|
1
|
Linger RM, Keating AK, Earp HS and Graham
DK: TAM receptor tyrosine kinases: Biologic functions, signaling,
and potential therapeutic targeting in human cancer. Adv Cancer
Res. 100:35–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lemmon MA and Schlessinger J: Cell
signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Graham DK, DeRyckere D, Davies KD and Earp
HS: The TAM family: Phosphatidylserine sensing receptor tyrosine
kinases gone awry in cancer. Nat Rev Cancer. 14:769–785. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rothlin CV, Carrera-Silva EA, Bosurgi L
and Ghosh S: TAM receptor signaling in immune homeostasis. Annu Rev
Immunol. 33:355–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lemke G and Rothlin CV: Immunobiology of
the TAM receptors. Nat Rev Immunol. 8:327–336. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stitt TN, Conn G, Gore M, Lai C, Bruno J,
Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF, et al: The
anticoagulation factor protein S and its relative, Gas6, are
ligands for the Tyro 3/Axl family of receptor tyrosine kinases.
Cell. 80:661–670. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Varnum BC, Young C, Elliott G, Garcia A,
Bartley TD, Fridell YW, Hunt RW, Trail G, Clogston C, Toso RJ, et
al: Axl receptor tyrosine kinase stimulated by the vitamin
K-dependent protein encoded by growth-arrest-specific gene 6.
Nature. 373:623–626. 1995. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Manfioletti G, Brancolini C, Avanzi G and
Schneider C: The protein encoded by a growth arrest-specific gene
(gas6) is a new member of the vitamin K-dependent proteins related
to protein S, a negative coregulator in the blood coagulation
cascade. Mol Cell Biol. 13:4976–4985. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Caberoy NB, Alvarado G, Bigcas JL and Li
W: Galectin-3 is a new MerTK-specific eat-me signal. J Cell
Physiol. 227:401–407. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Caberoy NB, Zhou Y and Li W: Tubby and
tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO
J. 29:3898–3910. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Verma A, Warner SL, Vankayalapati H,
Bearss DJ and Sharma S: Targeting Axl and Mer kinases in cancer.
Mol Cancer Ther. 10:1763–1773. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu E, Hjelle B and Bishop JM:
Transforming genes in chronic myelogenous leukemia. Proc Natl Acad
Sci USA. 85:pp. 1952–1956. 1988; View Article : Google Scholar : PubMed/NCBI
|
|
13
|
O'Bryan JP, Frye RA, Cogswell PC, Neubauer
A, Kitch B, Prokop C, Espinosa R III, Le Beau MM, Earp HS and Liu
ET: axl, a transforming gene isolated from primary human myeloid
leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell
Biol. 11:5016–5031. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Janssen JW, Schulz AS, Steenvoorden AC,
Schmidberger M, Strehl S, Ambros PF and Bartram CR: A novel
putative tyrosine kinase receptor with oncogenic potential.
Oncogene. 6:2113–2120. 1991.PubMed/NCBI
|
|
15
|
O'Bryan JP, Fridell YW, Koski R, Varnum B
and Liu ET: The transforming receptor tyrosine kinase, Axl, is
post-translationally regulated by proteolytic cleavage. J Biol
Chem. 270:551–557. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Reichl P, Fang M, Starlinger P, Staufer K,
Nenutil R, Muller P, Greplova K, Valik D, Dooley S, Brostjan C, et
al: Multicenter analysis of soluble Axl reveals diagnostic value
for very early stage hepatocellular carcinoma. Int J Cancer.
137:385–394. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hafizi S and Dahlbäck B: Signalling and
functional diversity within the Axl subfamily of receptor tyrosine
kinases. Cytokine Growth Factor Rev. 17:295–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chung BI, Malkowicz SB, Nguyen TB,
Libertino JA and McGarvey TW: Expression of the proto-oncogene Axl
in renal cell carcinoma. DNA Cell Biol. 22:533–540. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Prieto AL, Weber JL and Lai C: Expression
of the receptor protein-tyrosine kinases Tyro-3, Axl, and mer in
the developing rat central nervous system. J Comp Neurol.
425:295–314. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lafdil F, Chobert MN, Couchie D, Brouillet
A, Zafrani ES, Mavier P and Laperche Y: Induction of Gas6 protein
in CCl4-induced rat liver injury and anti-apoptotic effect on
hepatic stellate cells. Hepatology. 44:228–239. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Melaragno MG, Fridell YW and Berk BC: The
Gas6/Axl system: A novel regulator of vascular cell function.
