|
1
|
Tallman MS and Altman JK: How I treat
acute promyelocytic leukemia. Blood. 114:5126–5135. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bennett JM, Catovsky D, Daniel MT,
Flandrin G, Galton DA, Gralnick HR and Sultan C: A variant form of
hypergranular promyelocytic leukaemia (M3). Br J Haematol.
44:169–170. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cooperberg AA and Neiman GM:
Fibrinogenopenia and fibrinolysis in acute myelogenous leukemia.
Ann Intern Med. 42:706–711. 1955. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Van Creveld S and Mochtar IA: Fibrinolysis
in acute leukemia. Maandschr Kindergeneeskd. 27:133–44. 1959.(In
Dutch). PubMed/NCBI
|
|
5
|
Ghitis J: Acute promyelocytic leukemia?
Blood. 21:237–240. 1963.PubMed/NCBI
|
|
6
|
Larson RA, Kondo K, Vardiman JW, Butler
AE, Golomb HM and Rowley JD: Evidence for a 15;17 translocation in
every patient with acute promyelocytic leukemia. Am J Med.
76:827–841. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tallman MS, Andersen JW, Schiffer CA,
Appelbaum FR, Feusner JH, Woods WG, Ogden A, Weinstein H, Shepherd
L, Willman C, et al: All-trans retinoic acid in acute promyelocytic
leukemia: Long-term outcome and prognostic factor analysis from the
North American Intergroup protocol. Blood. 100:4298–4302. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Park JH, Qiao B, Panageas KS, Schymura MJ,
Jurcic JG, Rosenblat TL, Altman JK, Douer D, Rowe JM and Tallman
MS: Early death rate in acute promyelocytic leukemia remains high
despite all-trans retinoic acid. Blood. 118:1248–1254. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Watts JM and Tallman MS: Acute
promyelocytic leukemia: What is the new standard of care? Blood
Rev. 28:205–212. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Iland HJ, Bradstock K, Supple SG, Catalano
A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A,
et al: All-trans-retinoic acid, idarubicin, and IV arsenic trioxide
as initial therapy in acute promyelocytic leukemia (APML4). Blood.
120:1570–1580. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Matthews W, Jordan CT, Wiegand GW, Pardoll
D and Lemischka IR: A receptor tyrosine kinase specific to
hematopoietic stem and progenitor cell-enriched populations. Cell.
65:1143–1152. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Meshinchi S, Alonzo TA, Stirewalt DL,
Zwaan M, Zimmerman M, Reinhardt D, Kaspers GJ, Heerema NA, Gerbing
R, Lange BJ and Radich JP: Clinical implications of FLT3 mutations
in pediatric AML. Blood. 108:3654–3661. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Thiede C, Steudel C, Mohr B, Schaich M,
Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M,
Neubauer A, et al: Analysis of FLT3-activating mutations in 979
patients with acute myelogenous leukemia: Association with FAB
subtypes and identification of subgroups with poor prognosis.
Blood. 99:4326–4335. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kottaridis PD, Gale RE, Frew ME, Harrison
G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett
AK, et al: The presence of a FLT3 internal tandem duplication in
patients with acute myeloid leukemia (AML) adds important
prognostic information to cytogenetic risk group and response to
the first cycle of chemotherapy: Analysis of 854 patients from the
United Kingdom Medical Research Council AML 10 and 12 trials.
Blood. 98:1752–1759. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shih LY, Kuo MC, Liang DC, Huang CF, Lin
TL, Wu JH, Wang PN, Dunn P and Lai CL: Internal tandem duplication
and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene
in acute promyelocytic leukemia. Cancer. 98:1206–1216. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Stock W, Najib K, Moser BK, Powell BL,
Holowka N, Gulati K, Bloomfield CD, Larson RA and Sher D: High
incidence of FLT3 mutations in adults with acute promyelocytic
leukemia (APL): Correlation with diagnostic features and treatment
outcome (CALGB 9710). J Clin Oncol. 26 15 Suppl:S70022008.
View Article : Google Scholar
|
|
17
|
Souza Melo CP, Campos CB, Dutra ÁP, Neto
JC, Fenelon AJ, Neto AH, Carbone EK, Pianovski MA, Ferreira AC and
Assumpcão JG: Correlation between FLT3-ITD status and clinical,
cellular and molecular profiles in promyelocytic acute leukemias.
