|
1
|
Montenegro-Montero A, Canessa P and
Larrondo LF: Around the fungal clock: Recent advances in the
molecular study of circadian clocks in neurospora and other fungi.
Adv Genet. 92:107–184. 2015.PubMed/NCBI
|
|
2
|
Endo M: Tissue-specific circadian clocks
in plants. Curr Opin Plant Biol. 29:44–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Di Cara F and King-Jones K: How clocks and
hormones act in concert to control the timing of insect
development. Curr Top Dev Biol. 105:1–36. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tomioka K: Chronobiology of crickets: A
review. Zoolog Sci. 31:624–632. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Numata H, Miyazaki Y and Ikeno T: Common
features in diverse insect clocks. Zoological Lett. 1:102015.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Uryu O, Ameku T and Niwa R: Recent
progress in understanding the role of ecdysteroids in adult
insects: Germline development and circadian clock in the fruit fly
Drosophila melanogaster. Zoological Lett. 1:322015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Heller HC and Ruby NF: Sleep and circadian
rhythms in mammalian torpor. Annu Rev Physiol. 66:275–289. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ruby NF: Hibernation: When good clocks go
cold. J Biol Rhythms. 18:275–286. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Coomans CP, Ramkisoensing A and Meijer JH:
The suprachiasmatic nuclei as a seasonal clock. Front
Neuroendocrinol. 37:29–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Leslie M: Circadian rhythms. Sleep study
suggests triggers for diabetes and obesity. Science. 336:1432012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bass J: Circadian topology of metabolism.
Nature. 491:348–356. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Richards J, Diaz AN and Gumz ML: Clock
genes in hypertension: Novel insights from rodent models. Blood
Press Monit. 19:249–254. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
McLoughlin SC, Haines P and FitzGerald GA:
Clocks and cardiovascular function. Methods Enzymol. 552:211–228.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Robinson I and Reddy AB: Molecular
mechanisms of the circadian clockwork in mammals. FEBS Lett.
588:2477–2483. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li S and Zhang L: Circadian control of
global transcription. Biomed Res Int. 2015:1878092015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huang N, Chelliah Y, Shan Y, Taylor CA,
Yoo SH, Partch C, Green CB, Zhang H and Takahashi JS: Crystal
structure of the heterodimeric CLOCK:BMAL1 transcriptional
activator complex. Science. 337:189–194. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cho H, Zhao X, Hatori M, Yu RT, Barish GD,
Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, et al:
Regulation of circadian behaviour and metabolism by REV-ERB-α and
REV-ERB-β. Nature. 485:123–127. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bersten DC, Sullivan AE, Peet DJ and
Whitelaw ML: bHLH-PAS proteins in cancer. Nat Rev Cancer.
13:827–841. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mazzoccoli G, Pazienza V and Vinciguerra
M: Clock genes and clock-controlled genes in the regulation of
metabolic rhythms. Chronobiol Int. 29:227–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
King DP, Zhao Y, Sangoram AM, Wilsbacher
LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM,
Lowrey PL, et al: Positional cloning of the mouse circadian clock
gene. Cell. 89:641–653. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Steeves TD, King DP, Zhao Y, Sangoram AM,
Du F, Bowcock AM, Moore RY and Takahashi JS: Molecular cloning and
characterization of the human CLOCK gene: Expression in the
suprachiasmatic nuclei. Genomics. 57:189–200. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Naylor E, Bergmann BM, Krauski K, Zee PC,
Takahashi JS, Vitaterna MH and Turek FW: The circadian clock
mutation alters sleep homeostasis in the mouse. J Neurosci.
20:8138–8143. 2000.PubMed/NCBI
|
|
23
|
Lee J, Lee S, Chung S, Park N, Son GH, An
H, Jang J, Chang DJ, Suh YG and Kim K: Identification of a novel
circadian clock modulator controlling BMAL1 expression through a
ROR/REV-ERB-response element-dependent mechanism. Biochem Biophys
Res Commun. 469:580–586. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ikeda M and Nomura M: cDNA cloning and
tissue-specific expression of a novel basic helix-loop-helix/PAS
protein (BMAL1) and identification of alternatively spliced
variants with alternative translation initiation site usage.
