|
1
|
Andersen MH: Immune regulation by
self-recognition: Novel possibilities for anticancer immunotherapy.
J Natl Cancer Inst. 107:pii: djv154. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Andersen MH: Novel understanding of
self-reactive T cells. Oncoimmunology. 5:e10836722015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ahmad Munir S, Martinenaite E, Hansen M,
Junker N, Borch TH, Met Ö, Donia M, Svane IM and Andersen MH: PD-L1
peptide co-stimulation increases immunogenicity of a dendritic
cell-based cancer vaccine. Oncoimmunology. 5:e12023912016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Markman JL and Shiao SL: Impact of the
immune system and immunotherapy in colorectal cancer. J
Gastrointest Oncol. 6:208–223. 2015.PubMed/NCBI
|
|
5
|
Sun Q, Burton RL and Lucas KG: Cytokine
production and cytolytic mechanism of CD4(+) cytotoxic T
lymphocytes in ex vivo expanded therapeutic Epstein-Barr
virus-specific T-cell cultures. Blood. 99:3302–3309. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Guo H, Cheng Y, Shapiro J and McElwee K:
The role of lymphocytes in the development and treatment of
alopecia areata. Expert Rev Clin Immunol. 11:1335–1351. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lemke H: Antigen receptor-intrinsic
non-self: The key to understanding regulatory lymphocyte-mediated
idiotypic control of adaptive immune responses. Crit Rev Immunol.
36:13–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Plasilova M, Risitano A and Maciejewski
JP: Application of the molecular analysis of the T-cell receptor
repertoire in the study of immune-mediated hematologic diseases.
Hematology. 8:173–181. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lopez-Pedrera C, Perez-Sanchez C,
Ramos-Casals M, Santos-Gonzalez M, Rodriguez-Ariza A and Cuadrado
MJ: Cardiovascular risk in systemic autoimmune diseases: Epigenetic
mechanisms of immune regulatory functions. Clin Dev Immunol.
2012:9746482012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Amaya-Amaya J, Montoya-Sanchez L and
Rojas-Villarraga A: Cardiovascular involvement in autoimmune
diseases. Biomed Res Int. 2014:3673592014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Michelsen SW, Soborg B, Diaz LJ, Hoff ST,
Agger EM, Koch A, Rosenkrands I, Wohlfahrt J and Melbye M: The
dynamics of immune responses to Mycobacterium tuberculosis
during different stages of natural infection: A longitudinal study
among Greenlanders. PLoS One. 12:e01779062017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hunniger K, Lehnert T, Bieber K, Martin R,
Figge MT and Kurzai O: A virtual infection model quantifies innate
effector mechanisms and Candida albicans immune escape in
human blood. PLoS Comput Biol. 10:e10034792014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gounder K, Padayachi N, Mann JK, Radebe M,
Mokgoro M, van der Stok M, Mkhize L, Mncube Z, Jaggernath M, Reddy
T, et al: High frequency of transmitted HIV-1 Gag HLA class
I-driven immune escape variants but minimal immune selection over
the first year of clade C infection. PLoS One. 10:e01198862015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang SS, Banner D, Degousee N, Leon AJ,
Xu L, Paquette SG, Kanagasabai T, Fang Y, Rubino S, Rubin B, et al:
Differential pathological and immune responses in newly weaned
ferrets are associated with a mild clinical outcome of pandemic
2009 H1N1 infection. J Virol. 86:13187–13201. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bourke CD, Maizels RM and Mutapi F:
Acquired immune heterogeneity and its sources in human helminth
infection. Parasitology. 138:139–159. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Furman D and Davis MM: New approaches to
understanding the immune response to vaccination and infection.
Vaccine. 33:5271–5281. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Redgrove KA and McLaughlin EA: The role of
the immune response in chlamydia trachomatis infection of the male
genital tract: A double-edged sword. Front Immunol. 5:5342014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kotzamanis K, Angulo A and Ghazal P:
Infection homeostasis: Implications for therapeutic and immune
programming of metabolism in controlling infection. Med Microbiol
Immunol. 204:395–407. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gershon RK and Kondo K: Cell interactions
in the induction of tolerance: The role of thymic lymphocytes.
