Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2017 Volume 14 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2017 Volume 14 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody

  • Authors:
    • Xie‑Wan Chen
    • Jian‑Guo Sun
    • Lu‑Ping Zhang
    • Xing‑Yun Liao
    • Rong‑Xia Liao
  • View Affiliations / Copyright

    Affiliations: Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing 400038, P.R. China, Cancer Institute of People's Liberation Army, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 615-622
    |
    Published online on: May 24, 2017
       https://doi.org/10.3892/ol.2017.6236
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A series of antibodies against vascular endothelial growth factor (VEGF) have been developed for the treatment of various types of cancer, including non‑small cell lung cancer (NSCLC) in recent years. However, tumors frequently demonstrate resistance to these strategies of VEGF inhibition. Efforts to better understand the mechanism underlying the acquired resistance to anti‑VEGF antibodies are warranted. In the present study, in order to develop a xenograft model of acquired resistance to anti‑VEGF antibody, xenografts of human adenocarcinoma A549 cells were generated through the successive inoculation of tumor tissue explants into first (F1), second (F2) and third (F3) generations of mice treated with the anti‑VEGF antibody B20. Tumor growth rate and vessel‑forming ability, assessed via cluster of differentiation (CD) 31 staining, were significantly lower in the F1, F2 and F3 groups compared with in the F0 control group (P<0.01), suggesting that drug resistance was not successfully acquired. The percentages of CD11b+ myeloid‑derived suppressor cells and lymphocyte antigen 6C (Ly6C)+ subsets were significantly smaller in F1, F2 and F3 groups compared with in F0 (P<0.01). However, the ratio of Ly6C+ to CD11b+ cells was significantly higher in the F3 group compared with in F0 and F1 groups (P<0.01), indicating increasing recruitment of the Ly6C+ subset with successive challenges with the anti‑VEGF antibody. In conclusion, the recruitment of CD11b+Ly6C+ monocytes increased with successive generations of NSCLC‑xenografted mice challenged by B20, an anti-VEGF agent.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, et al: Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 385:977–1010. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Stinchcombe TE and Socinski MA: Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc. 6:pp. 233–241. 2009; View Article : Google Scholar : PubMed/NCBI

4 

Morgensztern D, Waqar S, Subramanian J, Gao F and Govindan R: Improving survival for stage IV non-small cell lung cancer: A surveillance, epidemiology, and end results survey from 1990 to 2005. J Thorac Oncol. 4:1524–1529. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med. 49:407–424. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Carmeliet P: Angiogenesis in life, disease and medicine. Nature. 438:932–936. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Weidner N: Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 147:9–19. 1995.PubMed/NCBI

8 

Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, Van de Water L and Senger DR: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: Concentration in tumor blood vessels. J Exp Med. 174:1275–1278. 1991. View Article : Google Scholar : PubMed/NCBI

9 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Toi M, Matsumoto T and Bando H: Vascular endothelial growth factor: Its prognostic, predictive, and therapeutic implications. Lancet Oncol. 2:667–673. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Ferrara N: Vascular endothelial growth factor as a target for anticancer therapy. Oncologist. 9 Suppl 1:S2–S10. 2004. View Article : Google Scholar

12 

Hu P, Liu W, Wang L, Yang M and Du J: High circulating VEGF level predicts poor overall survival in lung cancer. J Cancer Res Clin Oncol. 139:1157–1167. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Chen P, Zhu J, Liu DY, Li HY, Xu N and Hou M: Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol. 31:7752014. View Article : Google Scholar : PubMed/NCBI

14 

Chen J, Tang D, Wang S, Li QG, Zhang JR, Li P, Lu Q, Niu G, Gao J, Ye NY and Wang DR: High expressions of galectin-1 and VEGF are associated with poor prognosis in gastric cancer patients. Tumor Biol. 35:2513–2519. 2014. View Article : Google Scholar

15 

Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI

16 

Piperdi B, Merla A and Perez-Soler R: Targeting angiogenesis in squamous non-small cell lung cancer. Drugs. 74:403–413. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Pallis AG and Syrigos KN: Targeting tumor neovasculature in non-small-cell lung cancer. Crit Rev Oncol Hematol. 86:130–142. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Zhou C, Wu YL, Chen G, Liu X, Zhu Y, Lu S, Feng J, He J, Han B, Wang J, et al: BEYOND: A randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol. 33:2197–2204. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Tejpar S, Prenen H and Mazzone M: Overcoming resistance to antiangiogenic therapies. Oncologist. 17:1039–1050. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Sica A and Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 117:1155–1166. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Kusmartsev S and Gabrilovich DI: Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 55:237–245. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Talmadge JE: Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 13:5243–5248. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP and Gabrilovich DI: Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. J Immunol. 166:678–689. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Young MR and Lathers DM: Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol. 21:241–252. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Ebos JM, Lee CR and Kerbel RS: Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res. 15:5020–5025. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR and Brown JM: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest. 120:694–705. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC and Moses HL: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell. 13:23–35. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT and Giaccia AJ: Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 15:527–538. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP and Ferrara N: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP and Lin PC: Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 6:409–421. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N and Matsushima K: Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 111:5457–5466. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Dietlin TA, Hofman FM, Lund BT, Gilmore W, Stohlman SA and van der Veen RC: Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol. 81:1205–1212. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P and Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 111:4233–4244. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, et al: On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med. 210:2611–2625. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Gordon S and Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev Immunol. 5:953–964. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Murdoch C, Muthana M, Coffelt SB and Lewis CE: The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 8:618–631. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ and Ho LP: Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol. 189:551–557. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Chu HX, Broughton BR, Kim HA, Lee S, Drummond GR and Sobey CG: Evidence that Ly6C(hi) monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke. 46:1929–1937. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Jalali S, Chung C, Foltz W, Burrell K, Singh S, Hill R and Zadeh G: MRI biomarkers identify the differential response of glioblastoma multiforme to anti-angiogenic therapy. Neuro Oncol. 16:868–879. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Naito S, von Eschenbach AC, Giavazzi R and Fidler IJ: Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 46:4109–4115. 1986.PubMed/NCBI