Biochem Biophys Res Commun. 233:258–264. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bunger MK, Wilsbacher LD, Moran SM,
Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS and
Bradfield CA: Mop3 is an essential component of the master
circadian pacemaker in mammals. Cell. 103:1009–1017. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Young ME, Brewer RA, Peliciari-Garcia RA,
Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray
MS, et al: Cardiomyocyte-specific BMAL1 plays critical roles in
metabolism, signaling, and maintenance of contractile function of
the heart. J Biol Rhythms. 29:257–276. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kennaway DJ, Varcoe TJ, Voultsios A and
Boden MJ: Global loss of bmal1 expression alters adipose tissue
hormones, gene expression and glucose metabolism. PLoS One.
8:e652552013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rudic RD, McNamara P, Curtis AM, Boston
RC, Panda S, Hogenesch JB and Fitzgerald GA: BMAL1 and CLOCK, two
essential components of the circadian clock, are involved in
glucose homeostasis. PLoS Biol. 2:e3772004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Khapre RV, Kondratova AA, Patel S,
Dubrovsky Y, Wrobel M, Antoch MP and Kondratov RV: BMAL1-dependent
regulation of the mTOR signaling pathway delays aging. Aging
(Albany NY). 6:48–57. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ali AA, Schwarz-Herzke B, Stahr A,
Prozorovski T, Aktas O and von Gall C: Premature aging of the
hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging
(Albany NY). 7:435–449. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Konopka RJ and Benzer S: Clock mutants of
Drosophila melanogaster. Proc Natl Acad Sci USA.
68:2112–2116. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lengyel Z, Lovig C, Kommedal S, Keszthelyi
R, Szekeres G, Battyáni Z, Csernus V and Nagy AD: Altered
expression patterns of clock gene mRNAs and clock proteins in human
skin tumors. Tumour Biol. 34:811–819. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhao N, Yang K, Yang G, Chen D, Tang H,
Zhao D and Zhao C: Aberrant expression of clock gene period1 and
its correlations with the growth, proliferation and metastasis of
buccal squamous cell carcinoma. PLoS One. 8:e558942013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hsu CM, Lin PM, Lai CC, Lin HC, Lin SF and
Yang MY: PER1 and CLOCK: Potential circulating biomarkers for head
and neck squamous cell carcinoma. Head Neck. 36:1018–1026. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cadenas C, van de Sandt L, Edlund K, Lohr
M, Hellwig B, Marchan R, Schmidt M, Rahnenführer J, Oster H and
Hengstler JG: Loss of circadian clock gene expression is associated
with tumor progression in breast cancer. Cell Cycle. 13:3282–3291.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu B, Xu K, Jiang Y and Li X: Aberrant
expression of Per1, Per2 and Per3 and their prognostic relevance in
non-small cell lung cancer. Int J Clin Exp Pathol. 7:7863–7871.
