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC and Puré E: Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 5:392012. View Article : Google Scholar : PubMed/NCBI

35 

Ma XJ, Dahiya S, Richardson E, Erlander M and Sgroi DC: Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11:R72009. View Article : Google Scholar : PubMed/NCBI

36 

Park SU, Choi ES, Jang YS, Hong SH, Kim IH and Chang DK: Effects of chromosomal polyploidy on survival of colon cancer cells. Korean J Gastroenterol. 57:150–157. 2011.(In Korean). View Article : Google Scholar : PubMed/NCBI

37 

Zheng XH, Liu Y, Zhou HM, Chen QM and Li BQ: Analysis of chromosome karyotype of oral carcinoma-associated Fibroblasts. Hua Xi Kou Qiang Yi Xue Za Zhi. 23:159–160. 2005.(In Chinese). PubMed/NCBI

38 

Dudley AC, Shih SC, Cliffe AR, Hida K and Klagsbrun M: Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br J Cancer. 99:118–125. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, Mercado-Uribe I and Liu J: The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA. 103:16472–16477. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A, Sneddon S, Pestell RG, Martinez-Outschoorn U, Lisanti MP and Sotgia F: CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle. 11:2272–2284. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Erenpreisa J and Cragg MS: Three steps to the immortality of cancer cells: Senescence, polyploidy and self-renewal. Cancer Cell Int. 13:922013. View Article : Google Scholar : PubMed/NCBI

42 

Bowcock AM: Invited review DNA copy number changes as diagnostic tools for lung cancer. Thorax. 69:495–496. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Tuhkanen H, Anttila M, Kosma VM, Heinonen S, Juhola M, Helisalmi S, Kataja V and Mannermaa A: Frequent gene dosage alterations in stromal cells of epithelial ovarian carcinomas. Int J Cancer. 119:1345–1353. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Pelham RJ, Rodgers L, Hall I, Lucito R, Nguyen KC, Navin N, Hicks J, Mu D, Powers S, Wigler M and Botstein D: Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc Natl Acad Sci USA. 103:19848–19853. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Carles-Kinch K, Kilpatrick KE, Stewart JC and Kinch MS: Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 62:2840–2847. 2002.PubMed/NCBI

46 

Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H and Polakis P: EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. 64:781–788. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Rummel S, Valente AL, Kane JL, Shriver CD and Ellsworth RE: Genomic (in)stability of the breast tumor microenvironment. Mol Cancer Res. 10:1526–1531. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Rohrbach H, Haas CJ, Baretton GB, Hirschmann A, Diebold J, Behrendt RP and Löhrs U: Microsatellite instability and loss of heterozygosity in prostatic carcinomas: Comparison of primary tumors and of corresponding recurrences after androgen-deprivation therapy and lymph-node metastases. Prostate. 40:20–27. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Smith HS, Lu Y, Deng G, Martinez O, Krams S, Ljung BM, Thor A and Lagios M: Molecular aspects of early stages of breast cancer progression. J Cell Biochem Suppl 17G. 144–152. 1993. View Article : Google Scholar

50 

Agapova LS, Ivanov AV, Sablina AA, Kopnin PB, Sokova OI, Chumakov PM and Kopnin BP: P53-dependent effects of RAS oncogene on chromosome stability and cell cycle checkpoints. Oncogene. 18:3135–3142. 1999. View Article : Google Scholar : PubMed/NCBI

51 

Matsumoto N, Yoshida T and Okayasu I: High epithelial and stromal genetic instability of chromosome 17 in ulcerative colitis-associated carcinogenesis. Cancer Res. 63:6158–6161. 2003.PubMed/NCBI

52 

Wernert N, Löcherbach C, Wellmann A, Behrens P and Hügel A: Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Res. 21:2259–2264. 2001.PubMed/NCBI

53 

Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M and Tavassoli FA: Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: Implications for tumorigenesis. Cancer Res. 60:2562–2566. 2000.PubMed/NCBI