Immunology. 18:723–737. 1970.PubMed/NCBI
|
|
20
|
Afonina IS, Zhong Z, Karin M and Beyaert
R: Limiting inflammation-the negative regulation of NF-κB and the
NLRP3 inflammasome. Nat Immunol. 18:861–869. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dinesh RK, Skaggs BJ, La Cava A, Hahn BH
and Singh RP: CD8+ Tregs in lupus, autoimmunity, and
beyond. Autoimmun Rev. 9:560–568. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Emregul E, David A, Balthasar JP and Yang
VC: A GPIIb/IIIa bioreactor for specific treatment of immune
thrombocytopenic purpura, an autoimmune disease. Preparation, in
vitro characterization, and preliminary proof-of-concept animal
studies. J Biomed Mater Res A. 75:648–655. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Smith TR and Kumar V: Revival of
CD8+ Treg-mediated suppression. Trends Immunol.
29:337–342. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Liu D, Li G, Avella DM, Kimchi ET, Kaifi
JT, Rubinstein MP, Camp ER, Rockey DC, Schell TD and
Staveley-O'Carroll KF: Sunitinib represses regulatory T cells to
overcome immunotolerance in a murine model of hepatocellular
cancer. Oncoimmunology. 7:e13720792017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chakraborty S, Panda AK, Bose S, Roy D,
Kajal K, Guha D and Sa G: Transcriptional regulation of FOXP3
requires integrated activation of both promoter and CNS regions in
tumor-induced CD8+ Treg cells. Sci Rep. 7:16282017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhou C, Wu J, Borillo J, Torres L, McMahon
J and Lou YH: Potential roles of a special CD8 alpha alpha+ cell
population and CC chemokine thymus-expressed chemokine in ovulation
related inflammation. J Immunol. 182:596–603. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tang X, Maricic I, Purohit N, Bakamjian B,
Reed-Loisel LM, Beeston T, Jensen P and Kumar V: Regulation of
immunity by a novel population of Qa-1-restricted
CD8alphaalpha+TCRalphabeta+ T cells. J Immunol. 177:7645–7655.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bian Y, Shang S, Siddiqui S, Zhao J,
Joosten SA, Ottenhoff THM, Cantor H and Wang CR: MHC Ib molecule
Qa-1 presents Mycobacterium tuberculosis peptide antigens to
CD8+ T cells and contributes to protection against infection. PLoS
Pathog. 13:e10063842017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Takada K, Kondo K and Takahama Y:
Generation of peptides that promote positive selection in the
thymus. J Immunol. 198:2215–2222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ali Mohammed HH and Drela N: Role of
thymic B cells in the development of thymus-derived regulatory T
cell in vitro. Immunol Lett. 185:56–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Talotta R, Atzeni F, Batticciotto A,
Benucci M, Bongiovanni S and Sarzi-Puttini P: Biological agents in
rheumatoid arthritis: A cross-link between immune tolerance and
immune surveillance. Curr Rheumatol Rev. 2016.PubMed/NCBI
|
|
32
|
Huang G, Xu J, Lefever DE, Glenn TC, Nagy
T and Guo TL: Genistein prevention of hyperglycemia and improvement
of glucose tolerance in adult non-obese diabetic mice are
associated with alterations of gut microbiome and immune
homeostasis. Toxicol Appl Pharmacol. 332:138–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Capece T and Kim M: The role of lymphatic
niches in T Cell Differentiation. Mol Cells. 39:515–523. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang N, Li Z, Jiao Z, Gu P, Zhou Y, Lu L
and Chou KY: A Trichosanthin-derived peptide suppresses type 1
immune responses by TLR2-dependent activation of CD8(+)CD28(-)
Tregs. Clin Immunol. 153:277–287. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vuddamalay Y and van Meerwijk JP: CD28-
and CD28lowCD8+ regulatory T cells: Of mice and men. Front Immunol.
8:312017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Morimoto C, Takeuchi T and Schlossman SF:
Characterization of the CD8+CD45R+(2H4+) suppressor effector cell.