2014.PubMed/NCBI
|
|
37
|
Larkin JC and Woolford JL Jr: Molecular
cloning and analysis of the CRY1 gene: A yeast ribosomal protein
gene. Nucleic Acids Res. 11:403–420. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kume K, Zylka MJ, Sriram S, Shearman LP,
Weaver DR, Jin X, Maywood ES, Hastings MH and Reppert SM: mCRY1 and
mCRY2 are essential components of the negative limb of the
circadian clock feedback loop. Cell. 98:193–205. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou YD, Barnard M, Tian H, Li X, Ring HZ,
Francke U, Shelton J, Richardson J, Russell DW and McKnight SL:
Molecular characterization of two mammalian bHLH-PAS domain
proteins selectively expressed in the central nervous system. Proc
Natl Acad Sci USA. 94:713–718. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
McNamara P, Seo SB, Rudic RD, Sehgal A,
Chakravarti D and FitzGerald GA: Regulation of CLOCK and MOP4 by
nuclear hormone receptors in the vasculature: A humoral mechanism
to reset a peripheral clock. Cell. 105:877–889. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yuan P, Wang S, Zhou F, Wan S, Yang Y,
Huang X, Zhang Z, Zhu Y, Zhang H and Xing J: Functional
polymorphisms in the NPAS2 gene are associated with overall
survival in transcatheter arterial chemoembolization-treated
hepatocellular carcinoma patients. Cancer Sci. 105:825–832. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xue X, Liu F, Han Y, Li P, Yuan B, Wang X,
Chen Y, Kuang Y, Zhi Q and Zhao H: Silencing NPAS2 promotes cell
growth and invasion in DLD-1 cells and correlated with poor
prognosis of colorectal cancer. Biochem Biophys Res Commun.
450:1058–1062. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rana S, Shahid A, Ullah H and Mahmood S:
Lack of association of the NPAS2 gene Ala394Thr polymorphism
(rs2305160:G>A) with risk of chronic lymphocytic leukemia. Asian
Pac J Cancer Prev. 15:7169–7174. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fish KJ, Cegielska A, Getman ME, Landes GM
and Virshup DM: Isolation and characterization of human casein
kinase I epsilon (CKI), a novel member of the CKI gene family. J
Biol Chem. 270:14875–14883. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Camacho F, Cilio M, Guo Y, Virshup DM,
Patel K, Khorkova O, Styren S, Morse B, Yao Z and Keesler GA: Human
casein kinase Idelta phosphorylation of human circadian clock
proteins period 1 and 2. FEBS Lett. 489:159–165. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tsuchiya Y, Akashi M, Matsuda M, Goto K,
Miyata Y, Node K and Nishida E: Involvement of the protein kinase
CK2 in the regulation of mammalian circadian rhythms. Sci Signal.
2:ra262009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lee H, Chen R, Lee Y, Yoo S and Lee C:
Essential roles of CKIdelta and CKIepsilon in the mammalian
circadian clock. Proc Natl Acad Sci USA. 106:21359–21364. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bonnelye E, Vanacker JM, Desbiens X, Begue
A, Stehelin D and Laudet V: Rev-erb beta, a new member of the
nuclear receptor superfamily, is expressed in the nervous system
during chicken development. Cell Growth Differ. 5:1357–1365.
1994.PubMed/NCBI
|
|
49
|
Lazar MA, Hodin RA, Darling DS and Chin
WW: A novel member of the thyroid/steroid hormone receptor family
is encoded by the opposite strand of the rat c-erbA alpha
transcriptional unit. Mol Cell Biol. 9:1128–1136. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Crumbley C and Burris TP: Direct
regulation of CLOCK expression by REV-ERB. PLoS One. 6:e172902011.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dardente H, Fustin JM and Hazlerigg DG:
Transcriptional feedback loops in the ovine circadian clock. Comp
Biochem Physiol A Mol Integr Physiol. 153:391–398. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Crumbley C, Wang Y, Kojetin DJ and Burris
TP: Characterization of the core mammalian clock component, NPAS2,
as a REV-ERBalpha/RORalpha target gene. J Biol Chem.