54 

Paterson RF, Ulbright TM, MacLennan GT, Zhang S, Pan CX, Sweeney CJ, Moore CR, Foster RS, Koch MO, Eble JN and Cheng L: Molecular genetic alterations in the laser-capture-microdissected stroma adjacent to bladder carcinoma. Cancer. 98:1830–1836. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Tuhkanen H, Anttila M, Kosma VM, Ylä-Herttuala S, Heinonen S, Kuronen A, Juhola M, Tammi R, Tammi M and Mannermaa A: Genetic alterations in the peritumoral stromal cells of malignant and borderline epithelial ovarian tumors as indicated by allelic imbalance on chromosome 3p. Int J Cancer. 109:247–252. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP and Eng C: Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet. 32:355–357. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, Platzer P and Eng C: Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med. 357:2543–2551. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Fukino K, Shen L, Patocs A, Mutter GL and Eng C: Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA. 297:2103–2111. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL and Eng C: Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Cancer Res. 64:7231–7236. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH and Eng C: Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: Clues to tumour-microenvironment interactions. Hum Mol Genet. 10:1907–1913. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Hill R, Song Y, Cardiff RD and Van Dyke T: Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell. 123:1001–1011. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, Al-Tweigeri T, Ajarim D, Alaiya A, Dermime S and Aboussekhra A: Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 68:2717–2725. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Chung JH, Rho JK, Xu X, Lee JS, Yoon HI, Lee CT, Choi YJ, Kim HR, Kim CH and Lee JC: Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer. 73:176–182. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Shang Y, Cai X and Fan D: Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets. 13:915–929. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Schmid JO, Dong M, Haubeiss S, Friedel G, Bode S, Grabner A, Ott G, Mürdter TE, Oren M, Aulitzky WE and van der Kuip H: Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin. Cancer Res. 72:5824–5832. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Assadian S, El-Assaad W, Wang XQ, Gannon PO, Barrès V, Latour M, Mes-Masson AM, Saad F, Sado Y, Dostie J and Teodoro JG: P53 inhibits angiogenesis by inducing the production of Arresten. Cancer Res. 72:1270–1279. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Ghahremani M Farhang, Goossens S, Nittner D, Bisteau X, Bartunkova S, Zwolinska A, Hulpiau P, Haigh K, Haenebalcke L, Drogat B, et al: P53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 20:888–897. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Teodoro JG, Parker AE, Zhu X and Green MR: P53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science. 313:968–971. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Heinimann K: Toward a molecular classification of colorectal cancer: The role of microsatellite instability status. Front Oncol. 3:2722013. View Article : Google Scholar : PubMed/NCBI

70 

Matsumoto N, Yoshida T, Yamashita K, Numata Y and Okayasu I: Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma. Br J Cancer. 89:707–712. 2003. View Article : Google Scholar : PubMed/NCBI

71 

Yagishita H, Yoshida T, Ishiguro K, Numata Y and Okayasu I: Epithelial and stromal genetic instability linked to tumor suppressor genes in ulcerative colitis-associated tumorigenesis. Scand J Gastroenterol. 43:559–566. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Liu X, Goldblum JR, Zhao Z, Landau M, Heald B, Pai R and Lin J: Distinct clinicohistologic features of inflammatory bowel disease-associated colorectal adenocarcinoma: in comparison with sporadic microsatellite-stable and Lynch syndrome-related colorectal adenocarcinoma. Am J Surg Pathol. 36:1228–1233. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Shiraishi H, Mikami T, Yoshida T, Tanabe S, Kobayashi N, Watanabe M and Okayasu I: Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett's adenocarcinomas. J Gastroenterol. 41:1186–1196. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Chomyn A and Attardi G: MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun. 304:519–529. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P, Wong LC and Ngan HY: High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res. 61:5998–6001. 2001.PubMed/NCBI