Clin Exp Rheumatol. 7 Suppl 3:S3–S7. 1989.PubMed/NCBI
|
|
37
|
Takeuchi T, Rudd CE, Tanaka S, Rothstein
DM, Schlossman SF and Morimoto C: Functional characterization of
the CD45R (2H4) molecule on CD8 (T8) cells in the autologous mixed
lymphocyte reaction system. Eur J Immunol. 19:747–755. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Raziuddin S and Elawad ME:
Immunoregulatory CD4+ CD45R+ suppressor/inducer T lymphocyte
subsets and impaired cell-mediated immunity in patients with Down's
syndrome. Clin Exp Immunol. 79:67–71. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wei S, Kryczek I, Zou L, Daniel B, Cheng
P, Mottram P, Curiel T, Lange A and Zou W: Plasmacytoid dendritic
cells induce CD8+ regulatory T cells in human ovarian carcinoma.
Cancer Res. 65:5020–5026. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wu J, Li S, Yang Y, Zhu S, Zhang M, Qiao
Y, Liu YJ and Chen J: TLR-activated plasmacytoid dendritic cells
inhibit breast cancer cell growth in vitro and in vivo. Oncotarget.
8:11708–11718. 2017.PubMed/NCBI
|
|
41
|
Kourtzelis I and Rafail S: The dual role
of complement in cancer and its implication in anti-tumor therapy.
Ann Transl Med. 4:2652016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen L, Hasni MS, Jondal M and Yakimchuk
K: Modification of anti-tumor immunity by tolerogenic dendritic
cells. Autoimmunity. 50:370–376. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang L: Adaptive Treg generation by DCs
and their functional analysis. Methods Mol Biol. 595:403–412. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gao JF, McIntyre MS, Juvet SC, Diao J, Li
X, Vanama RB, Mak TW, Cattral MS and Zhang L: Regulation of
antigen-expressing dendritic cells by double negative regulatory T
cells. Eur J Immunol. 41:2699–2708. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Suciu-Foca N, Manavalan JS, Scotto L,
Kim-Schulze S, Galluzzo S, Naiyer AJ, Fan J, Vlad G and Cortesini
R: Molecular characterization of allospecific T suppressor and
tolerogenic dendritic cells: Review. Int Immunopharmacol. 5:7–11.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Song ZY, Yamasaki R, Kawano Y, Sato S,
Masaki K, Yoshimura S, Matsuse D, Murai H, Matsushita T and Kira J:
Peripheral blood T cell dynamics predict relapse in multiple
sclerosis patients on fingolimod. PLoS One. 10:e01249232015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hendrikx TK, Velthuis JH, Klepper M, van
Gurp E, Geel A, Schoordijk W, Baan CC and Weimar W: Monotherapy
rapamycin allows an increase of CD4 CD25 FoxP3 T cells in renal
recipients. Transpl Int. 22:884–891. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Assadiasl S, Ahmadpoor P, Nafar M,
Pezeshki Lessan M, Pourrezagholi F, Parvin M, Shahlaee A, Sepanjnia
A, Nicknam MH and Amirzargar A: Regulatory T cell subtypes and
TGF-beta1 gene expression in chronic allograft dysfunction. Iran J
Immunol. 11:139–152. 2014.PubMed/NCBI
|
|
49
|
Negrini S, Fenoglio D, Parodi A, Kalli F,
Battaglia F, Nasi G, Curto M, Tardito S, Ferrera F and Filaci G:
Phenotypic alterations involved in CD8+ Treg impairment in systemic
sclerosis. Front Immunol. 8:182017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Velasquez-Lopera MM, Correa LA and Garcia
LF: Human spleen contains different subsets of dendritic cells and
regulatory T lymphocytes. Clin Exp Immunol. 154:107–114. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang B, Jiao Z, Shao X, Lu L, Yang N, Zhou
X, Xin L, Zhou Y and Chou KY: Phenotypic alterations of dendritic
cells are involved in suppressive activity of trichosanthin-induced
CD8+CD28- regulatory T cells. J Immunol. 185:79–88. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nikoueinejad H, Amirzargar A, Sarrafnejad
A, Einollahi B, Nafar M, Ahmadpour P, Pour-Reze-Gholi F, Sehat O
and Lesanpezeshki M: Dynamic changes of regulatory T cell and
dendritic cell subsets in stable kidney transplant patients: A
prospective analysis. Iran J Kidney Dis. 8:130–138. 2014.PubMed/NCBI
|
|
53
|
Brunkow ME, Jeffery EW, Hjerrild KA,
Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF
and Ramsdell F: Disruption of a new forkhead/winged-helix protein,
scurfin, results in the fatal lymphoproliferative disorder of the
scurfy mouse. Nat Genet. 27:68–73. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ochs HD, Ziegler SF and Torgerson TR:
FOXP3 acts as a rheostat of the immune response. Immunol Rev.