Leuk Res. 39:131–137. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Au WY, Fung A, Chim CS, Lie AK, Liang R,
Ma ES, Chan CH, Wong KF and Kwong YL: FLT-3, aberrations in acute
promyelocytic leukaemia: Clinicopathological associations and
prognostic impact. Br J Haematol. 125:463–469. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Callens C, Chevret S, Cayuela JM, Cassinat
B, Raffoux E, de Botton S, Thomas X, Guerci A, Fegueux N, Pigneux
A, et al: Prognostic implication of FLT3 and Ras gene mutations in
patients with acute promyelocytic leukemia (APL): A retrospective
study from the European APL Group. Leukemia. 19:1153–1160. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gale RE, Hills R, Pizzey AR, Kottaridis
PD, Swirsky D, Gilkes AF, Nugent E, Mills KI, Wheatley K, Solomon
E, et al: Relationship between FLT3 mutation status, biologic
characteristics, and response to targeted therapy in acute
promyelocytic leukemia. Blood. 106:3768–3776. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chillón MC, Santamaría C, García-Sanz R,
Balanzategui A, Sarasquete ME, Alcoceba M, Marín L, Caballero MD,
Vidriales MB, Ramos F, et al: Long FLT3 internal tandem
duplications and reduced PML-RARα expression at diagnosis
characterize a high-risk subgroup of acute promyelocytic leukemia
patients. Haematologica. 95:745–751. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kiyoi H, Naoe T, Yokota S, Nakao M, Minami
S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, et
al: Internal tandem duplication of FLT3 associated with
leukocytosis in acute promyelocytic leukemia. Leukemia study group
of the ministry of health and welfare (Kohseisho). Leukemia.
11:1447–1452. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Noguera NI, Breccia M, Divona M, Diverio
D, Costa V, De Santis S, Avvisati G, Pinazzi MB, Petti MC, Mandelli
F and Lo Coco F: Alterations of the FLT3 gene in acute
promyelocytic leukemia: Association with diagnostic characteristics
and analysis of clinical outcome in patients treated with the
Italian AIDA protocol. Leukemia. 16:2185–2189. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mathews V, Thomas M, Srivastava VM, George
B, Srivastava A and Chandy M: Impact of FLT3 mutations and
secondary cytogenetic changes on the outcome of patients with newly
diagnosed acute promyelocytic leukemia treated with a single agent
arsenic trioxide regimen. Haematologica. 92:994–995. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Schnittger S, Bacher U, Haferlach C, Kern
W, Alpermann T and Haferlach T: Clinical impact of FLT3 mutation
load in acute promyelocytic leukemia with t(15;17)/PML-RARA.
Haematologica. 96:1799–1807. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lucena-Araujo AR, Kim HT, Jacomo RH, Melo
RA, Bittencourt R, Pasquini R, Pagnano K, Fagundes EM, Chauffaille
Mde L, Chiattone CS, et al: Internal tandem duplication of the FLT3
gene confers poor overall survival in patients with acute
promyelocytic leukemia treated with all-trans retinoic acid and
anthracycline-based chemotherapy: An international consortium on
acute promyelocytic leukemia study. Ann Hematol. 93:2001–2010.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Poiré X, Moser BK, Gallagher RE, Laumann
K, Bloomfield CD, Powell BL, Koval G, Gulati K, Holowka N, Larson
RA, et al: Arsenic trioxide in front-line therapy of acute
promyelocytic leukemia (C9710): Prognostic significance of FLT3
mutations and complex karyotype. Leuk Lymphoma. 55:1523–1532. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Daver N, Kantarjian H, Marcucci G, Pierce
S, Brandt M, Dinardo C, Pemmaraju N, Garcia-Manero G, O'Brien S,
Ferrajoli A, et al: Clinical characteristics and outcomes in
patients with acute promyelocytic leukaemia and hyperleucocytosis.
Br J Haematol. 168:646–653. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kainz B, Heintel D, Marculescu R,
Schwarzinger I, Sperr W, Le T, Weltermann A, Fonatsch C, Haas OA,
Mannhalter C, et al: Variable prognostic value of FLT3 internal
tandem duplications in patients with de novo AML and a normal
karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 3:283–289.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Barragán E, Montesinos P, Camos M,
González M, Calasanz MJ, Román-Gómez J, Gómez-Casares MT, Ayala R,
López J, Fuster Ó, et al: Prognostic value of FLT3 mutations in
patients with acute promyelocytic leukemia treated with all-trans
retinoic acid and anthracycline monochemotherapy. Haematologica.
96:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Breccia M, Loglisci G, Loglisci MG, Ricci
R, Diverio D, Latagliata R, Foà R and Lo-Coco F: FLT3-ITD confers
poor prognosis in patients with acute promyelocytic leukemia
treated with AIDA protocols: Long-term follow-up analysis.
Haematologica. 98:e161–e163. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Beitinjaneh A, Jang S, Roukoz H and
Majhail NS: Prognostic significance of FLT3 internal tandem
duplication and tyrosine kinase domain mutations in acute
promyelocytic leukemia: A systematic review. Leuk Res. 34:831–836.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu
YM, Li JM, Tang W, Zhao WL, Wu W, et al: Long-term efficacy and
safety of all-trans retinoic acid/arsenic trioxide-based therapy in
newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci
USA. 106:pp. 3342–3347. 2009; View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shaft D, Shtalrid M, Berebi A, Catovsky D
and Resnitzky P: Ultrastructural characteristics and lysozyme
content in hypergranular and variant type of acute promyelocytic
leukaemia. Br J Haematol. 103:729–739. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mandelli F, Diverio D, Avvisati G, Luciano
A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Fioritoni
G, et al: Molecular remission in PML/RAR alpha-positive acute
promyelocytic leukemia by combined all-trans retinoic acid and
idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche
Maligne dell'Adulto and Associazione Italiana di Ematologia ed
Oncologia Pediatrica Cooperative Groups. Blood. 90:1014–1021.
1997.PubMed/NCBI
|
|
36
|
McKenna RW, Parkin J, Bloomfield CD,
Sundberg RD and Brunning RD: Acute promyelocytic leukaemia: A study
of 39 cases with identification of a hyperbasophilic microgranular
variant. Br J Haematol. 50:201–214. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tallman MS, Kim HT, Montesinos P,
Appelbaum FR, de la Serna J, Bennett JM, Deben G, Bloomfield CD,
Gonzalez J, Feusner JH, et al: Does microgranular variant
morphology of acute promyelocytic leukemia independently predict a
less favorable outcome compared with classical M3 APL? A joint
study of the North American Intergroup and the PETHEMA Group.
Blood. 116:5650–5659. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kutny MA, Moser BK, Laumann K, Feusner JH,
Gamis A, Gregory J, Larson RA, Powell BL, Stock W, Willman CL, et
al: FLT3 mutation status is a predictor of early death in pediatric
acute promyelocytic leukemia: A report from the Children's Oncology
Group. Pediatr Blood Cancer. 59:662–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Biondi A, Luciano A, Bassan R, Mininni D,
Specchia G, Lanzi E, Castagna S, Cantù-Rajnoldi A, Liso V, Masera
G, et al: CD2 expression in acute promyelocytic leukemia is
associated with microgranular morphology (FAB M3v) but not with any
PML gene breakpoint. Leukemia. 9:1461–1466. 1995.PubMed/NCBI
|
|
40
|
Foley R, Soamboonsrup P, Carter RF, Benger
A, Meyer R, Walker I, Wan Y, Patterson W, Orzel A, Sunisloe L, et
al: CD34-positive acute promyelocytic leukemia is associated with
leukocytosis, microgranular/hypogranular morphology, expression of
CD2 and bcr3 isoform. Am J Hematol. 67:34–41. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Paietta E, Goloubeva O, Neuberg D, Bennett
JM, Gallagher R, Racevskis J, Dewald G, Wiernik PH and Tallman MS;
Eastern Cooperative Oncology Group, : A surrogate marker profile
for PML/RAR alpha expressing acute promyelocytic leukemia and the
association of immunophenotypic markers with morphologic and
molecular subtypes. Cytometry B Clin Cytom. 59:1–9. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Maslak P, Miller WH Jr, Heller G,
Scheinberg DA, Dmitrovsky E and Warrell RP Jr: CD2 expression and
PML/RAR-alpha transcripts in acute promyelocytic leukemia. Blood.
81:16661993.PubMed/NCBI
|
|
43
|
Reading CL, Estey EH, Huh YO, Claxton DF,
Sanchez G, Terstappen LW, O'Brien MC, Baron S and Deisseroth AB:
Expression of unusual immunophenotype combinations in acute
myelogenous leukemia. Blood. 81:3083–3090. 1993.PubMed/NCBI
|
|
44
|
Claxton DF, Reading CL, Nagarajan L,
Tsujimoto Y, Andersson BS, Estey E, Cork A, Huh YO, Trujillo J and
Deisseroth AB: Correlation of CD2 expression with PML gene
breakpoints in patients with acute promyelocytic leukemia. Blood.