285:35386–35392. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Takeda Y, Kang HS, Angers M and Jetten AM:
Retinoic acid-related orphan receptor gamma directly regulates
neuronal PAS domain protein 2 transcription in vivo. Nucleic Acids
Res. 39:4769–4782. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bugge A, Feng D, Everett LJ, Briggs ER,
Mullican SE, Wang F, Jager J and Lazar MA: Rev-erbα and Rev-erbβ
coordinately protect the circadian clock and normal metabolic
function. Genes Dev. 26:657–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mazzoccoli G, Cai Y, Liu S, Francavilla M,
Giuliani F, Piepoli A, Pazienza V, Vinciguerra M, Yamamoto T and
Takumi T: REV-ERBα and the clock gene machinery in mouse peripheral
tissues: A possible role as a synchronizing hinge. J Biol Regul
Homeost Agents. 26:265–276. 2012.PubMed/NCBI
|
|
56
|
Bhargava A, Herzel H and
Ananthasubramaniam B: Mining for novel candidate clock genes in the
circadian regulatory network. BMC Syst Biol. 9:782015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shen M, Kawamoto T, Yan W, Nakamasu K,
Tamagami M, Koyano Y, Noshiro M and Kato Y: Molecular
characterization of the novel basic helix-loop-helix protein DEC1
expressed in differentiated human embryo chondrocytes. Biochem
Biophys Res Commun. 236:294–298. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Fujimoto K, Shen M, Noshiro M, Matsubara
K, Shingu S, Honda K, Yoshida E, Suardita K, Matsuda Y and Kato Y:
Molecular cloning and characterization of DEC2, a new member of
basic helix-loop-helix proteins. Biochem Biophys Res Commun.
280:164–171. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Noshiro M, Furukawa M, Honma S, Kawamoto
T, Hamada T, Honma K and Kato Y: Tissue-specific disruption of
rhythmic expression of Dec1 and Dec2 in clock mutant mice. J Biol
Rhythms. 20:404–418. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wu T, Ni Y, Zhuge F, Sun L, Xu B, Kato H
and Fu Z: Significant dissociation of expression patterns of the
basic helix-loop-helix transcription factors Dec1 and Dec2 in rat
kidney. J Exp Biol. 214:1257–1263. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Honma S, Kawamoto T, Takagi Y, Fujimoto K,
Sato F, Noshiro M, Kato Y and Honma K: Dec1 and Dec2 are regulators
of the mammalian molecular clock. Nature. 419:841–844. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y, Xie M, Song X, Gragen S, Sachdeva K,
Wan Y and Yan B: DEC1 negatively regulates the expression of DEC2
through binding to the E-box in the proximal promoter. J Biol Chem.
278:16899–16907. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Seino H, Wu Y, Morohashi S, Kawamoto T,
Fujimoto K, Kato Y, Takai Y and Kijima H: Basic helix-loop-helix
transcription factor DEC1 regulates the cisplatin-induced apoptotic
pathway of human esophageal cancer cells. Biomed Res. 36:89–96.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jinhua H, Zhao M, Wei S, Haitao Y, Yuwen
W, Lili W, Wei L and Jian Y: Down regulation of differentiated
embryo-chondrocyte expressed gene 1 is related to the decrease of
osteogenic capacity. Curr Drug Targets. 15:432–441. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
You J, Lin L, Liu Q, Zhu T, Xia K and Su
T: The correlation between the expression of differentiated
embryo-chondrocyte expressed gene l and oral squamous cell
carcinoma. Eur J Med Res. 19:212014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, Ao
X, Jia Z, Jiang X, Yang Y and Wu H: DEC1 regulates breast cancer
cell proliferation by stabilizing cyclin E protein and delays the
progression of cell cycle S phase. Cell Death Dis. 6:e18912015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sehgal A, Price JL, Man B and Young MW:
Loss of circadian behavioral rhythms and per RNA oscillations in
the Drosophila mutant timeless. Science. 263:1603–1606.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mazzoccoli G, Laukkanen MO, Vinciguerra M,
Colangelo T and Colantuoni V: A timeless link between circadian
patterns and disease. Trends Mol Med. 22:68–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Parent MÉ, El-Zein M, Rousseau MC, Pintos
J and Siemiatycki J: Night work and the risk of cancer among men.