203:156–164. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Niemz J, Kliche S, Pils MC, Morrison E,
Manns A, Freund C, Crittenden JR, Graybiel AM, Galla M, Jänsch L,
et al: The guanine-nucleotide exchange factor Caldag gefi
fine-tunes functional properties of regulatory T cells. Eur J
Microbiol Immunol (Bp). 7:112–126. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Maranduba CM, De Castro SB, de Souza GT,
Rossato C, da Guia FC, Valente MA, Rettore JV, Maranduba CP, de
Souza CM, do Carmo AM, et al: Intestinal microbiota as modulators
of the immune system and neuroimmune system: Impact on the host
health and homeostasis. J Immunol Res. 2015:9315742015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fontenot JD, Gavin MA and Rudensky AY:
FOXP3 programs the development and function of CD4+CD25+ regulatory
T cells. Nat Immunol. 4:330–336. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bin Dhuban K, Kornete M, Mason S E and
Piccirillo CA: Functional dynamics of Foxp3+ regulatory
T cells in mice and humans. Immunol Rev. 259:140–158. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cosmi L, Liotta F, Lazzeri E, Francalanci
M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V,
Romagnani P, et al: Human CD8+CD25+ thymocytes share phenotypic and
functional features with CD4+CD25+ regulatory thymocytes. Blood.
102:4107–4114. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Maslanka T, Ziolkowska N, Ziolkowski H and
Malaczewska J: CD25+CD127+Foxp3- cells represent a major
subpopulation of CD8+ T cells in the eye chambers of normal mice.
PLoS One. 12:e01700212017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jun C, Ke W, Qingshu L, Ping L, Jun D, Jie
L, Bo C and Su M: Protective effect of CD4(+)CD25(high)CD127(low)
regulatory T cells in renal ischemia-reperfusion injury. Cell
Immunol. 289:106–111. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Su H, Longhi MS, Wang P, Vergani D and Ma
Y: Human CD4+CD25(high)CD127 (low/neg) regulatory T cells. Methods
Mol Biol. 806:287–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Simonetta F, Chiali A, Cordier C, Urrutia
A, Girault I, Bloquet S, Tanchot C and Bourgeois C: Increased CD127
expression on activated FOXP3+CD4+ regulatory T cells. Eur J
Immunol. 40:2528–2538. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rodriguez-Perea AL, Arcia ED, Rueda CM and
Velilla PA: Phenotypical characterization of regulatory T cells in
humans and rodents. Clin Exp Immunol. 185:281–291. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang HY, Yan KX, Huang Q, Ma Y, Fang X
and Han L: Target tissue ectoenzyme CD39/CD73-expressing Foxp3+
regulatory T cells in patients with psoriasis. Clin Exp Dermatol.
40:182–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Allard B, Longhi MS, Robson SC and Stagg
J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor
targets. Immunol Rev. 276:121–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bono MR, Fernandez D, Flores-Santibanez F,
Rosemblatt M and Sauma D: CD73 and CD39 ectonucleotidases in T cell
differentiation: Beyond immunosuppression. FEBS Lett.
589:3454–3460. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Matyash M, Zabiegalov O, Wendt S, Matyash
V and Kettenmann H: The adenosine generating enzymes CD39/CD73
control microglial processes ramification in the mouse brain. PLoS
One. 12:e01750122017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hasan D, Blankman P and Nieman GF:
Purinergic signalling links mechanical breath profile and alveolar
mechanics with the pro-inflammatory innate immune response causing
ventilation-induced lung injury. Purinergic Signal. 13:363–386.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Drakes ML and Stiff PJ: Harnessing
immunosurveillance: Current developments and future directions in
cancer immunotherapy. Immunotargets Ther. 3:151–165. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Stallone G, Infante B, Di Lorenzo A,
Rascio F, Zaza G and Grandaliano G: mTOR inhibitors effects on
regulatory T cells and on dendritic cells. J Transl Med.
14:1522016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Oberg HH, Juricke M, Kabelitz D and Wesch
D: Regulation of T cell activation by TLR ligands. Eur J Cell Biol.