80:582–586. 1992.PubMed/NCBI
|
|
45
|
Albano F, Mestice A, Pannunzio A, Lanza F,
Martino B, Pastore D, Ferrara F, Carluccio P, Nobile F, Castoldi G,
et al: The biological characteristics of CD34+ CD2+ adult acute
promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and
microgranular (M3v) phenotypes. Haematologica. 91:311–316.
2006.PubMed/NCBI
|
|
46
|
Guglielmi C, Martelli MP, Diverio D, Fenu
S, Vegna ML, Cantù-Rajnoldi A, Biondi A, Cocito MG, Del Vecchio L,
Tabilio A, et al: Immunophenotype of adult and childhood acute
promyelocytic leukaemia: Correlation with morphology, type of PML
gene breakpoint and clinical outcome. A cooperative Italian study
on 196 cases. Br J Haematol. 102:1035–1041. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gallagher RE, Willman CL, Slack JL,
Andersen JW, Li YP, Viswanatha D, Bloomfield CD, Appelbaum FR,
Schiffer CA, Tallman MS and Wiernik PH: Association of PML-RAR
alpha fusion mRNA type with pretreatment hematologic
characteristics but not treatment outcome in acute promyelocytic
leukemia: An intergroup molecular study. Blood. 90:1656–1663.
1997.PubMed/NCBI
|
|
48
|
Davey FR, Davis RB, MacCallum JM, Nelson
DA, Mayer RJ, Ball ED, Griffin JD, Schiffer CA and Bloomfield CD:
Morphologic and cytochemical characteristics of acute promyelocytic
leukemia. Am J Hematol. 30:221–227. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bassan R, Battista R, Viero P, d'Emilio A,
Buelli M, Montaldi A, Rambaldi A, Tremul L, Dini E and Barbui T:
Short-term treatment for adult hypergranular and microgranular
acute promyelocytic leukemia. Leukemia. 9:238–243. 1995.PubMed/NCBI
|
|
50
|
Cunningham I, Gee TS, Reich LM, Kempin SJ,
Naval AN and Clarkson BD: Acute promyelocytic leukemia: Treatment
results during a decade at Memorial Hospital. Blood. 73:1116–1122.
1989.PubMed/NCBI
|
|
51
|
Kuchenbauer F, Schoch C, Kern W, Hiddemann
W, Haferlach T and Schnittger S: Impact of FLT3, mutations and
promyelocytic leukaemia-breakpoint on clinical characteristics and
prognosis in acute promyelocytic leukaemia. Br J Haematol.
130:196–202. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sohal J, Phan VT, Chan PV, Davis EM, Patel
B, Kelly LM, Abrams TJ, O'Farrell AM, Gilliland DG, Le Beau MM and
Kogan SC: A model of APL with FLT3 mutation is responsive to
retinoic acid and a receptor tyrosine kinase inhibitor, SU11657.
Blood. 101:3188–3197. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Haferlach T, Kohlmann A, Schnittger S,
Dugas M, Hiddemann W, Kern W and Schoch C: AML M3 and AML M3
variant each have a distinct gene expression signature but also
share patterns different from other genetically defined AML
subtypes. Genes Chromosomes Cancer. 43:113–127. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Marasca R, Maffei RP, Zucchini P, Castelli
I, Saviola A, Martinelli S, Ferrari A, Fontana M, Ravanetti S and
Torelli G: Gene expression profiling of acute promyelocytic
leukaemia identifies two subtypes mainly associated with flt3
mutational status. Leukemia. 20:103–114. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R,
Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C,
et al: Activating mutation of D835 within the activation loop of
FLT3 in human hematologic malignancies. Blood. 97:2434–2439. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Baer MR, Stewart CC, Lawrence D, Arthur
DC, Byrd JC, Davey FR, Schiffer CA and Bloomfield CD: Expression of
the neural cell adhesion molecule CD56 is associated with short
remission duration and survival in acute myeloid leukemia with
t(8;21)(q22;q22). Blood. 90:1643–1648. 1997.PubMed/NCBI
|
|
57
|
Montesinos P, Rayón C, Vellenga E, Brunet
S, González J, González M, Holowiecka A, Esteve J, Bergua J,
González JD, et al: Clinical significance of CD56 expression in
patients with acute promyelocytic leukemia treated with all-trans
retinoic acid and anthracycline-based regimens. Blood.