47 

Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A and Brown JM: Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA. 107:pp. 8363–8368. 2010; View Article : Google Scholar : PubMed/NCBI

48 

Hong S, Tan M, Wang S, Luo S, Chen Y and Zhang L: Efficacy and safety of angiogenesis inhibitors in advanced non-small cell lung cancer: A systematic review and meta-analysis. J Cancer Res Clin Oncol. 141:909–921. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Blakely C and Jahan T: Emerging antiangiogenic therapies for non-small-cell lung cancer. Expert Rev Anticancer Ther. 11:1607–1618. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Giuliano S and Pagès G: Mechanisms of resistance to anti-angiogenesis therapies. Biochimie. 95:1110–1119. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Sitohy B, Nagy JA and Dvorak HF: Anti-VEGF/VEGFR therapy for cancer: Reassessing the target. Cancer Res. 72:1909–1914. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Wood SL, Pernemalm M, Crosbie PA and Whetton AD: The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 40:558–566. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Saintigny P and Burger JA: Recent advances in non-small cell lung cancer biology and clinical management. Discov Med. 13:287–297. 2012.PubMed/NCBI

54 

Gyanchandani R, Alves MV Ortega, Myers JN and Kim S: A proangiogenic signature is revealed in FGF-mediated bevacizumab-resistant head and neck squamous cell carcinoma. Mol Cancer Res. 11:1585–1596. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Curtarello M, Zulato E, Nardo G, Valtorta S, Guzzo G, Rossi E, Esposito G, Msaki A, Pastò A, Rasola A, et al: VEGF-targeted therapy stably modulates the glycolytic phenotype of tumor cells. Cancer Res. 75:120–133. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Mira E, Carmona-Rodríguez L, Tardáguila M, Azcoitia I, González-Martín A, Almonacid L, Casas J, Fabriás G and Mañes S: A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors. Oncotarget. 4:2288–2301. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R and Pittet MJ: The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 204:3037–3047. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK and Chazaud B: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 204:1057–1069. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G and Geissmann F: Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science. 317:666–670. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Anzai A, Anzai T, Nagai S, Maekawa Y, Naito K, Kaneko H, Sugano Y, Takahashi T, Abe H, Mochizuki S, et al: Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation. 125:1234–1245. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, Kalchenko V, Geissmann F and Jung S: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med. 204:171–180. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Ancuta P, Liu KY, Misra V, Wacleche VS, Gosselin A, Zhou X and Gabuzda D: Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics. 10:4032009. View Article : Google Scholar : PubMed/NCBI

63 

Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J and Feuerer M: Origin of monocytes and macrophages in a committed progenitor. Nat Immunol. 14:821–830. 2013. View Article : Google Scholar : PubMed/NCBI

64 

McDonnell CO, Bouchier-Hayes DJ, Toomey D, Foley D, Kay EW, Leen E and Walsh TN: Effect of neoadjuvant chemoradiotherapy on angiogenesis in oesophageal cancer. Br J Surg. 90:1373–1378. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Ahn GO and Brown JM: Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: Role of bone marrow-derived myelomonocytic cells. Cancer Cell. 13:193–205. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen XW, Sun JG, Zhang LP, Liao XY and Liao RX: Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncol Lett 14: 615-622, 2017.
APA
Chen, X., Sun, J., Zhang, L., Liao, X., & Liao, R. (2017). Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncology Letters, 14, 615-622. https://doi.org/10.3892/ol.2017.6236
MLA
Chen, X., Sun, J., Zhang, L., Liao, X., Liao, R."Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody". Oncology Letters 14.1 (2017): 615-622.
Chicago
Chen, X., Sun, J., Zhang, L., Liao, X., Liao, R."Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody". Oncology Letters 14, no. 1 (2017): 615-622. https://doi.org/10.3892/ol.2017.6236
Copy and paste a formatted citation
x
Spandidos Publications style
Chen XW, Sun JG, Zhang LP, Liao XY and Liao RX: Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncol Lett 14: 615-622, 2017.
APA
Chen, X., Sun, J., Zhang, L., Liao, X., & Liao, R. (2017). Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody. Oncology Letters, 14, 615-622. https://doi.org/10.3892/ol.2017.6236
MLA
Chen, X., Sun, J., Zhang, L., Liao, X., Liao, R."Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody". Oncology Letters 14.1 (2017): 615-622.
Chicago
Chen, X., Sun, J., Zhang, L., Liao, X., Liao, R."Recruitment of CD11b+Ly6C+ monocytes in non‑small cell lung cancer xenografts challenged by anti-VEGF antibody". Oncology Letters 14, no. 1 (2017): 615-622. https://doi.org/10.3892/ol.2017.6236
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team