90:582–592. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Su J, Xie Q, Xu Y, Li XC and Dai Z: Role
of CD8(+) regulatory T cells in organ transplantation. Burns
Trauma. 2:18–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ferguson AR and Engelhard VH: CD8 T cells
activated in distinct lymphoid organs differentially express
adhesion proteins and coexpress multiple chemokine receptors. J
Immunol. 184:4079–4086. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Croft M and Siegel RM: Beyond TNF: TNF
superfamily cytokines as targets for the treatment of rheumatic
diseases. Nat Rev Rheumatol. 13:217–233. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu
ER, Vlad G and Suciu-Foca N: Molecular and cellular
characterization of human CD8 T suppressor cells. Front Immunol.
7:5492016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Parkes MD, Halloran PF and Hidalgo LG:
Mechanistic sharing between NK cells in ABMR and effector T cells
in TCMR. Am J Transplant. 18:63–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nagy E, Lei Y, Martinez-Martinez E, Body
SC, Schlotter F, Creager M, Assmann A, Khabbaz K, Libby P, Hansson
GK, et al: Interferon-gamma released by activated CD8+ T
lymphocytes impairs the calcium resorption potential of osteoclasts
in calcified human aortic valves. Am J Pathol. 187:1413–1425. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hasegawa H, Kawahata K, Mizoguchi F,
Okiyama N, Miyasaka N and Kohsaka H: Direct suppression of
autoaggressive CD8+ T cells with CD80/86 blockade in CD8+ T
cell-mediated polymyositis models of mice. Clin Exp Rheumatol.
35:593–597. 2017.PubMed/NCBI
|
|
80
|
Nejad Beyranvand E, van der Sluis TC, van
Duikeren S, Yagita H, Janssen GM, van Veelen PA, Melief CJ, van der
Burg SH and Arens R: Tumor eradication by cisplatin is sustained by
CD80/86-mediated costimulation of CD8+ T cells. Cancer Res.
76:6017–6029. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pierini A, Schneidawind D, Nishikii H and
Negrin RS: Regulatory T cell immunotherapy in immune-mediated
diseases. Curr Stem Cell Rep. 1:177–186. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Long SA, Thorpe J, DeBerg HA, Gersuk V,
Eddy J, Harris KM, Ehlers M, Herold KC, Nepom GT and Linsley PS:
Partial exhaustion of CD8 T cells and clinical response to
teplizumab in new-onset type 1 diabetes. Sci Immunol. 1:pii:
eaai7793. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Joosten SA, Sullivan LC and Ottenhoff TH:
Characteristics of HLA-E restricted T-cell responses and their role
in infectious diseases. J Immunol Res. 2016:26953962016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Varthaman A, Clement M, Khallou-Laschet J,
Fornasa G, Gaston AT, Dussiot M, Caligiuri G, Cantor H, Kaveri S
and Nicoletti A: Physiological induction of regulatory
Qa-1-restricted CD8+ T cells triggered by endogenous CD4+ T cell
responses. PLoS One. 6:e216282011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sinha S, Itani FR and Karandikar NJ:
Immune regulation of multiple sclerosis by CD8+ T cells. Immunol
Res. 59:254–265. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Leavenworth JW, Tang X, Kim HJ, Wang X and
Cantor H: Amelioration of arthritis through mobilization of
peptide-specific CD8+ regulatory T cells. J Clin Invest.
123:1382–1389. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kambayashi T, Kraft-Leavy JR, Dauner JG,
Sullivan BA, Laur O and Jensen PE: The nonclassical MHC class I
molecule Qa-1 forms unstable peptide complexes. J Immunol.
172:1661–1669. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Jiang H: The Qa-1 dependent CD8+ T cell
mediated regulatory pathway. Cell Mol Immunol. 2:161–167.
