|
1
|
Skinner MK, Manikkam M and
Guerrero-Bosagna C: Epigenetic transgenerational actions of
environmental factors in disease etiology. Trends Endocrinol Metab.
21:214–222. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lopez-Ramirez MA and Nicoli S: Role of
miRNAs and epigenetics in neural stem cell fate determination.
Epigenetics. 9:90–100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Graça I, Pereira-Silva E, Henrique R,
Packham G, Crabb SJ and Jerónimo C: Epigenetic modulators as
therapeutic targets in prostate cancer. Clin Epigenetics. 8:982016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Do C, Shearer A, Suzuki M, Terry MB,
Gelernter J, Greally JM and Tycko B: Genetic-epigenetic
interactions in cis: A major focus in the post-GWAS era. Genome
Biol. 18:1202017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shukla SD and Lim RW: Epigenetic effects
of ethanol on the liver and gastrointestinal system. Alcohol Res.
35:47–55. 2013.PubMed/NCBI
|
|
6
|
Rothbart SB and Strahl BD: Interpreting
the language of histone and DNA modifications. Biochim Biophys
Acta. 1839:627–643. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen
T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W and Neumann H:
A cascade of histone modifications induces chromatin condensation
in mitosis. Science. 343:77–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tracey R, Manikkam M, Guerrero-Bosagna C
and Skinner MK: Hydrocarbons (jet fuel JP-8) induce epigenetic
transgenerational inheritance of obesity, reproductive disease and
sperm epimutations. Reprod Toxicol. 36:104–116. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Heijmans BT, Tobi EW, Stein AD, Putter H,
Blauw GJ, Susser ES, Slagboom PE and Lumey LH: Persistent
epigenetic differences associated with prenatal exposure to famine
in humans. Proc Natl Acad Sci USA. 105:17046–17049. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Perera F, Tang WY, Herbstman J, Tang D,
Levin L, Miller R and Ho SM: Relation of DNA methylation of 5′-CpG
island of ACSL3 to transplacental exposure to airborne polycyclic
aromatic hydrocarbons and childhood asthma. PLoS One. 4:e44882009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Novikova SI, He F, Bai J, Cutrufello NJ,
Lidow MS and Undieh AS: Maternal cocaine administration in mice
alters DNA methylation and gene expression in hippocampal neurons
of neonatal and prepubertal offspring. PLoS One. 3:e19192008.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão
AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE and Oliveira PJ:
Back to the future: Transgenerational transmission of
xenobiotic-induced epigenetic remodeling. Epigenetics. 10:259–273.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang Y: Detection of epigenetic
aberrations in the development of hepatocellular carcinoma. Methods
Mol Biol. 1238:709–731. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tian Y, Yang W, Song J, Wu Y and Ni B:
Hepatitis B virus X protein-induced aberrant epigenetic
modifications contributing to human hepatocellular carcinoma
pathogenesis. Mol Cell Biol. 33:2810–2816. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ryu HW, Lee DH, Won HR, Kim KH, Seong YJ
and Kwon SH: Influence of toxicologically relevant metals on human
epigenetic regulation. Toxicol Res. 31:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Khan D and Ahmed SA: Epigenetic regulation
of non-lymphoid cells by Bisphenol A, a model endocrine disrupter:
Potential implications for immunoregulation. Front Endocrinol
(Lausanne). 6:912015.PubMed/NCBI
|
|
17
|
Guerrero-Bosagna C and Skinner MK:
Environmentally induced epigenetic transgenerational inheritance of
phenotype and disease. Mol Cell Endocrinol. 354:3–8. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Godfrey KM, Costello PM and Lillycrop KA:
The developmental environment, epigenetic biomarkers and long-term
health. J Dev Orig Health Dis. 6:399–406. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Jirtle RL and Skinner MK: Environmental
epigenomics and disease susceptibility. Nat Rev Genet. 8:253–262.
2007. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dippold RP, Vadigepalli R, Gonye GE, Patra
B and Hoek JB: Chronic ethanol feeding alters miRNA expression
dymanics during liver regeneration. Alcohol Clin Exp Res.
37:E59–E69. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pogribny IP and Rusyn I: Role of
epigenetic aberrations in the development and progression of human
hepatocellular carcinoma. Cancer Lett. 342:223–230. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wei X, Xiang T, Ren G, Tan C, Liu R, Xu X
and Wu Z: miR-101 is down-regulated by the hepatitis B virus X
protein and induces aberrant DNA methylation by targeting DNA
methyltransferase 3A. Cell Signal. 25:439–446. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dhanak D and Jackson P: Development and
classes of epigenetic drugs for cancer. Biochem Biophys Res Commun.
