|
1
|
Lowrance WT and Scardino PT: Predictive
models for newly diagnosed prostate cancer patients. Rev Urol.
11:117–126. 2009.PubMed/NCBI
|
|
2
|
Loeb S, Bjurlin MA, Nicholson J, Tammela
TL, Penson DF, Carter HB, Carroll P and Etzioni R: Overdiagnosis
and overtreatment of prostate cancer. Eur Urol. 65:1046–1055. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhou Y, Bolton EC and Jones JO: Androgens
and androgen receptor signaling in prostate tumorigenesis. J Mol
Endocrinol. 54:R15–R29. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Brooke GN, Parker MG and Bevan CL:
Mechanisms of androgen receptor activation in advanced prostate
cancer: Differential co-activator recruitment and gene expression.
Oncogene. 27:2941–2950. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Perner S, Cronauer MV, Schrader AJ,
Klocker H, Culig Z and Baniahmad A: Adaptive responses of androgen
receptor signaling in castration-resistant prostate cancer.
Oncotarget. 6:35542–35555. 2015.PubMed/NCBI
|
|
6
|
Grant CM and Kyprianou N: Epithelial
mesenchymal transition (EMT) in prostate growth and tumor
progression. Transl Androl Urol. 2:202–211. 2013.PubMed/NCBI
|
|
7
|
Khan MI, Hamid A, Adhami VM, Lall RK and
Mukhtar H: Role of epithelial mesenchymal transition in prostate
tumorigenesis. Curr Pharm Des. 21:1240–1248. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gravdal K, Halvorsen OJ, Haukaas SA and
Akslen LA: A switch from E-cadherin to N-cadherin expression
indicates epithelial to mesenchymal transition and is of strong and
independent importance for the progress of prostate cancer. Clin
Cancer Res. 13:7003–7011. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lu-Yao GL, Albertsen PC, Moore DF, Lin Y,
DiPaola RS and Yao SL: Fifteen-year outcomes following conservative
management among men aged 65 years or older with localized prostate
cancer. Eur Urol. 68:805–811. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lu-Yao GL, Albertsen PC, Moore DF, Shih W,
Lin Y, DiPaola RS, Barry MJ, Zietman A, O'Leary M, Walker-Corkery E
and Yao SL: Outcomes of localized prostate cancer following
conservative management. JAMA. 302:1202–1209. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rodrigues G, Warde P, Pickles T, Crook J,
Brundage M, Souhami L and Lukka H: Genitourinary Radiation
Oncologists of Canada: Pre-treatment risk stratification of
prostate cancer patients: A critical review. Can Urol Assoc J.
6:121–127. 2012. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma Q and Lu AY: Pharmacogenetics,
pharmacogenomics, and individualized medicine. Pharmacol Rev.
63:437–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wallace TJ, Torre T, Grob M, Yu J, Avital
I, Brücher B, Stojadinovic A and Man YG: Current approaches,
challenges and future directions for monitoring treatment response
in prostate cancer. J Cancer. 5:3–24. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Aftimos PG, Barthelemy P and Awada A:
Molecular biology in medical oncology: Diagnosis, prognosis, and
precision medicine. Discov Med. 17:81–91. 2014.PubMed/NCBI
|
|
15
|
Schrecengost R and Knudsen KE: Molecular
pathogenesis and progression of prostate cancer. Semin Oncol.
40:244–258. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang Q, Li W, Liu XS, Carroll JS, Jänne
OA, Keeton EK, Chinnaiyan AM, Pienta KJ and Brown M: A hierarchical
network of transcription factors governs androgen
receptor-dependent prostate cancer growth. Mol Cell. 27:380–392.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shaikhibrahim Z and Wernert N: ETS
transcription factors and prostate cancer: The role of the family
prototype ETS-1 (Review). Int J Oncol. 40:1748–1754.
2012.PubMed/NCBI
|
|
18
|
Cancer Genome Atlas Research Network: The
molecular taxonomy of primary prostate cancer. Cell. 163:1011–1025.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Integrative Onco Genomics: Prostate
adenocarcinoma. https://www.intogen.org/search?cancer=PRAD#driversAccessed.
September 5–2016.
|
|
20
|
Boysen G, Barbieri CE, Prandi D, Blattner
M, Chae SS, Dahija A, Nataraj S, Huang D, Marotz C, Xu L, et al:
SPOP mutation leads to genomic instability in prostate cancer.
Elife. 4:pii: e09207. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Beltran H, Yelensky R, Frampton GM, Park
K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus
DM, et al: Targeted next-generation sequencing of advanced prostate
cancer identifies potential therapeutic targets and disease
heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hieronymus H, Schultz N, Gopalan A, Carver
BS, Chang MT, Xiao Y, Heguy A, Huberman K, Bernstein M, Assel M, et
al: Copy number alteration burden predicts prostate cancer relapse.