2005.PubMed/NCBI
|
|
89
|
Chen L, Reyes-Vargas E, Dai H, Escobar H,
Rudd B, Fairbanks J, Ho A, Cusick MF, Kumánovics A, Delgado J, et
al: Expression of the mouse MHC class Ib H2-T11 gene product, a
paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. J
Immunol. 193:1427–1439. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jensen PE, Sullivan BA, Reed-Loisel LM and
Weber DA: Qa-1, a nonclassical class I histocompatibility molecule
with roles in innate and adaptive immunity. Immunol Res. 29:81–92.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ramsingh AI, Manley K, Rong Y, Reilly A
and Messer A: Transcriptional dysregulation of inflammatory/immune
pathways after active vaccination against Huntington's disease. Hum
Mol Genet. 24:6186–6197. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Shiina T, Blancher A, Inoko H and Kulski
JK: Comparative genomics of the human, macaque and mouse major
histocompatibility complex. Immunology. 150:127–138. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chiswick EL, Mella JR, Bernardo J and
Remick DG: Acute-phase deaths from murine polymicrobial sepsis are
characterized by innate immune suppression rather than exhaustion.
J Immunol. 195:3793–3802. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
O'Leary S, Lloyd ML, Shellam GR and
Robertson SA: Immunization with recombinant murine cytomegalovirus
expressing murine zona pellucida 3 causes permanent infertility in
BALB/c mice due to follicle depletion and ovulation failure. Biol
Reprod. 79:849–860. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Cheng MH and Nelson LM: Mechanisms and
models of immune tolerance breakdown in the ovary. Semin Reprod
Med. 29:308–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li XL, Menoret S, Bezie S, Caron L,
Chabannes D, Hill M, Halary F, Angin M, Heslan M, Usal C, et al:
Mechanism and localization of CD8 regulatory T cells in a heart
transplant model of tolerance. J Immunol. 185:823–833. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nambu Y, Hayashi T, Jang KJ, Aoki K, Mano
H, Nakano K, Osato M, Takahashi K, Itoh K, Teramukai S, et al:
In situ differentiation of CD8αα T cells from CD4 T cells in
peripheral lymphoid tissues. Sci Rep. 2:6422012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tang X, Maricic I and Kumar V: Anti-TCR
antibody treatment activates a novel population of nonintestinal
CD8 alpha alpha+ TCR alpha beta+ regulatory T cells and prevents
experimental autoimmune encephalomyelitis. J Immunol.
178:6043–6050. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kumar V and Sercarz E: An integrative
model of regulation centered on recognition of TCR peptide/MHC
complexes. Immunol Rev. 182:113–121. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ge PL, Ma LP, Wang W, Li Y and Zhao WM:
Inhibition of collagen-induced arthritis by DNA vaccines encoding
TCR Vbeta5.2 and TCR Vbeta8.2. Chin Med J (Engl). 122:1039–1048.
2009.PubMed/NCBI
|
|
101
|
Xu H, Wang X, Malam N, Aye PP, Alvarez X,
Lackner AA and Veazey RS: Persistent simian immunodeficiency virus
infection drives differentiation, aberrant accumulation, and latent
infection of germinal center follicular T helper cells. J Virol.
90:1578–1587. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bruno F, Fornara C, Zelini P, Furione M,
Carrara E, Scaramuzzi L, Cane I, Mele F, Sallusto F, Lilleri D, et
al: Follicular helper T-cells and virus-specific antibody response
in primary and reactivated human cytomegalovirus infections of the
immunocompetent and immunocompromised transplant patients. J Gen
Virol. 97:1928–1941. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Muema DM, Macharia GN, Olusola BA, Hassan
AS, Fegan GW, Berkley JA, Urban BC and Nduati EW: Proportions of
circulating follicular helper T cells are reduced and correlate
with memory B cells in HIV-infected children. PLoS One.
12:e01755702017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sugimoto T and Watanabe T: Follicular
Lymphoma: The role of the tumor microenvironment in prognosis. J
Clin Exp Hematop. 56:1–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kurita D, Miyoshi H, Yoshida N, Sasaki Y,
Kato S, Niino D, Sugita Y, Hatta Y, Takei M, Makishima M, et al: A
clinicopathologic study of lennert lymphoma and possible prognostic
factors: the importance of follicular helper T-cell markers and the
association with angioimmunoblastic T-cell lymphoma. Am J Surg
Pathol. 40:1249–1260. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Miles B, Miller SM, Folkvord JM, Levy DN,
Rakasz EG, Skinner PJ and Connick E: Follicular regulatory CD8 T
cells impair the germinal center response in SIV and ex vivo HIV
infection. PLoS Pathog. 12:e10059242016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tsai S, Clemente-Casares X and Santamaria
P: CD8(+) Tregs in autoimmunity: Learning ‘self’-control from
experience. Cell Mol Life Sci. 68:3781–3795. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Krausz LT, Major ZZ, Muresanu DF, Chelaru
E, Nocentini G and Riccardi C: Characterization of CD4+ and CD8+
Tregs in a Hodgkin's lymphoma patient presenting with
myasthenia-like symptoms. Ideggyogy Sz. 66:343–348. 2013.PubMed/NCBI
|
|
109
|
Spadaro M, Montarolo F, Perga S, Martire
S, Brescia F, Malucchi S and Bertolotto A: Biological activity of
glatiramer acetate on Treg and anti-inflammatory monocytes persists
for more than 10 years in responder multiple sclerosis patients.