455:58–69. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang Z and Patel DJ: Small molecule
epigenetic inhibitors targeted to histone lysine methyltransferases
and demethylases. Q Rev Biophys. 46:349–373. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Enjuanes A, Albero R, Clot G, Navarro A,
Beà S, Pinyol M, Martín-Subero JI, Klapper W, Staudt LM, Jaffe ES,
et al: Genomewide methylation analyses identify a subset of mantle
cell lymphoma with a high number of methylated CpGs and aggressive
clinicopathological features. Int J Cancer. 133:2852–2863.
2013.PubMed/NCBI
|
|
26
|
Müller AM and Florek M:
5-Azacytidine/5-Azacitidine. Recent Results Cancer Res.
201:299–324. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Momparler RL: Epigenetic therapy of cancer
with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol. 32:443–451.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao Q, Fan J, Hong W, Li L and Wu M:
Inhibition of cancer cell proliferation by
5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through
activation of DNA damage response pathway. Springerplus. 1:652012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Marquez VE, Kelley JA, Agbaria R,
Ben-Kasus T, Cheng JC, Yoo CB and Jones PA: Zebularine: A unique
molecule for an epigenetically based strategy in cancer
chemotherapy. Ann N Y Acad Sci. 1058:246–254. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Srivastava P, Paluch BE, Matsuzaki J,
James SR, Collamat-Lai G, Taverna P, Karpf AR and Griffiths EA:
Immunomodulatory action of the DNA methyltransferase inhibitor
SGI-110 in epithelial ovarian cancer cells and xenografts.
Epigenetics. 10:237–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Agarwal S, Amin KS, Jagadeesh S, Baishay
G, Rao PG, Barua NC, Bhattacharya S and Banerjee PP: Mahanine
restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in
prostate cancer cells. Mol Cancer. 12:992013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dueñas-Gonzalez A, Coronel J, Cetina L,
González-Fierro A, Chavez-Blanco A and Taja-Chayeb L:
Hydralazine-valproate: A repositioned drug combination for the
epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol.
10:1433–1444. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gao Z, Xu Z, Hung MS, Lin YC, Wang T, Gong
M, Zhi X, Jablons DM and You L: Procaine and procainamide inhibit
the Wnt canonical pathway by promoter demethylation of WIF-1 in
lung cancer cells. Oncol Rep. 22:1479–1484. 2009.PubMed/NCBI
|
|
34
|
Rilova E, Erdmann A, Gros C, Masson V,
Aussagues Y, Poughon-Cassabois V, Rajavelu A, Jeltsch A, Menon Y,
Novosad N, et al: Design, synthesis and biological evaluation of
4-amino-N-(4-aminophenyl) benzamide analogues of quinoline-based
SGI-1027 as inhibitors of DNA methylation. ChemMedChem. 9:590–601.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ramasamy TS, Ayob AZ, Myint HH,
Thiagarajah S and Amini F: Targeting colorectal cancer stem cells
using curcumin and curcumin analogues: Insights into the mechanism
of the therapeutic efficacy. Cancer Cell Int. 15:962015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Graça I, Sousa EJ, Baptista T, Almeida M,
Ramalho-Carvalho J, Palmeira C, Henrique R and Jerónimo C:
Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in
human prostate cancer cells. Curr Pharm Des. 20:1803–1811. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee E, Jeong KW, Jnawali HN, Shin A, Heo
YS and Kim Y: Cytotoxic activity of 3,6-dihydroxyflavone in human
cervical cancer cells and its therapeutic effect on c-Jun
N-terminal kinase inhibition. Molecules. 19:13200–13211. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chakrabarty S, Ganguli A, Das A, Nag D and
Chakrabarti G: Epigallocatechin-3-gallate shows anti-proliferative
activity in HeLa Cells targeting tubulin-microtubule equilibrium.
Chem Biol Interact. 242:380–389. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shukla S and Gupta S: Apigenin: A
promising molecule for cancer prevention. Pharm Res. 27:962–978.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Qiang W, Jin T, Yang Q, Liu W, Liu S, Ji
M, He N, Chen C, Shi B and Hou P: PRIMA-1 selectively induces
global DNA demethylation in p53 mutant-type thyroid cancer cells. J
Biomed Nanotechnol. 10:1249–1258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Spagnuolo C, Russo GL, Orhan IE,
Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR,
Tundis R and Nabavi SM: Genistein and cancer: Current status,
challenges, and future directions. Adv Nutr. 6:408–419. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wyrębska A, Gach K and Janecka A: Combined
effect of parthenolide and various anti-cancer drugs or anticancer
candidate substances on malignant cells in vitro and in vivo. Mini
Rev Med Chem. 14:222–228. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Minami J, Suzuki R, Mazitschek R, Gorgun
G, Ghosh B, Cirstea D, Hu Y, Mimura N, Ohguchi H, Cottini F, et al:
Histone deacetylase 3 as a novel therapeutic target in multiple
myeloma. Leukemia. 28:680–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Richon VM: Targeting histone deacetylases:
Development of vorinostat for the treatment of cancer. Epigenomics.