Proc Natl Acad Sci USA. 111:11139–11144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mahapatra S, Klee EW, Young CY, Sun Z,
Jimenez RE, Klee GG, Tindall DJ and Donkena KV: Global methylation
profiling for risk prediction of prostate cancer. Clin Cancer Res.
18:2882–2895. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bastian PJ, Yegnasubramanian S, Palapattu
GS, Rogers CG, Lin X, De Marzo AM and Nelson WG: Molecular
biomarker in prostate cancer: The role of CpG island
hypermethylation. Eur Urol. 46:698–708. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rönnau CG, Verhaegh GW, Luna-Velez MV and
Schalken JA: Noncoding RNAs as novel biomarkers in prostate cancer.
Biomed Res Int. 2014:5917032014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Prensner JR, Iyer MK, Balbin OA,
Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso
CS, Kominsky HD, et al: Transcriptome sequencing across a prostate
cancer cohort identifies PCAT-1, an unannotated lincRNA implicated
in disease progression. Nat Biotechnol. 29:742–749. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mouraviev V, Lee B, Patel V, Albala D,
Johansen TE, Partin A, Ross A and Perera RJ: Clinical prospects of
long noncoding RNAs as novel biomarkers and therapeutic targets in
prostate cancer. Prostate Cancer Prostatic Dis. 19:14–20. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ferreira LB, Palumbo A, de Mello KD,
Sternberg C, Caetano MS, de Oliveira FL, Neves AF, Nasciutti LE,
Goulart LR and Gimba ER: PCA3 noncoding RNA is involved in the
control of prostate-cancer cell survival and modulates androgen
receptor signaling. BMC Cancer. 12:5072012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Prensner JR, Rubin MA, Wei JT and
Chinnaiyan AM: Beyond PSA: The next generation of prostate cancer
biomarkers. Sci Transl Med. 4:127rv32012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Crawford ED, Ventii K and Shore ND: New
biomarkers in prostate cancer. Oncology (Williston Park).
28:135–142. 2014.PubMed/NCBI
|
|
32
|
Schoenborn JR, Nelson P and Fang M:
Genomic profiling defines subtypes of prostate cancer with the
potential for therapeutic stratification. Clin Cancer Res.
19:4058–4066. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Catalona WJ, Smith DS, Ratliff TL, Dodds
KM, Coplen DE, Yuan JJ, Petros JA and Andriole GL: Measurement of
prostate-specific antigen in serum as a screening test for prostate
cancer. N Engl J Med. 324:1156–1161. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cui Y, Cao W, Li Q, Shen H, Liu C, Deng J,
Xu J and Shao Q: Evaluation of prostate cancer antigen 3 for
detecting prostate cancer: A systematic review and meta-analysis.
Sci Rep. 6:257762016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Prensner JR, Chen W, Han S, Iyer MK, Cao
Q, Kothari V, Evans JR, Knudsen KE, Paulsen MT, Ljungman M, et al:
The long non-coding RNA PCAT-1 promotes prostate cancer cell
proliferation through cMyc. Neoplasia. 16:900–908. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Prensner JR, Chen W, Iyer MK, Cao Q, Ma T,
Han S, Sahu A, Malik R, Wilder-Romans K, Navone N, et al: PCAT-1, a
long noncoding RNA, regulates BRCA2 and controls homologous
recombination in cancer. Cancer Res. 74:1651–1660. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jiang N, Zhu S, Chen J, Niu Y and Zhou L:
A-methylacyl-CoA racemase (AMACR) and prostate-cancer risk: A
meta-analysis of 4,385 participants. PLoS One. 8:e743862013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yu YP, Landsittel D, Jing L, Nelson J, Ren
B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, et al: Gene
expression alterations in prostate cancer predicting tumor
aggression and preceding development of malignancy. J Clin Oncol.