Trends Cardiovasc Med. 9:250–253. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ruan GX and Kazlauskas A: Axl is essential
for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31:1692–1703.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Neubauer A, Fiebeler A, Graham DK, O'Bryan
JP, Schmidt CA, Barckow P, Serke S, Siegert W, Snodgrass HR, Huhn
D, et al: Expression of axl, a transforming receptor tyrosine
kinase, in normal and malignant hematopoiesis. Blood. 84:1931–1941.
1994.PubMed/NCBI
|
|
24
|
Angelillo-Scherrer A, de Frutos P,
Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M,
Hoylaerts M, Herbert J, et al: Deficiency or inhibition of Gas6
causes platelet dysfunction and protects mice against thrombosis.
Nat Med. 7:215–221. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nagata K, Ohashi K, Nakano T, Arita H,
Zong C, Hanafusa H and Mizuno K: Identification of the product of
growth arrest-specific gene 6 as a common ligand for Axl, Sky, and
Mer receptor tyrosine kinases. J Biol Chem. 271:30022–30027. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schneider C, King RM and Philipson L:
Genes specifically expressed at growth arrest of mammalian cells.
Cell. 54:787–793. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Laurance S, Lemarié CA and Blostein MD:
Growth Arrest-specific gene 6 (gas6) and vascular hemostasis. Adv
Nutr. 3:196–203. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hafizi S and Dahlbäck B: Gas6 and protein
S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase
subfamily. FEBS J. 273:5231–5244. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sasaki T, Knyazev PG, Clout NJ, Cheburkin
Y, Göhring W, Ullrich A, Timpl R and Hohenester E: Structural basis
for Gas6-Axl signalling. EMBO J. 25:80–87. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tsou WI, Nguyen KQ, Calarese DA, Garforth
SJ, Antes AL, Smirnov SV, Almo SC, Birge RB and Kotenko SV:
Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate
distinct patterns and complex regulation of ligand-induced
activation. J Biol Chem. 289:25750–25763. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lew ED, Oh J, Burrola PG, Lax I, Zagórska
A, Través PG, Schlessinger J and Lemke G: Differential TAM
receptor-ligand-phospholipid interactions delimit differential TAM
bioactivities. Elife. 3:2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Meyer AS, Miller MA, Gertler FB and
Lauffenburger DA: The receptor AXL diversifies EGFR signaling and
limits the response to EGFR-targeted inhibitors in triple-negative
breast cancer cells. Sci Signal. 6:ra662013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brand TM, Iida M, Stein AP, Corrigan KL,
Braverman CM, Luthar N, Toulany M, Gill PS, Salgia R, Kimple RJ and
Wheeler DL: AXL mediates resistance to cetuximab therapy. Cancer
Res. 74:5152–5164. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Elkabets M, Pazarentzos E, Juric D, Sheng
Q, Pelossof RA, Brook S, Benzaken AO, Rodon J, Morse N, Yan JJ, et
al: AXL mediates resistance to PI3Kα inhibition by activating the
EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell
carcinomas. Cancer Cell. 27:533–546. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fridell YW, Jin Y, Quilliam LA, Burchert
A, McCloskey P, Spizz G, Varnum B, Der C and Liu ET: Differential
activation of the Ras/extracellular-signal-regulated protein kinase
pathway is responsible for the biological consequences induced by
the Axl receptor tyrosine kinase. Mol Cell Biol. 16:135–145. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Braunger J, Schleithoff L, Schulz AS,
Kessler H, Lammers R, Ullrich A, Bartram CR and Janssen JW:
Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is
mediated mainly by a multi-substrate docking-site. Oncogene.
14:2619–2631. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Abu-Thuraia A, Gauthier R, Chidiac R,
Fukui Y, Screaton RA, Gratton JP and Côté JF: Axl phosphorylates
elmo scaffold proteins to promote Rac activation and cell invasion.
Mol Cell Biol. 35:76–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Linger RM, Keating AK, Earp HS and Graham
DK: Taking aim at Mer and Axl receptor tyrosine kinases as novel
therapeutic targets in solid tumors. Expert Opin Ther Targets.
14:1073–1090. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yanagita M, Arai H, Nakano T, Ohashi K,
Mizuno K, Fukatsu A, Doi T and Kita T: Gas6 induces mesangial cell
proliferation via latent transcription factor STAT3. J Biol Chem.