76 

Habano W, Sugai T, Nakamura SI, Uesugi N, Yoshida T and Sasou S: Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology. 118:835–841. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Habano W, Nakamura S and Sugai T: Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: Evidence for mismatch repair systems in mitochondrial genome. Oncogene. 17:1931–1937. 1998. View Article : Google Scholar : PubMed/NCBI

78 

Suzuki M, Toyooka S, Miyajima K, Iizasa T, Fujisawa T, Bekele NB and Gazdar AF: Alterations in the mitochondrial displacement loop in lung cancers. Clin Cancer Res. 9:5636–5641. 2003.PubMed/NCBI

79 

Kim HS, Lim HS, Lee SH, Lee JW, Nam SW, Park WS, Lee YS, Lee JY and Yoo NJ: Mitochondrial microsatellite instability of colorectal cancer stroma. Int J Cancer. 119:2607–2611. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Dey P: Epigenetic changes in tumor microenvironment. Indian J Cancer. 48:507–512. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Ting AH, McGarvey KM and Baylin SB: The cancer epigenome-components and functional correlates. Genes Dev. 20:3215–3231. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Lund AH and van Lohuizen M: Epigenetics and cancer. Genes Dev. 18:2315–2335. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

84 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Chen CZ: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 353:1768–1771. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Di Leva G and Croce CM: Roles of small RNAs in tumor formation. Trends Mol Med. 16:257–267. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Zhao L, Sun Y, Hou Y, Peng Q, Wang L, Luo H, Tang X, Zeng Z and Liu M: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer. Int J Biochem Cell Biol. 44:2051–2059. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, et al: Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol. 14:159–167. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Rask L, Balslev E, Jørgensen S, Eriksen J, Flyger H, Møller S, Høgdall E, Litman T and Nielsen BS: High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS. 119:663–673. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Pathmanathan N and Balleine RL: Ki67 and proliferation in breast cancer. J Clin Pathol. 66:512–516. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Yamamichi N, Shimomura R, Inada K, Sakurai K, Haraguchi T, Ozaki Y, Fujita S, Mizutani T, Furukawa C, Fujishiro M, et al: Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res. 15:4009–4016. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Nouraee N, Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F, Omidi AA, Calin GA and Mowla SJ: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One. 8:e730092013. View Article : Google Scholar : PubMed/NCBI

93 

Dobreva G, Dambacher J and Grosschedl R: SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17:3048–3061. 2003. View Article : Google Scholar : PubMed/NCBI

94 

Patani N, Jiang W, Mansel R, Newbold R and Mokbel K: The mRNA expression of SATB1 and SATB2 in human breast cancer. Cancer Cell Int. 9:182009. View Article : Google Scholar : PubMed/NCBI

95 

Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A and Niederhuber J: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Aprelikova O, Palla J, Hibler B, Yu X, Greer YE, Yi M, Stephens R, Maxwell GL, Jazaeri A, Risinger JI, et al: Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility. Oncogene. 32:3246–3253. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, Gottardi CJ, MacDougald OA and Varga J: Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma? Arthritis Rheum. 63:1707–1717. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Enkelmann A, Heinzelmann J, von Eggeling F, Walter M, Berndt A, Wunderlich H and Junker K: Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol. 137:751–759. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, Wiuf C, Sørensen FJ, Kruhøffer M, Laurberg S, et al: Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68:6416–6424. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT and Maitra A: Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 9:293–301. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C and Zheng ZM: Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI

102 

Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME and Lengyel E: MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2:1100–1108. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Long H, Xie R, Xiang T, Zhao Z, Lin S, Liang Z, Chen Z and Zhu B: Autocrine CCL5 signaling promotes invasion and migration of CD133+ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells. 30:2309–2319. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Naito Y, Sakamoto N, Oue N, Yashiro M, Sentani K, Yanagihara K, Hirakawa K and Yasui W: MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 105:228–235. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, et al: Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene. 30:4231–4242. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Sun P, Hu JW, Xiong WJ and Mi J: MiR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 15:4245–4250. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI

108 

Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG and Lisanti MP: Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 13:2132011. View Article : Google Scholar : PubMed/NCBI

109 

Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S and Lisanti MP: Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu Rev Pathol. 7:423–467. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP and Lisanti MP: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem. 276:6727–6738. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002.PubMed/NCBI

112 

Wilson AS, Power BE and Molloy PL: DNA hypomethylation and human diseases. Biochim Biophys Acta. 1775:138–162. 2007.PubMed/NCBI

113 

Adany R, Heimer R, Caterson B, Sorrell JM and Iozzo RV: Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem. 265:11389–11396. 1990.PubMed/NCBI

114 

Adany R and Iozzo RV: Altered methylation of versican proteoglycan gene in human colon carcinoma. Biochem Biophys Res Commun. 171:1402–1413. 1990. View Article : Google Scholar : PubMed/NCBI

115 

Adany R and Iozzo RV: Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem J. 276:301–306. 1991. View Article : Google Scholar : PubMed/NCBI

116 

Kekeeva TV, Popova OP, Shegaĭ PV, Alekseev BIa, Adnreeva IuIu, Zaletaev DV and Nemtsova MV: Abberant methylation of p16, HIC1, N33 and GSTP1 genes in tumor epitelium and tumor-associated stromal cells of prostate cancer. Mol Biol (Mosk). 41:79–85. 2007.(In Russian). View Article : Google Scholar : PubMed/NCBI

117 

Rodriguez-Canales J, Hanson JC, Tangrea MA, Erickson HS, Albert PS, Wallis BS, Richardson AM, Pinto PA, Linehan WM, Gillespie JW, et al: Identification of a unique epigenetic sub-microenvironment in prostate cancer. J Pathol. 211:410–419. 2007. View Article : Google Scholar : PubMed/NCBI

118 

Ye F, Zhang SF, Xie X and Lu WG: OPCML gene promoter methylation and gene expression in tumor and stroma cells of invasive cervical carcinoma. Cancer Invest. 26:569–574. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Matsunoki A, Kawakami K, Kotake M, Kaneko M, Kitamura H, Ooi A, Watanabe G and Minamoto T: LINE-1 methylation shows little intra-patient heterogeneity in primary and synchronous metastatic colorectal cancer. BMC Cancer. 12:5742012. View Article : Google Scholar : PubMed/NCBI

120 

Fiegl H, Millinger S, Goebel G, Müller-Holzner E, Marth C, Laird PW and Widschwendter M: Breast cancer DNA methylation profiles in cancer cells and tumor stroma: Association with HER-2/neu status in primary breast cancer. Cancer Res. 66:29–33. 2006. View Article : Google Scholar : PubMed/NCBI

121 

Dawsey SP, Roth MJ, Adams L, Hu N, Wang QH, Taylor PR and Woodson K: COX-2 (PTGS2) gene methylation in epithelial, subepithelial lymphocyte and stromal tissue compartments in a spectrum of esophageal squamous neoplasia. Cancer Detect Prev. 32:135–139. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, et al: The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet. 8:e10025172012. View Article : Google Scholar : PubMed/NCBI

123 

Jiang L, Gonda TA, Gamble MV, Salas M, Seshan V, Tu S, Twaddell WS, Hegyi P, Lazar G, Steele I, et al: Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 68:9900–9908. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, Tulassay Z, Sledziewski AZ and Molnar B: Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer. 13:3982013. View Article : Google Scholar : PubMed/NCBI

125 

Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, Tangrea JA, Libutti SK, Linehan WM and Woodson KG: Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst. 98:255–261. 2006. View Article : Google Scholar : PubMed/NCBI

126 

Kim YI, Fawaz K, Knox T, Lee YM, Norton R, Arora S, Paiva L and Mason JB: Colonic mucosal concentrations of folate correlate well with blood measurements of folate status in persons with colorectal polyps. Am J Clin Nutr. 68:866–872. 1998.PubMed/NCBI