22:2790–2799. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rubin MA, Bismar TA, Andrén O, Mucci L,
Kim R, Shen R, Ghosh D, Wei JT, Chinnaiyan AM, Adami HO, et al:
Decreased alpha-methylacyl CoA racemase expression in localized
prostate cancer is associated with an increased rate of biochemical
recurrence and cancer-specific death. Cancer Epidemiol Biomarkers
Prev. 14:1424–1432. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Feng FY, Brenner JC, Hussain M and
Chinnaiyan AM: Molecular pathways: Targeting ETS gene fusions in
cancer. Clin Cancer Res. 20:4442–4448. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hägglöf C, Hammarsten P, Strömvall K,
Egevad L, Josefsson A, Stattin P, Granfors T and Bergh A:
TMPRSS2-ERG expression predicts prostate cancer survival and
associates with stromal biomarkers. PLoS One. 9:e868242014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Reid AH, Attard G, Ambroisine L, Fisher G,
Kovacs G, Brewer D, Clark J, Flohr P, Edwards S, Berney DM, et al:
Molecular characterisation of ERG, ETV1 and PTEN gene loci
identifies patients at low and high risk of death from prostate
cancer. Br J Cancer. 102:678–684. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ahearn TU, Pettersson A, Ebot EM, Gerke T,
Graff RE, Morais CL, Hicks JL, Wilson KM, Rider JR, Sesso HD, et
al: A prospective investigation of PTEN loss and ERG expression in
lethal prostate cancer. J Natl Cancer Inst. 108:pii: djv346. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shivapurkar N and Gazdar AF: DNA
methylation based biomarkers in non-invasive cancer screening. Curr
Mol Med. 10:123–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Florl AR, Steinhoff C, Müller M, Seifert
HH, Hader C, Engers R, Ackermann R and Schulz WA: Coordinate
hypermethylation at specific genes in prostate carcinoma precedes
LINE-1 hypomethylation. Br J Cancer. 91:985–994. 2004.PubMed/NCBI
|
|
46
|
Laxman B, Morris DS, Yu J, Siddiqui J, Cao
J, Mehra R, Lonigro RJ, Tsodikov A, Wei JT, Tomlins SA and
Chinnaiyan AM: A first-generation multiplex biomarker analysis of
urine for the early detection of prostate cancer. Cancer Res.
68:645–649. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Martin NE: New developments in prostate
cancer biomarkers. Curr Opin Oncol. 28:248–252. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cuzick J, Swanson GP, Fisher G, Brothman
AR, Berney DM, Reid JE, Mesher D, Speights VO, Stankiewicz E,
Foster CS, et al: Prognostic value of an RNA expression signature
derived from cell cycle proliferation genes in patients with
prostate cancer: A retrospective study. Lancet Oncol. 12:245–255.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Alshalalfa M, Crisan A, Vergara IA,
Ghadessi M, Buerki C, Erho N, Yousefi K, Sierocinski T, Haddad Z,
Black PC, et al: Clinical and genomic analysis of metastatic
prostate cancer progression with a background of postoperative
biochemical recurrence. BJU Int. 116:556–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Peng Z, Skoog L, Hellborg H, Jonstam G,
Wingmo IL, Hjälm-Eriksson M, Harmenberg U, Cedermark GC, Andersson
K, Ahrlund-Richter L, et al: An expression signature at diagnosis
to estimate prostate cancer patients' overall survival. Prostate
Cancer Prostatic Dis. 17:81–90. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chun FK, Müller I, Lange I, Friedrich MG,
Erbersdobler A, Karakiewicz PI, Graefen M, Pantel K, Huland H and
Schwarzenbach H: Circulating tumour-associated plasma DNA
represents an independent and informative predictor of prostate
cancer. BJU Int. 98:544–548. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Danila DC, Fleisher M and Scher HI:
Circulating tumor cells as biomarkers in prostate cancer. Clin
Cancer Res. 17:3903–3912. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rapisuwon S, Vietsch EE and Wellstein A:
Circulating biomarkers to monitor cancer progression and treatment.
Comput Struct Biotechnol J. 14:211–222. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Van Neste L, Hendriks RJ, Dijkstra S,
Trooskens G, Cornel EB, Jannink SA, de Jong H, Hessels D, Smit FP,
Melchers WJ, et al: Detection of high-grade prostate cancer using a
urinary molecular biomarker-based risk score. Eur Urol. 70:740–748.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Leyten GH, Hessels D, Smit FP, Jannink SA,
de Jong H, Melchers WJ, Cornel EB, de Reijke TM, Vergunst H, Kil P,
et al: Identification of a candidate gene panel for the early
diagnosis of prostate cancer. Clin Cancer Res. 21:3061–3070. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Alinezhad S, Väänänen RM, Mattsson J, Li
Y, Tallgrén T, Tong Ochoa N, Bjartell A, Åkerfelt M, Taimen P,
Boström PJ, et al: Validation of novel biomarkers for prostate
cancer progression by the combination of bioinformatics, clinical
and functional studies. PLoS One. 11:e01559012016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tomlins SA, Day JR, Lonigro RJ, Hovelson
DH, Siddiqui J, Kunju LP, Dunn RL, Meyer S, Hodge P, Groskopf J, et
al: Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer
risk assessment. Eur Urol. 70:45–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
McKiernan J, Donovan MJ, O'Neill V,
Bentink S, Noerholm M, Belzer S, Skog J, Kattan MW, Partin A,
Andriole G, et al: A novel urine exosome gene expression assay to
predict high-grade prostate cancer at initial biopsy. JAMA Oncol.