276:42364–42369. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Brandão L, Migdall-Wilson J, Eisenman K
and Graham DK: TAM receptors in leukemia: Expression, signaling,
and therapeutic implications. Crit Rev Oncog. 16:47–63. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Linger RM, Cohen RA, Cummings CT, Sather
S, Migdall-Wilson J, Middleton DH, Lu X, Barón AE, Franklin WA,
Merrick DT, et al: Mer or Axl receptor tyrosine kinase inhibition
promotes apoptosis, blocks growth and enhances chemosensitivity of
human non-small cell lung cancer. Oncogene. 32:3420–3431. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Iida S, Miki Y, Suzuki T, Mori K, Saito M,
Niikawa H, Kondo T, Yamada-Okabe H and Sasano H: Activation of AXL
and antitumor effects of a monoclonal antibody to AXL in lung
adenocarcinoma. Anticancer Res. 34:1821–1827. 2014.PubMed/NCBI
|
|
43
|
Fujimori T, Grabiec AM, Kaur M, Bell TJ,
Fujino N, Cook PC, Svedberg FR, MacDonald AS, Maciewicz RA, Singh D
and Hussell T: The Axl receptor tyrosine kinase is a discriminator
of macrophage function in the inflamed lung. Mucosal Immunol.
8:1021–1030. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Schmid ET, Pang IK, Carrera Silva EA,
Bosurgi L, Miner JJ, Diamond MS, Iwasaki A and Rothlin CV: AXL
receptor tyrosine kinase is required for T cell priming and
antiviral immunity. Elife. 5:pii: e124142016. View Article : Google Scholar
|
|
45
|
Healy AM, Schwartz JJ, Zhu X, Herrick BE,
Varnum B and Farber HW: Gas 6 promotes Axl-mediated survival in
pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol.
280:L1273–L1281. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Y, Xia H, Zhuang Z, Miao L, Chen X
and Cai H: Axl-altered microRNAs regulate tumorigenicity and
gefitinib resistance in lung cancer. Cell Death Dis. 5:e12272014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu F, Li J, Jang C, Wang J and Xiong J:
The role of Axl in drug resistance and epithelial-to-mesenchymal
transition of non-small cell lung carcinoma. Int J Clin Exp Pathol.
7:6653–6661. 2014.PubMed/NCBI
|
|
48
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wilson C, Ye X, Pham T, Lin E, Chan S,
McNamara E, Neve RM, Belmont L, Koeppen H, Yauch RL, et al: AXL
inhibition sensitizes mesenchymal cancer cells to antimitotic
drugs. Cancer Res. 74:5878–5890. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Byers LA, Diao L, Wang J, Saintigny P,
Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, et al: An
epithelial-mesenchymal transition gene signature predicts
resistance to EGFR and PI3K inhibitors and identifies Axl as a
therapeutic target for overcoming EGFR inhibitor resistance. Clin
Cancer Res. 19:279–290. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ishikawa M, Sonobe M, Nakayama E,
Kobayashi M, Kikuchi R, Kitamura J, Imamura N and Date H: Higher
expression of receptor tyrosine kinase Axl, and differential
expression of its ligand, Gas6, predict poor survival in lung
adenocarcinoma patients. Ann Surg Oncol. 20 Suppl 3:S467–S476.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shieh YS, Lai CY, Kao YR, Shiah SG, Chu
YW, Lee HS and Wu CW: Expression of axl in lung adenocarcinoma and
correlation with tumor progression. Neoplasia. 7:1058–1064. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wu Z, Bai F, Fan L, Pang W, Han R, Wang J,
Liu Y, Yan X, Duan H and Xing L: Coexpression of receptor tyrosine
kinase AXL and EGFR in human primary lung adenocarcinomas. Hum
Pathol. 46:1935–1944. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kurokawa M, Ise N, Omi K, Goishi K and
Higashiyama S: Cisplatin influences acquisition of resistance to
molecular-targeted agents through epithelial-mesenchymal
transition-like changes. Cancer Sci. 104:904–911. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lay JD, Hong CC, Huang JS, Yang YY, Pao
CY, Liu CH, Lai YP, Lai GM, Cheng AL, Su IJ and Chuang SE:
Sulfasalazine suppresses drug resistance and invasiveness of lung
adenocarcinoma cells expressing AXL. Cancer Res. 67:3878–3887.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Huang JS, Cho CY, Hong CC, Yan MD, Hsieh
MC, Lay JD, Lai GM, Cheng AL and Chuang SE: Oxidative stress
enhances AXL-mediated cell migration through AKT1/Rac1-dependent
mechanism. Free Radic Biol Med. 65:1246–1256. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tai KY, Shieh YS, Lee CS, Shiah SG and Wu
CW: Axl promotes cell invasion by inducing MMP-9 activity through
activation of NF-kappaB and Brg-1. Oncogene. 27:4044–4055. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Reichl P, Dengler M, van Zijl F, Huber H,
Führlinger G, Reichel C, Sieghart W, Peck-Radosavljevic M,
Grubinger M and Mikulits W: Axl activates autocrine transforming
growth factor-β signaling in hepatocellular carcinoma. Hepatology.