Am J Epidemiol. 176:751–759. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bhatti P, Cushing-Haugen KL, Wicklund KG,
Doherty JA and Rossing MA: Nightshift work and risk of ovarian
cancer. Occup Environ Med. 70:231–237. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ijaz S, Verbeek J, Seidler A, Lindbohm ML,
Ojajärvi A, Orsini N, Costa G and Neuvonen K: Night-shift work and
breast cancer-a systematic review and meta-analysis. Scand J Work
Environ Health. 39:431–447. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhao L, Isayama K, Chen H, Yamauchi N,
Shigeyoshi Y, Hashimoto S and Hattori MA: The nuclear receptor
REV-ERBα represses the transcription of growth/differentiation
factor 10 and 15 genes in rat endometrium stromal cells. Physiol
Rep. 4:pii:e126632016. View Article : Google Scholar
|
|
73
|
Canaple L, Kakizawa T and Laudet V: The
days and nights of cancer cells. Cancer Res. 63:7545–7552.
2003.PubMed/NCBI
|
|
74
|
Schibler U: The daily timing of gene
expression and physiology in mammals. Dialogues Clin Neurosci.
9:257–272. 2007.PubMed/NCBI
|
|
75
|
Kornmann B, Schaad O, Bujard H, Takahashi
JS and Schibler U: System-driven and oscillator-dependent circadian
transcription in mice with a conditionally active liver clock. PLoS
Biol. 5:e342007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Walker JR and Hogenesch JB: RNA profiling
in circadian biology. Methods Enzymol. 393:366–376. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Storch KF, Lipan O, Leykin I, Viswanathan
N, Davis FC, Wong WH and Weitz CJ: Extensive and divergent
circadian gene expression in liver and heart. Nature. 417:78–83.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Panda S, Antoch MP, Miller BH, Su AI,
Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS and
Hogenesch JB: Coordinated transcription of key pathways in the
mouse by the circadian clock. Cell. 109:307–320. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
McCarthy JJ, Andrews JL, McDearmon EL,
Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB,
Takahashi JS and Esser KA: Identification of the circadian
transcriptome in adult mouse skeletal muscle. Physiol Genomics.
31:86–95. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kornmann B, Preitner N, Rifat D,
Fleury-Olela F and Schibler U: Analysis of circadian liver gene
expression by ADDER, a highly sensitive method for the display of
differentially expressed mRNAs. Nucleic Acids Res. 29:E51–E61.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Duffield GE, Best JD, Meurers BH, Bittner
A, Loros JJ and Dunlap JC: Circadian programs of transcriptional
activation, signaling, and protein turnover revealed by microarray
analysis of mammalian cells. Curr Biol. 12:551–557. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC,
Lin SF, Su WW and Chang JG: Disturbance of circadian gene
expression in hepatocellular carcinoma. Mol Carcinog. 47:925–933.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yang SL, Yu C, Jiang JX, Liu LP, Fang X
and Wu C: Hepatitis B virus X protein disrupts the balance of the
expression of circadian rhythm genes in hepatocellular carcinoma.
Oncol Lett. 8:2715–2720. 2014.PubMed/NCBI
|
|
84
|
Krugluger W, Brandstaetter A, Kállay E,
Schueller J, Krexner E, Kriwanek S, Bonner E and Cross HS:
Regulation of genes of the circadian clock in human colon cancer:
Reduced period-1 and dihydropyrimidine dehydrogenase transcription
correlates in high-grade tumors. Cancer Res. 67:7917–7922. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Hua L, Lu C and Chen Z: Expression
of circadian clock gene human Period2 (hPer2) in human colorectal
carcinoma. World J Surg Oncol. 9:1662011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mazzoccoli G, Panza A, Valvano MR, Palumbo
O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P,
Andriulli A and Piepoli A: Clock gene expression levels and
relationship with clinical and pathological features in colorectal
cancer patients. Chronobiol Int. 28:841–851. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Oshima T, Takenoshita S, Akaike M,
Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka
K, et al: Expression of circadian genes correlates with liver
metastasis and outcomes in colorectal cancer. Oncol Rep.