2:882–889. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Crawford ED, Higano CS, Shore ND, Hussain
M and Petrylak DP: Treating patients with metastatic castration
resistant prostate cancer: A comprehensive review of available
therapies. J Urol. 194:1537–1547. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mitsiades N: A road map to comprehensive
androgen receptor axis targeting for castration-resistant prostate
cancer. Cancer Res. 73:4599–4605. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Khemlina G, Ikeda S and Kurzrock R:
Molecular landscape of prostate cancer: Implications for current
clinical trials. Cancer Treat Rev. 41:761–766. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chi K, Hotte SJ, Joshua AM, North S, Wyatt
AW, Collins LL and Saad F: Treatment of mCRPC in the
AR-axis-targeted therapy-resistant state. Ann Oncol. 26:2044–2056.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kahn B, Collazo J and Kyprianou N:
Androgen receptor as a driver of therapeutic resistance in advanced
prostate cancer. Int J Biol Sci. 10:588–595. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Antonarakis ES and Armstrong AJ: Evolving
standards in the treatment of docetaxel-refractory
castration-resistant prostate cancer. Prostate Cancer Prostatic
Dis. 14:192–205. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Housman G, Byler S, Heerboth S, Lapinska
K, Longacre M, Snyder N and Sarkar S: Drug resistance in cancer: An
overview. Cancers (Basel). 6:1769–1792. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kachroo N, Warren AY and Gnanapragasam VJ:
Multi-transcript profiling in archival diagnostic prostate cancer
needle biopsies to evaluate biomarkers in non-surgically treated
men. BMC Cancer. 14:6732014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jørgensen JT: Drug-diagnostics
co-development in oncology. Front Oncol. 4:2082014.PubMed/NCBI
|
|
68
|
Olsen D and Jørgensen JT: Companion
diagnostics for targeted cancer drugs-clinical and regulatory
aspects. Front Oncol. 4:1052014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rueff J and Rodrigues AS: Cancer drug
resistance: A brief overview from a genetic viewpoint. Methods Mol
Biol. 1395:1–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li MM, Monzon FA, Biegel JA, Jobanputra V,
Laffin JJ, Levy B, Leon A, Miron P, Rossi MR, Toruner G, et al: A
multicenter, cross-platform clinical validation study of cancer
cytogenomic arrays. Cancer Genet. 208:525–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Trevino V, Falciani F and Barrera-Saldaña
HA: DNA microarrays: A powerful genomic tool for biomedical and
clinical research. Mol Med. 13:527–541. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Myllykangas S and Ji HP: Targeted deep
resequencing of the human cancer genome using next-generation
technologies. Biotechnol Genet Eng Rev. 27:135–158. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kinde I, Wu J, Papadopoulos N, Kinzler KW
and Vogelstein B: Detection and quantification of rare mutations
with massively parallel sequencing. Proc Natl Acad Sci USA.
108:9530–9535. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mercer TR, Gerhardt DJ, Dinger ME,
Crawford J, Trapnell C, Jeddeloh JA, Mattick JS and Rinn JL:
Targeted RNA sequencing reveals the deep complexity of the human
transcriptome. Nat Biotechnol. 30:99–104. 2012. View Article : Google Scholar
|
|
75
|
Scolnick JA, Dimon M, Wang IC, Huelga SC
and Amorese DA: An efficient method for identifying gene fusions by
targeted RNA sequencing from fresh frozen and FFPE samples. PLoS
One. 10:e01289162015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Weirather JL, Afshar PT, Clark TA, Tseng
E, Powers LS, Underwood JG, Zabner J, Korlach J, Wong WH and Au KF:
Characterization of fusion genes and the significantly expressed
fusion isoforms in breast cancer by hybrid sequencing. Nucleic
Acids Res. 43:e1162015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zheng GX, Lau BT, Schnall-Levin M, Jarosz
M, Bell JM, Hindson CM, Kyriazopoulou-Panagiotopoulou S, Masquelier
DA, Merrill L, Terry JM, et al: Haplotyping germline and cancer
genomes with high-throughput linked-read sequencing. Nat
Biotechnol. 34:303–311. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gawad C, Koh W and Quake SR: Single-cell
genome sequencing: Current state of the science. Nat Rev Genet.
17:175–188. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Newman AM, Bratman SV, To J, Wynne JF,
Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, et
al: An ultrasensitive method for quantitating circulating tumor DNA
with broad patient coverage. Nat Med. 20:548–554. 2014. View Article : Google Scholar : PubMed/NCBI
|