117:1799–1805. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ferrara F, Morabito F, Martino B, Specchia
G, Liso V, Nobile F, Boccuni P, Di Noto R, Pane F, Annunziata M, et
al: CD56 expression is an indicator of poor clinical outcome in
patients with acute promyelocytic leukemia treated with
simultaneous all-trans-retinoic acid and chemotherapy. J Clin
Oncol. 18:1295–1300. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ito S, Ishida Y, Oyake T, Satoh M, Aoki Y,
Kowata S, Uchiyama T, Enomoto S, Sugawara T, Numaoka H, et al:
Clinical and biological significance of CD56 antigen expression in
acute promyelocytic leukemia. Leuk Lymphoma. 45:1783–1789. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Murray CK, Estey E, Paietta E, Howard RS,
Edenfield WJ, Pierce S, Mann KP, Bolan C and Byrd JC: CD56
expression in acute promyelocytic leukemia: A possible indicator of
poor treatment outcome? J Clin Oncol. 17:293–297. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Breccia M, De Propris MS, Minotti C,
Stefanizzi C, Raponi S, Colafigli G, Latagliata R, Guarini A and
Foà R: Aberrant phenotypic expression of CD15 and CD56 identifies
poor prognostic acute promyelocytic leukemia patients. Leuk Res.
38:194–197. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hills RK, Castaigne S, Appelbaum FR,
Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S,
Ifrah N, et al: Addition of gemtuzumab ozogamicin to induction
chemotherapy in adult patients with acute myeloid leukaemia: A
meta-analysis of individual patient data from randomised controlled
trials. Lancet Oncol. 15:986–996. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Breccia M, De Propris MS, Stefanizzi C,
Raponi S, Molica M, Colafigli G, Minotti C, Latagliata R, Diverio
D, Guarini A and Foà R: Negative prognostic value of CD34 antigen
also if expressed on a small population of acute promyelocitic
leukemia cells. Ann Hematol. 93:1819–1823. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paietta E: Expression of cell-surface
antigens in acute promyelocytic leukaemia. Best Pract Res Clin
Haematol. 16:369–385. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu F, Yin CX, Wang CL, Jiang XJ, Jiang L,
Wang ZX, Yi ZS, Huang KK and Meng FY: Immunophenotypes and immune
markers associated with acute promyelocytic leukemia prognosis. Dis
Markers. 2014:4219062014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ahmad EI, Akl HK, Hashem ME and Elgohary
TA: The biological characteristics of adult CD34+ acute
promyelocytic leukemia. Med Oncol. 29:1119–1126. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Grimwade D, Outram SV, Flora R, Ings SJ,
Pizzey AR, Morilla R, Craddock CF, Linch DC and Solomon E: The
T-lineage-affiliated CD2 gene lies within an open chromatin
environment in acute promyelocytic leukemia cells. Cancer Res.
62:4730–4735. 2002.PubMed/NCBI
|
|
68
|
Sunter NJ, Scott K, Hills R, Grimwade D,
Taylor S, Worrillow LJ, Fordham SE, Forster VJ, Jackson G, Bomken
S, et al: A functional variant in the core promoter of the CD95
cell death receptor gene predicts prognosis in acute promyelocytic
leukemia. Blood. 119:196–205. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rowley JD, Golomb HM and Dougherty C:
15/17 translocation, a consistent chromosomal change in acute
promyelocytic leukaemia. Lancet. 1:549–550. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Grimwade D, Biondi A, Mozziconacci MJ, et
al: Characterisation of acute promyelocytic leukaemia (APL) cases
lacking the classical t(15;17). Results of the European working
party. 92:677A. 1998.
|
|
71
|
Schoch C, Haferlach T, Haase D, Fonatsch
C, Löffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A,
Büchner T, et al: Patients with de novo, acute myeloid leukaemia
and complex karyotype aberrations show a poor prognosis despite
intensive treatment: A study of 90 patients. Br J Haematol.
112:118–126. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Grimwade D, Howe K, Langabeer S, Davies L,
Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A
and Solomon E: Establishing the presence of the t(15;17) in
suspected acute promyelocytic leukaemia: Cytogenetic, molecular and
PML immunofluorescence assessment of patients entered into the
M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. ATRA
trial. Br J Haematol. 94:557–573. 1996.PubMed/NCBI
|
|
73
|
De Botton S, Chevret S, Sanz M, Dombret H,
Thomas X, Guerci A, Fey M, Rayon C, Huguet F, Sotto JJ, et al:
Additional chromosomal abnormalities in patients with acute
promyelocytic leukaemia (APL) do not confer poor prognosis: Results
of APL 93 trial. Br J Haematol. 111:801–806. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Slack JL, Arthur DC, Lawrence D, Mrózek K,
Mayer RJ, Davey FR, Tantravahi R, Pettenati MJ, Bigner S, Carroll
AJ, et al: Secondary cytogenetic changes in acute promyelocytic
leukemia-Prognostic importance in patients treated with
chemotherapy alone and association with the intron 3 breakpoint of
the PML gene: A cancer and leukemia group B study. J Clin Oncol.