127 

Momparler RL: Cancer epigenetics. Oncogene. 22:6479–6483. 2003. View Article : Google Scholar : PubMed/NCBI

128 

Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S and Nielsen HJ: High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 28:27–38. 2011. View Article : Google Scholar : PubMed/NCBI

130 

Dou L, Zheng D, Li J, Li Y, Gao L, Wang L and Yu L: Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene. 31:507–517. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Liu R, Liao J, Yang M, Sheng J, Yang H, Wang Y, Pan E, Guo W, Pu Y, Kim SJ and Yin L: The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One. 7:e339872013. View Article : Google Scholar

132 

Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J, Goss K, Fichera A, et al: EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res. 9:960–975. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Wang Q, Cai J, Wang J, Xiong C and Zhao J: MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 35:12743–12748. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Wang X, Baumgartner C, Shields DC, Deng HW and Beckmann JS: Application of Clinical Bioinformatics. Springer; Netherlands: pp. 1262016

135 

Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A and Panayiotidis MI: Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther. 145:103–119. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Corver WE, Ter Haar NT, Fleuren GJ and Oosting J: Cervical carcinoma-associated fibroblasts are DNA diploid and do not show evidence for somatic genetic alterations. Cell Oncol (Dordr). 34:553–563. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Walter K, Omura N, Hong SM, Griffith M and Goggins M: Pancreatic cancer associated fibroblasts display normal allelotypes. Cancer Biol Ther. 7:882–888. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI

139 

Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, Flomenberg N, Howell A, Pestell RG, Lisanti MP and Sotgia F: Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle. 10:1784–1793. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Servais C and Erez N: From sentinel cells to inflammatory culprits: Cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 229:198–207. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Shiels MS, Engels EA, Shi J, Landi MT, Albanes D, Chatterjee N, Chanock SJ, Caporaso NE and Chaturvedi AK: Genetic variation in innate immunity and inflammation pathways associated with lung cancer risk. Cancer. 118:5630–5636. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, et al: Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the ‘reverse Warburg effect’ a transcriptional informatics analysis with validation. Cell Cycle. 9:2201–2219. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Lehmann U and Kreipe H: Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods. 25:409–418. 2001. View Article : Google Scholar : PubMed/NCBI

144 

Ale-Agha N, Dyballa-Rukes N, Jakob S, Altschmied J and Haendeler J: Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase-potential role in senescence and aging. Exp Gerontol. 56:189–193. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Urquidi V, Tarin D and Goodison S: Role of telomerase in cell senescence and oncogenesis. Annu Rev Med. 51:65–79. 2000. View Article : Google Scholar : PubMed/NCBI

146 

Shawi M and Autexier C: Telomerase, senescence and ageing. Mech Ageing Dev. 129:3–10. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Du H and Che G: Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review). Oncol Lett 13: 3-12, 2017.
APA
Du, H., & Che, G. (2017). Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review). Oncology Letters, 13, 3-12. https://doi.org/10.3892/ol.2016.5451
MLA
Du, H., Che, G."Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review)". Oncology Letters 13.1 (2017): 3-12.
Chicago
Du, H., Che, G."Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review)". Oncology Letters 13, no. 1 (2017): 3-12. https://doi.org/10.3892/ol.2016.5451
Copy and paste a formatted citation
x
Spandidos Publications style
Du H and Che G: Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review). Oncol Lett 13: 3-12, 2017.
APA
Du, H., & Che, G. (2017). Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review). Oncology Letters, 13, 3-12. https://doi.org/10.3892/ol.2016.5451
MLA
Du, H., Che, G."Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review)". Oncology Letters 13.1 (2017): 3-12.
Chicago
Du, H., Che, G."Genetic alterations and epigenetic alterations of cancer‑associated fibroblasts (Review)". Oncology Letters 13, no. 1 (2017): 3-12. https://doi.org/10.3892/ol.2016.5451
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team