2:457–465. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li X, Zhang J, Xie Y, Jiang Y, Yingjie Z
and Xu W: Progress of HDAC inhibitor panobinostat in the treatment
of cancer. Curr Drug Targets. 15:622–634. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang X, Xu J, Wang H, Wu L, Yuan W, Du J
and Cai S: Trichostatin A, a histone deacetylase inhibitor,
reverses epithelial-mesenchymal transition in colorectal cancer
SW480 and prostate cancer PC3 cells. Biochem Biophys Res Commun.
456:320–326. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ganai SA: Strategy for enhancing the
therapeutic efficacy of histone deacetylase inhibitor dacinostat:
The novel paradigm to tackle monotonous cancer chemoresistance.
Arch Pharm Res. 2015.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xing LF, Wang DT, Yang Y and Pan SY:
Effect of HDAC-6 on PD cell induced by lactacystin. Asian Pac J
Trop Med. 8:855–859. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kirschbaum MH, Foon KA, Frankel P, Ruel C,
Pulone B, Tuscano JM and Newman EM: A phase 2 study of belinostat
(PXD101) in patients with relapsed or refractory acute myeloid
leukemia or patients over the age of 60 with newly diagnosed acute
myeloid leukemia: A California Cancer Consortium study. Leuk
Lymphoma. 55:2301–2304. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bertino EM and Otterson GA: Romidepsin: A
novel histone deacetylase inhibitor for cancer. Expert Opin
Investig Drugs. 20:1151–1158. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ruiz R, Raez LE and Rolfo C: Entinostat
(SNDX-275) for the treatment of non-small cell lung cancer. Expert
Opin Investig Drugs. 24:1101–1109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Duenas-Gonzalez A, Candelaria M,
Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E and
Herrera LA: Valproic acid as epigenetic cancer drug: Preclinical,
clinical and transcriptional effects on solid tumors. Cancer Treat
Rev. 34:206–222. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tsunedomi R, Iizuka N, Harada S and Oka M:
Susceptibility of hepatoma-derived cells to histone deacetylase
inhibitors is associated with ID2 expression. Int J Oncol.
42:1159–1166. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Nielsen TK, Hildmann C, Riester D, Wegener
D, Schwienhorst A and Ficner R: Complex structure of a bacterial
class 2 histone deacetylase homologue with a trifluoromethylketone
inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun.
63:270–273. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tao YF, Lin F, Yan XY, Gao XG, Teng F, Fu
ZR and Wang ZX: Galectin-9 in combination with EX-527 prolongs the
survival of cardiac allografts in mice after cardiac
transplantation. Transplant Proc. 47:2003–2009. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mahajan SS, Scian M, Sripathy S, Posakony
J, Lao U, Loe TK, Leko V, Thalhofer A, Schuler AD, Bedalov A and
Simon JA: Development of pyrazolone and isoxazol-5-one cambinol
analogues as sirtuin inhibitors. J Med Chem. 57:3283–3294. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yang L, Liang Q, Shen K, Ma L, An N, Deng
W, Fei Z and Liu J: A novel class I histone deacetylase inhibitor,
I-7ab, induces apoptosis and arrests cell cycle progression in
human colorectal cancer cells. Biomed Pharmacother. 71:70–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Eigl BJ, North S, Winquist E, Finch D,
Wood L, Sridhar SS, Powers J, Good J, Sharma M, Squire JA, et al: A
phase II study of the HDAC inhibitor SB939 in patients with
castration resistant prostate cancer: NCIC clinical trials group
study IND195. Invest New Drugs. 33:969–976. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cui J, Sun W, Hao X, Wei M, Su X, Zhang Y,
Su L and Liu X: EHMT2 inhibitor BIX-01294 induces apoptosis through
PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell
Int. 15:42015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Fu L, Yan FX, An XR and Hou J: Effects of
the histone methyltransferase inhibitor UNC0638 on histone H3K9
dimethylation of cultured ovine somatic cells and development of
resulting early cloned embryos. Reprod Domest Anim. 49:e21–e25.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tiffen JC, Gunatilake D, Gallagher SJ,
Gowrishankar K, Heinemann A, Cullinane C, Dutton-Regester K, Pupo
GM, Strbenac D, Yang JY, et al: Targeting activating mutations of
EZH2 leads to potent cell growth inhibition in human melanoma by
derepression of tumor suppressor genes. Oncotarget. 6:27023–27036.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Horiuchi KY, Eason MM, Ferry JJ, Planck
JL, Walsh CP, Smith RF, Howitz KT and Ma H: Assay development for
histone methyltransferases. Assay Drug Dev Technol. 11:227–236.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Maes T, Mascaró C, Ortega A, Lunardi S,
Ciceri F, Somervaille TC and Buesa C: KDM1 histone lysine
demethylases as targets for treatments of oncological and
neurodegenerative disease. Epigenomics. 7:609–626. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qian S, Wang Y, Ma H and Zhang L:
Expansion and functional divergence of Jumonji C-containing histone
demethylases: Significance of duplications in ancestral angiosperms
and vertebrates. Plant Physiol. 168:1321–1337. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Verrotti A, Carelli A, di Genova L and
Striano P: Epilepsy and chromosome 18 abnormalities: A review.