15:1786–1795. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mi Y, Xue Y, Yu W, Liu S, Zhao Y, Meng Q,
Bian S and Wang J: Therapeutic experience of adult acute myeloid
leukemia in a single institution of China and its relationship with
chromosome karyotype. Leuk Lymphoma. 49:524–530. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pantic M, Novak A, Marisavljevic D,
Djordjevic V, Elezovic I, Vidovic A and Colovic M: Additional
chromosome aberrations in acute promyelocytic leukemia:
Characteristics and prognostic influence. Med Oncol. 17:307–313.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lo-Coco F, Avvisati G, Vignetti M, Thiede
C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona
E, et al: Retinoic acid and arsenic trioxide for acute
promyelocytic leukemia. N Engl J Med. 369:112–21. 2013. View Article : Google Scholar
|
|
78
|
Samir MD, Pedro H and Ling Z: Tetraploidy
acute promyelocytic leuemia with double t(15;17)/PML-RARA, a case
report with review of literature. Genes Chromosomes Cancer.
46:635–643. 2007.PubMed/NCBI
|
|
79
|
Neto WK, Serpa M, Sanabani SS, Bueno PT,
Velloso ED, Dorlhiac-Llacer PE and Bendit I: Early detection of
t(8;21) chromosomal translocations during treatment of PML-RARA
positive acute promyelocytic leukemia: A case study. Clin Med
Insights Oncol. 4:163–170. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Charrin C, Ritouet D, Campos L, Devaux Y,
Archimbaud E, Fraisse J, Fiere D and Germain D: Association of
t(15;17) and t(8;21) in the initial phase of an acute promyelocytic
leukemia. Cancer Genet Cytogenet. 58:177–180. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bonomi R, Giordano H, del Pilar Moreno M,
Bodega E, Landoni AI, Gallagher R and del Rosario Uriarte M:
Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at
onset and relapse with only t(8;21) in an acute promyelocytic
leukemia patient. Cancer Genet Cytogenet. 123:41–43. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Varella-Garcia M, Brizard F, Roche J,
Flandrin G, Drabkin H and Brizard A: Aml1/ETO and Pml/RARA
rearrangements in a case of AML-M2 acute myeloblastic leukemia with
t(15;17). Leuk Lymphoma. 33:403–406. 2009. View Article : Google Scholar
|
|
83
|
Xu L, Zhao WL, Xiong SM, Su XY, Zhao M,
Wang C, Gao YR, Niu C, Cao Q, Gu BW, et al: Molecular cytogenetic
characterization and clinical relevance of additional, complex
and/or variant chromosome abnormalities in acute promyelocytic
leukemia. Leukemia. 15:1359–1368. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Uz B, Eliaçık E, Işık A, Aksu S, Büyükaşık
Y, Haznedaroğlu IC, Göker H, Sayınalp N and Ozcebe Oİ:
Co-expression of t(15;17) and t(8;21) in a case of acute
Promyelocytic leukemia: Review of the literature. Turk J Haematol.
30:400–404. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hu X, Ai G, Meng X, Hou J, Wei R, Tao Y,
Zhang Q, Han Y and Shi J: An ider(17)(q10)t(15;17) with spliced
long-type PML-RARA fusion transcripts in a case of acute
promyelocytic leukemia. Cancer Genet. 207:253–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lee GY, Christina S, Tien SL, Ghafar AB,
Hwang W, Lim LC and Lim TH: Acute promyelocytic leukemia with
PML-RARA fusion on i(17q) and therapy-related acute myeloid
leukemia. Cancer Genet Cytogenet. 159:129–136. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Im SA, Kim SH, Lee MA, Ahn JY, Yoo ES,
Choi DY, Lee JY, Lee S, Huh JW, Chung WS, et al: Identification of
ider[17q] in addition to t[15;17] in acute promyelocytic leukemia
using whole chromosome painting probes made by interspecies hybrid
using inter-Alu PCR. Cancer Genet Cytogenet. 118:169–170. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim MJ, Cho SY, Lim G, Yoon HS, Lee HJ,
Suh JT, Lee J, Lee WI, Cho KS and Park TS: A rare case of
Microgranular acute Promyelocytic leukemia associated with
ider(17)(q10)t(15;17) in an old-age patient. Korean J Lab Med.