61:930–941. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chiu KC, Lee CH, Liu SY, Yeh CT, Huang RY,
Yuh DY, Cheng JC, Chou YT and Shieh YS: Protumoral effect of
macrophage through Axl activation on mucoepidermoid carcinoma. J
Oral Pathol Med. 43:538–544. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Han J, Tian R, Yong B, Luo C, Tan P, Shen
J and Peng T: Gas6/Axl mediates tumor cell apoptosis, migration and
invasion and predicts the clinical outcome of osteosarcoma
patients. Biochem Biophys Res Commun. 435:493–500. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Asiedu MK, Beauchamp-Perez FD, Ingle JN,
Behrens MD, Radisky DC and Knutson KL: AXL induces
epithelial-to-mesenchymal transition and regulates the function of
breast cancer stem cells. Oncogene. 33:1316–1324. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cheng P, Phillips E, Kim SH, Taylor D,
Hielscher T, Puccio L, Hjelmeland AB, Lichter P, Nakano I and
Goidts V: Kinome-wide shRNA screen identifies the receptor tyrosine
kinase AXL as a key regulator for mesenchymal glioblastoma
stem-like cells. Stem Cell Reports. 4:899–913. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Allen MP, Linseman DA, Udo H, Xu M,
Schaack JB, Varnum B, Kandel ER, Heidenreich KA and Wierman ME:
Novel mechanism for gonadotropin-releasing hormone neuronal
migration involving Gas6/Ark signaling to p38 mitogen-activated
protein kinase. Mol Cell Biol. 22:599–613. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mahadevan D, Cooke L, Riley C, Swart R,
Simons B, Della Croce K, Wisner L, Iorio M, Shakalya K, Garewal H,
et al: A novel tyrosine kinase switch is a mechanism of imatinib
resistance in gastrointestinal stromal tumors. Oncogene.
26:3909–3919. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Giles KM, Kalinowski FC, Candy PA, Epis
MR, Zhang PM, Redfern AD, Stuart LM, Goodall GJ and Leedman PJ: Axl
mediates acquired resistance of head and neck cancer cells to the
epidermal growth factor receptor inhibitor erlotinib. Mol Cancer
Ther. 12:2541–2558. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu L, Greger J, Shi H, Liu Y, Greshock J,
Annan R, Halsey W, Sathe GM, Martin AM and Gilmer TM: Novel
mechanism of lapatinib resistance in HER2-positive breast tumor
cells: Activation of AXL. Cancer Res. 69:6871–6878. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Paccez JD, Vogelsang M, Parker MI and
Zerbini LF: The receptor tyrosine kinase Axl in cancer: Biological
functions and therapeutic implications. Int J Cancer.
134:1024–1033. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Z, Lee JC, Lin L, Olivas V, Au V,
LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, et al:
Activation of the AXL kinase causes resistance to EGFR-targeted
therapy in lung cancer. Nat Genet. 44:852–860. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ji W, Choi CM, Rho JK, Jang SJ, Park YS,
Chun SM, Kim WS, Lee JS, Kim SW, Lee DH and Lee JC: Mechanisms of
acquired resistance to EGFR-tyrosine kinase inhibitor in Korean
patients with lung cancer. BMC Cancer. 13:6062013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zheng X, Carstens JL, Kim J, Scheible M,
Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R:
Epithelial-to-mesenchymal transition is dispensable for metastasis
but induces chemoresistance in pancreatic cancer. Nature.