Clin Immunol. 181:83–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
van Nierop GP, van Luijn MM, Michels SS,
Melief MJ, Janssen M, Langerak AW, Ouwendijk WJD, Hintzen RQ and
Verjans GMGM: Phenotypic and functional characterization of T cells
in white matter lesions of multiple sclerosis patients. Acta
Neuropathol. 134:383–401. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Rådinger M, Bossios A, Alm AS, Jeurink P,
Lu Y, Malmhäll C, Sjöstrand M and Lötvall J: Regulation of
allergen-induced bone marrow eosinophilopoiesis: Role of CD4+ and
CD8+ T cells. Allergy. 62:1410–1418. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhang H, Kong H, Zeng X, Guo L, Sun X and
He S: Subsets of regulatory T cells and their roles in allergy. J
Transl Med. 12:1252014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Martin-Orozco E, Norte-Munoz M and
Martinez-Garcia J: Regulatory T cells in allergy and asthma. Front
Pediatr. 5:1172017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Tulunay A, Yavuz S, Direskeneli H and
Eksioglu-Demiralp E: CD8+CD28-, suppressive T cells in systemic
lupus erythematosus. Lupus. 17:630–637. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zabinska M, Krajewska M,
Koscielska-Kasprzak K and Klinger M: CD3(+)CD8(+)CD28(-) T
lymphocytes in patients with lupus nephritis. J Immunol Res.
2016:10581652016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ceeraz S, Hall C, Choy EH, Spencer J and
Corrigall VM: Defective CD8+CD28+ regulatory T cell suppressor
function in rheumatoid arthritis is restored by tumour necrosis
factor inhibitor therapy. Clin Exp Immunol. 174:18–26. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mikulkova Z, Praksova P, Stourac P,
Bednarik J, Strajtova L, Pacasova R, Belobradkova J, Dite P and
Michalek J: Numerical defects in CD8+CD28- T-suppressor lymphocyte
population in patients with type 1 diabetes mellitus and multiple
sclerosis. Cell Immunol. 262:75–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Arosa FA: CD8+CD28- T cells: Certainties
and uncertainties of a prevalent human T-cell subset. Immunol Cell
Biol. 80:1–13. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sfanos KS and De Marzo AM: Prostate cancer
and inflammation: The evidence. Histopathology. 60:199–215. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Mhawech-Fauceglia P, Wang D, Ali L, Lele
S, Huba MA, Liu S and Odunsi K: Intraepithelial T cells and
tumor-associated macrophages in ovarian cancer patients. Cancer
Immun. 13:12013.PubMed/NCBI
|
|
121
|
Longoria TC and Tewari KS: Pharmacologic
management of advanced cervical cancer: Antiangiogenesis therapy
and immunotherapeutic considerations. Drugs. 75:1853–1865. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Liu H, Wang Y, Zeng Q, Zeng YQ, Liang CL,
Qiu F, Nie H and Dai Z: Suppression of allograft rejection by
CD8+CD122+PD-1+ Tregs is dictated by their Fas ligand-initiated
killing of effector T cells versus Fas-mediated own apoptosis.
Oncotarget. 8:24187–24195. 2017.PubMed/NCBI
|
|
123
|
Beres AJ, Haribhai D, Chadwick AC, Gonyo
PJ, Williams CB and Drobyski WR: CD8+ Foxp3+ regulatory T cells are
induced during graft-versus-host disease and mitigate disease
severity. J Immunol. 189:464–474. 2012. View Article : Google Scholar : PubMed/NCBI
|