31:86–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kim M, Lee SA, Park HI, Oh EJ, Park CW,
Lim J, Han K and Kim Y: Two distinct clonal populations in acute
promyelocytic leukemia, one involving chromosome 17 and the other
involving an isochromosome 17. Cancer Genet Cytogenet. 197:185–188.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kim MJ, Yoon HS, Cho SY, Lee HJ, Suh JT,
Lee J, Yoon HJ, Lee WI and Park TS: ider(17)(q10)t(15;17)
associated with relapse and poor prognosis in a pediatric patient
with acute promyelocytic leukemia. Cancer Genet Cytogenet.
201:116–121. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Manola KN, Karakosta M, Sambani C,
Terzoudi G, Pagoni M, Gatsa E and Papaioannou M: Isochromosome
der(17)(q10)t(15;17) in acute promyelocytic leukemia resulting in
an additional copy of the RARA-PML fusion gene: Report of 4 cases
and review of the literature. Acta Haematol. 123:162–170. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Okoshi Y, Akiyama H, Kono N, Matsumura T,
Mizuchi D, Mori S, Ohashi K and Sakamaki H: Effect of additional
chromosomal abnormalities in acute promyelocytic leukemia treated
with all-trans-retinoic acid: A report of 17 patients. Int J
Hematol. 73:496–501. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Qiu HR, Li JY, Miao KR, Wang R and Xu W:
Clinical and laboratory studies of an acute promyelocytic leukemia
patient with double ider(17q) chromosome aberration. Cancer Genet
Cytogenet. 184:74–75. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Schoch C, Haase D, Haferlach T, Freund M,
Link H, Lengfelder E, Löffler H, Büchner T and Fonatsch C:
Incidence and implication of additional chromosome aberrations in
acute promyelocytic leukaemia with translocation t(15;17)(q22;q21):
A report on 50 patients. Br J Haematol. 94:493–500. 2015.
View Article : Google Scholar
|
|
95
|
Tong H, Li K, Mei C, Wang H, Chen Z and
Jin J: Arsenic trioxide may improve the prognosis of APL with
ider(17)(q10): Report of a rare adult case of acute promyelocytic
leukemia with ider(17)(q10)t(15;17) showing poor response to
all-trans retinoic acid. Ann Hematol. 90:1493–1494. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wan TS, So CC, Hui KC, Yip SF, Ma ES and
Chan LC: Diagnostic utility of dual fusion PML/RARalpha
translocation DNA probe (D-FISH) in acute promyelocytic leukemia.
Oncol Rep. 17:799–805. 2007.PubMed/NCBI
|
|
97
|
Sainty D, Liso V, Cantù-Rajnoldi A, Head
D, Mozziconacci MJ, Arnoulet C, Benattar L, Fenu S, Mancini M,
Duchayne E, et al: A new morphologic classification system for
acute promyelocytic leukemia distinguishes cases with underlying
PLZF/RARA gene rearrangements. Blood. 96:1287–1296. 2000.PubMed/NCBI
|
|
98
|
Tan Y, Bian S, Xu Z, Chen X, Qi X, Ren F,
Li L, Guo H, Xu A, Zhang L and Wang H: The short isoform of the
long-type PML-RARA, fusion gene in acute promyelocytic leukaemia
lacks sensitivity to all-trans-retinoic acid. Br J Haematol.