527:525–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fischer KR, Durrans A, Lee S, Sheng J, Li
F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al:
Epithelial-to-mesenchymal transition is not required for lung
metastasis but contributes to chemoresistance. Nature. 527:472–476.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lee WP, Wen Y, Varnum B and Hung MC: Akt
is required for Axl-Gas6 signaling to protect cells from
E1A-mediated apoptosis. Oncogene. 21:329–336. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Papadakis ES, Cichoń MA, Vyas JJ, Patel N,
Ghali L, Cerio R, Storey A and O'Toole EA: Axl promotes cutaneous
squamous cell carcinoma survival through negative regulation of
pro-apoptotic Bcl-2 family members. J Invest Dermatol. 131:509–517.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hong CC, Lay JD, Huang JS, Cheng AL, Tang
JL, Lin MT, Lai GM and Chuang SE: Receptor tyrosine kinase AXL is
induced by chemotherapy drugs and overexpression of AXL confers
drug resistance in acute myeloid leukemia. Cancer Lett.
268:314–324. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Meric-Bernstam F and Gonzalez-Angulo AM:
Targeting the mTOR signaling network for cancer therapy. J Clin
Oncol. 27:2278–2287. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Suda K, Mizuuchi H, Sato K, Takemoto T,
Iwasaki T and Mitsudomi T: The insulin-like growth factor 1
receptor causes acquired resistance to erlotinib in lung cancer
cells with the wild-type epidermal growth factor receptor. Int J
Cancer. 135:1002–1006. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Myers SH, Brunton VG and Unciti-Broceta A:
AXL inhibitors in cancer: A medicinal chemistry perspective. J Med
Chem. 59:3593–3608. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Feneyrolles C, Spenlinhauer A, Guiet L,
Fauvel B, Daydé-Cazals B, Warnault P, Chevé G and Yasri A: Axl
kinase as a key target for oncology: Focus on small molecule
inhibitors. Mol Cancer Ther. 13:2141–2148. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Levin PA, Brekken RA, Byers LA, Heymach JV
and Gerber DE: Axl receptor axis: A new therapeutic target in lung
cancer. J Thorac Oncol. 11:1357–1362. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu X, Liu X, Koul S, Lee CY, Zhang Z and
Halmos B: AXL kinase as a novel target for cancer therapy.
Oncotarget. 5:9546–9563. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Holland SJ, Pan A, Franci C, Hu Y, Chang
B, Li W, Duan M, Torneros A, Yu J, Heckrodt TJ, et al: R428, a
selective small molecule inhibitor of Axl kinase, blocks tumor
spread and prolongs survival in models of metastatic breast cancer.
Cancer Res. 70:1544–1554. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sheridan C: First Axl inhibitor enters
clinical trials. Nat Biotechnol. 31:775–776. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nimmagadda S, Pullambhatla M, Lisok A, Hu
C, Maitra A and Pomper MG: Imaging Axl expression in pancreatic and
prostate cancer xenografts. Biochem Biophys Res Commun.
443:635–640. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Qu XH, Liu JL, Zhong XW, Li XI and Zhang
QG: Insights into the roles of hnRNP A2/B1 and AXL in non-small
cell lung cancer. Oncol Lett. 10:1677–1685. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Choi YJ, Kim SY, So KS, Baek IJ, Kim WS,
Choi SH, Lee JC, Bivona TG, Rho JK and Choi CM: AUY922 effectively
overcomes MET- and AXL-mediated resistance to EGFR-TKI in lung
cancer cells. PLoS One. 10:e01198322015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bae SY, Hong JY, Lee HJ, Park HJ and Lee
SK: Targeting the degradation of AXL receptor tyrosine kinase to
overcome resistance in gefitinib-resistant non-small cell lung
cancer. Oncotarget. 6:10146–10160. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yoshida T, Zhang G, Smith MA, Lopez AS,
Bai Y, Li J, Fang B, Koomen J, Rawal B, Fisher KJ, et al: Tyrosine
phosphoproteomics identifies both codrivers and cotargeting
strategies for T790M-related EGFR-TKI resistance in non-small cell
lung cancer. Clin Cancer Res. 20:4059–4074. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kim HR, Kim WS, Choi YJ, Choi CM, Rho JK
and Lee JC: Epithelial-mesenchymal transition leads to crizotinib
resistance in H2228 lung cancer cells with EML4-ALK translocation.
Mol Oncol. 7:1093–1102. 2013. View Article : Google Scholar : PubMed/NCBI
|