25:1439–1446. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang X, Yan D, Teng M, Fan J, Zhou C, Li
D, Qiu G, Sun X, Li T, Xing T, et al: Reduced expression of PER3 is
associated with incidence and development of colon cancer. Ann Surg
Oncol. 19:3081–3088. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Karantanos T, Theodoropoulos G, Gazouli M,
Vaiopoulou A, Karantanou C, Lymberi M and Pektasides D: Expression
of clock genes in patients with colorectal cancer. Int J Biol
Markers. 28:280–285. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang L, Chen B, Wang Y, Sun N, Lu C, Qian
R and Hua L: hClock gene expression in human colorectal carcinoma.
Mol Med Rep. 8:1017–1022. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y,
Liu R and Huang W: Cryptochrome 1 overexpression correlates with
tumor progression and poor prognosis in patients with colorectal
cancer. PLoS One. 8:e616792013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang Y, Xing T, Huang L, Song G, Sun X,
Zhong L, Fan J, Yan D, Zhou C, Cui F, et al: Period 1 and estrogen
receptor-beta are downregulated in Chinese colon cancers. Int J
Clin Exp Pathol. 8:8178–8188. 2015.PubMed/NCBI
|
|
93
|
Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu
XY, Han J, Liu KY, Liao JW, Xu RH and Zou QF: Prognostic relevance
of period1 (Per1) and period2 (Per2) expression in human gastric
cancer. Int J Clin Exp Pathol. 7:619–630. 2014.PubMed/NCBI
|
|
94
|
Hu ML, Yeh KT, Lin PM, Hsu CM, Hsiao HH,
Liu YC, Lin HY, Lin SF and Yang MY: Deregulated expression of
circadian clock genes in gastric cancer. BMC Gastroenterol.
14:672014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Relles D, Sendecki J, Chipitsyna G, Hyslop
T, Yeo CJ and Arafat HA: Circadian gene expression and
clinicopathologic correlates in pancreatic cancer. J Gastrointest
Surg. 17:443–450. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yu C, Yang SL, Fang X, Jiang JX, Sun CY
and Huang T: Hypoxia disrupts the expression levels of circadian
rhythm genes in hepatocellular carcinoma. Mol Med Rep.
11:4002–4008. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Benegiamo G, Mazzoccoli G, Cappello F,
Rappa F, Scibetta N, Oben J, Greco A, Williams R, Andriulli A,
Vinciguerra M and Pazienza V: Mutual antagonism between circadian
protein period 2 and hepatitis C virus replication in hepatocytes.
PLoS One. 8:e605272013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kondratov R: Circadian clock and cancer
therapy: An unexpected journey. Ann Med. 46:189–190. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Innominato PF, Roche VP, Palesh OG,
Ulusakarya A, Spiegel D and Lévi FA: The circadian timing system in
clinical oncology. Ann Med. 46:191–207. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Akgun Z, Saglam S, Yucel S, Gural Z, Balik
E, Cipe G, Yildiz S, Kilickap S, Okyar A and Kaytan-Saglam E:
Neoadjuvant chronomodulated capecitabine with radiotherapy in
rectal cancer: A phase II brunch regimen study. Cancer Chemother
Pharmacol. 74:751–756. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zarogoulidis P, Darwiche K, Huang H,
Spyratos D, Yarmus L, Li Q, Kakolyris S, Syrigos K and Zarogoulidis
K: Time recall; future concept of chronomodulating chemotherapy for
cancer. Curr Pharm Biotechnol. 14:632–642. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen D, Cheng J, Yang K, Ma Y and Yang F:
Retrospective analysis of chronomodulated chemotherapy versus
conventional chemotherapy with paclitaxel, carboplatin, and
5-fluorouracil in patients with recurrent and/or metastatic head
and neck squamous cell carcinoma. Onco Targets Ther. 6:1507–1514.
2013.PubMed/NCBI
|