162:93–97. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rosati R, La Starza R, Veronese A, Aventin
A, Schwienbacher C, Vallespi T, Negrini M, Martelli MF and Mecucci
C: NUP98 is fused to the NSD3 gene in acute myeloid leukemia
associated with t(8;11)(p11.2;p15). Blood. 99:3857–3860. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ågerstam H, Lilljebjörn H, Lassen C,
Swedin A, Richter J, Vandenberghe P, Johansson B and Fioretos T:
Fusion gene-mediated truncation of RUNX1, as a potential mechanism
underlying disease progression in the 8p11 myeloproliferative
syndrome. Genes Chromosomes Cancer. 46:635–643. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Otero L, Terra B, Diniz C, Abdelhay E and
Fernandez Tde S: Dicentric t(8;13)(q10;q10) as an additional
chromosomal abnormality in a case of acute promyelocytic leukemia
with very poor outcome. Leuk Lymphoma. 50:287–289. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Adams J and Nassiri M: Acute promyelocytic
Leukemia: A review and discussion of variant translocations. Arch
Pathol Lab Med. 139:1308–1313. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Corey SJ, Locker J, Oliveri DR,
Shekhter-Levin S, Redner RL, Penchansky L and Gollin SM: A
non-classical translocation involving 17q12 (retinoic acid receptor
alpha) in acute promyelocytic leukemia (APML) with atypical
features. Leukemia. 8:1350–1353. 1994.PubMed/NCBI
|
|
104
|
Yamanouchi J, Hato T, Niiya T, Miyoshi K,
Azuma T, Sakai I and Yasukawa M: A new four-way variant
t(5;17;15;20)(q33;q12;q22;q11.2) in acute promyelocytic leukemia.
Int J Hematol. 94:395–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Qiu HR, Li JY, Miao KR, Wang R, Zhang JF
and Xu W: A case of acute promyelocytic leukemia with variant
t(5;17) and trisomy 22. Zhonghua Yi Xue Yi Chuan Xue Za Zhi.
25:430–433. 2008.(In Chinese). PubMed/NCBI
|
|
106
|
Messmer BT, Messmer D, Allen SL, Kolitz
JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S,
et al: In vivo measurements document the dynamic cellular kinetics
of chronic lymphocytic leukemia B cells. J Clin Invest.
115:755–764. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ross DA and Kadesch T: The notch
intracellular domain can function as a coactivator for LEF-1. Mol
Cell Biol. 21:7537–7544. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Holland JD, Klaus A, Garratt AN and
Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr
Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Petropoulos K, Arseni N, Schessl C,
Stadler CR, Rawat VP, Deshpande AJ, Heilmeier B, Hiddemann W,
Quintanilla-Martinez L, Bohlander SK, et al: A novel role for
Lef-1, a central transcription mediator of Wnt signaling, in
leukemogenesis. J Exp Med. 205:515–522. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Skokowa J, Cario G, Uenalan M, Schambach
A, Germeshausen M, Battmer K, Zeidler C, Lehmann U, Eder M, Baum C,
et al: LEF-1 is crucial for neutrophil granulocytopoiesis and its
expression is severely reduced in congenital neutropenia. Nat Med.
12:1191–1197. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
111
|
Albano F, Zagaria A, Anelli L, Orsini P,
Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C,
et al: Lymphoid enhancer binding factor-1 (LEF1) expression as a
prognostic factor in adult acute promyelocytic leukemia.
Oncotarget. 5:649–658. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Müller-Tidow C, Steffen B, Cauvet T,
Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M,
Puccetti E, et al: Translocation products in acute myeloid leukemia
activate the Wnt signaling pathway in hematopoietic cells. Mol Cell
Biol. 24:2890–2904. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang Y, Yu J, Shi C, Huang Y, Wang Y,
Yang T and Yang J: Lef1 contributes to the differentiation of bulge
stem cells by nuclear translocation and cross-talk with the Notch
signaling pathway. Int J Med Sci. 10:738–746. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Payton JE, Grieselhuber NR, Chang LW,
Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA and Ley TJ:
High throughput digital quantification of mRNA abundance in primary
human acute myeloid leukemia samples. J Clin Invest. 119:1714–1726.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Alcalay M, Meani N, Gelmetti V, Fantozzi
A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E,
Casciari C, et al: Acute myeloid leukemia fusion proteins
deregulate genes involved in stem cell maintenance and DNA repair.
J Clin Invest. 112:1751–1761. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Avvisati G, Lo-Coco F, Paoloni FP, Petti
MC, Diverio D, Vignetti M, Latagliata R, Specchia G, Baccarani M,
Di Bona E, et al: AIDA 0493 protocol for newly diagnosed acute
promyelocytic leukemia: Very long-term results and role of
maintenance. Blood. 117:4716–4725. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lo-Coco F, Avvisati G, Vignetti M, Breccia
M, Gallo E, Rambaldi A, Paoloni F, Fioritoni G, Ferrara F, Specchia
G, et al: Front-line treatment of acute promyelocytic leukemia with
AIDA induction followed by risk-adapted consolidation for adults
younger than 61 years: Results of the AIDA-2000 trial of the GIMEMA
Group. Blood. 116:3171–3179. 2010. View Article : Google Scholar : PubMed/NCBI
|