Seizure. 32:78–83. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cinatl J Jr, Cinatl J, Scholz M, Driever
PH, Henrich D, Kabickova H, Vogel JU, Doerr HW and Kornhuber B:
Antitumor activity of sodium valproate in cultures of human
neuroblastoma cells. Anticancer Drugs. 7:766–773. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Woodworth AM and Holloway AF: The role of
epigenetic regulation in transcriptional memory in the immune
system. Adv Protein Chem Struct Biol. 106:43–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Iwahashi S, Utsunomiya T, Imura S, Morine
Y, Ikemoto T, Arakawa Y, Saito Y, Ishikawa D and Shimada M: Effects
of valproic acid in combination with S-1 on advanced
pancreatobiliary tract cancers: Clinical study phases I/II.
Anticancer Res. 34:5187–5191. 2014.PubMed/NCBI
|
|
69
|
Sugimoto K, Shimada M, Utsunomiya T,
Morine Y, Imura S, Ikemoto T and Iwahashi S: Valproic acid enhances
the anti-tumor effect of pegylated interferon-α towards pancreatic
cancer cell lines. Anticancer Res. 34:3403–3409. 2014.PubMed/NCBI
|
|
70
|
Bastos LF and Coelho MM: Drug
repositioning: Playing dirty to kill pain. CNS Drugs. 28:45–61.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Archin NM, Liberty AL, Kashuba AD,
Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney
MF, Strain MC, et al: Administration of vorinostat disrupts HIV-1
latency in patients on antiretroviral therapy. Nature. 487:482–485.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Di Costanzo A, Del Gaudio N, Migliaccio A
and Altucci L: Epigenetic drugs against cancer: An evolving
landscape. Arch Toxicol. 88:1651–1668. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mummaneni P and Shord SS: Epigenetics and
oncology. Pharmacotherapy. 34:495–505. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Glaser KB: HDAC inhibitors: Clinical
update and mechanism-based potential. Biochem Pharmacol.
74:659–671. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li X, Mei Q, Nie J, Fu X and Han W:
Decitabine: A promising epi-immunotherapeutic agent in solid
tumors. Expert Rev Clin Immunol. 11:363–375. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Garrido-Laguna I, McGregor KA, Wade M,
Weis J, Gilcrease W, Burr L, Soldi R, Jakubowski L, Davidson C,
Morrell G, et al: A phase I/II study of decitabine in combination
with panitumumab in patients with wild-type (wt) KRAS metastatic
colorectal cancer. Invest New Drugs. 31:1257–1264. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhou C, Ji J, Shi M, Yang L, Yu Y, Liu B,
Zhu Z and Zhang J: Suberoylanilide hydroxamic acid enhances the
antitumor activity of oxaliplatin by reversing the
oxaliplatin–induced Src activation in gastric cancer cells. Mol Med
Rep. 10:2729–2735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Karthik S, Sankar R, Varunkumar K and
Ravikumar V: Romidepsin induces cell cycle arrest, apoptosis,
histone hyperacetylation and reduces matrix metalloproteinases 2
and 9 expression in bortezomib sensitized non-small cell lung
cancer cells. Biomed Pharmacother. 68:327–334. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn
S, Stütz AM, Wang X, Gallo M, Garzia L, Zayne K, et al: Epigenomic
alterations define lethal CIMP-positive ependymomas of infancy.
Nature. 506:445–450. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tabatabaeifar S, Kruse TA, Thomassen M,
Larsen MJ and Sørensen JA: Use of next generation sequencing in
head and neck squamous cell carcinomas: A review. Oral Oncol.
50:1035–1040. 2014. View Article : Google Scholar : PubMed/NCBI
|