|
1
|
Meulmeester E and Ten Dijke P: The dynamic
roles of TGF-β in cancer. J Pathol. 223:205–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pickup M, Novitskiy S and Moses HL: The
roles of TGFβ in the tumour microenvironment. Nat Rev Cancer.
13:788–799. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Drabsch Y and ten Dijke P: TGF-β
signalling and its role in cancer progression and metastasis.
Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wakefield LM and Hill CS: Beyond TGFβ:
Roles of other TGFβ superfamily members in cancer. Nat Rev Cancer.
13:328–341. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cantelli G, Crosas-Molist E, Georgouli M
and Sanz-Moreno V: TGFβ-induced transcription in cancer. Semin
Cancer Biol. 42:60–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
López-Casillas F, Wrana JL and Massagué J:
Betaglycan presents ligand to the TGF beta signaling receptor.
Cell. 73:1435–1444. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gatza CE, Sun YO and Blobe GC: Roles for
the type III TGF-β receptor in human cancer. Cell Signal.
22:1163–1174. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schmierer B and Hill CS: Kinetic analysis
of Smad nucleocytoplasmic shuttling reveals a mechanism for
transforming growth factor beta-dependent nuclear accumulation of
Smads. Mol Cell Biol. 25:9845–9858. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nakao A, Imamura T, Souchelnytskyi S,
Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH,
Miyazono K and ten Dijke P: TGF-beta receptor-mediated signalling
through Smad2, Smad3 and Smad4. EMBO J. 16:5353–5362. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Koinuma D, Tsutsumi S, Kamimura N, Imamura
T, Aburatani H and Miyazono K: Promoter-wide analysis of Smad4
binding sites in human epithelial cells. Cancer Sci. 100:2133–2142.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Itoh S and ten Dijke P: Negative
regulation of TGF-beta receptor/Smad signal transduction. Curr Opin
Cell Biol. 19:176–184. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kavsak P, Rasmussen RK, Causing CG, Bonni
S, Zhu H, Thomsen GH and Wrana JL: Smad7 binds to Smurf2 to form an
E3 ubiquitin ligase that targets the TGF beta receptor for
degradation. Mol Cell. 6:1365–1375. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ohkawara B, Shirakabe K, Hyodo-Miura J,
Matsuo R, Ueno N, Matsumoto K and Shibuya H: Role of the
TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction.
Genes Dev. 18:381–386. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Massagué J and Gomis RR: The logic of TGFβ
signaling. FEBS Lett. 580:2811–2820. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Malkoski SP and Wang XJ: Two sides of the
story? Smad4 loss in pancreatic cancer versus head-and-neck cancer.
FEBS Lett. 586:1984–1992. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Krstevska V: Evolution of treatment and
high-risk features in resectable locally advanced Head and Neck
squamous cell carcinoma with special reference to extracapsular
extension of nodal disease. J BUON. 20:943–953. 2015.PubMed/NCBI
|
|
17
|
Moutsopoulos NM, Wen J and Wahl SM:
TGF-beta and tumors-an ill-fated alliance. Curr Opin Immunol.
20:234–240. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Edwards BK, Ward E, Kohler BA, Eheman C,
Zauber AG, Anderson RN, Jemal A, Schymura MJ, Lansdorp-Vogelaar I,
Seeff LC, et al: Annual report to the nation on the status of
cancer, 1975–2006, featuring colorectal cancer trends and impact of
interventions (risk factors, screening, and treatment) to reduce
future rates. Cancer. 116:544–573. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Grsic K, Opacic IL, Sitic S, Milkovic PM,
Suton P and Sarcevic B: The prognostic significance of estrogen
receptor β in head and neck squamous cell carcinoma. Oncol Lett.
12:3861–3865. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bae WJ, Lee SH, Rho YS, Koo BS and Lim YC:
Transforming growth factor β1 enhances stemness of head and neck
squamous cell carcinoma cells through activation of Wnt signaling.
Oncol Lett. 12:5315–5320. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Honjo Y, Bian Y, Kawakam K, Molinolo A,
Longenecker G, Boppana R, Larsson J, Karlsson S, Gutkind JS, Puri
RK and Kulkarni AB: TGF-β receptor I conditional knockout mice
develop spontaneous squamous cell carcinoma. Cell Cycle.
6:1360–1366. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Connolly EC and Akhurst RJ: The
complexities of TGF-β action during mammary and squamous cell
carcinogenesis. Curr Pharm Biotechnol. 12:2138–2149. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pring M, Prime S, Parkinson EK and
Paterson I: Dysregulated TGF-beta1-induced Smad signalling occurs
as a result of defects in multiple components of the TGF-beta
signalling pathway in human head and neck carcinoma cell lines. Int
J Oncol. 28:1279–1285. 2006.PubMed/NCBI
|
|
25
|
Agrawal N, Frederick MJ, Pickering CR,
Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, Zhang J, Wang J, et
al: Exome sequencing of head and neck squamous cell carcinoma
reveals inactivating mutations in NOTCH1. Science. 333:1154–1157.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bornstein S, White R, Malkoski S, Oka M,
Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, et al: Smad4
loss in mice causes spontaneous head and neck cancer with increased
genomic instability and inflammation. J Clin Invest. 119:3408–3419.
2009.PubMed/NCBI
|
|
27
|
Lu SL, Reh D, Li AG, Woods J, Corless CL,
Kulesz-Martin M and Wang XJ: Overexpression of transforming growth
factor β1 in head and neck epithelia results in inflammation,
angiogenesis, and epithelial hyperproliferation. Cancer Res.
64:4405–4410. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Snijders AM, Schmidt BL, Fridlyand J,
Dekker N, Pinkel D, Jordan RC and Albertson DG: Rare amplicons
implicate frequent deregulation of cell fate specification pathways
in oral squamous cell carcinoma. Oncogene. 24:4232–4242. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lu SL, Herrington H, Reh D, Weber S,
Bornstein S, Wang D, Li AG, Tang CF, Siddiqui Y, Nord J, et al:
Loss of transforming growth factor-beta type II receptor promotes
metastatic head-and-neck squamous cell carcinoma. Genes Dev.
20:1331–1342. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bian Y, Hall B, Sun ZJ, Molinolo A, Chen
W, Gutkind JS, Waes CV and Kulkarni AB: Loss of TGF-β signaling and
PTEN promotes head and neck squamous cell carcinoma through
cellular senescence evasion and cancer-related inflammation.
Oncogene. 31:3322–3332. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
White RA, Malkoski SP and Wang XJ: TGFβ
signaling in head and neck squamous cell carcinoma. Oncogene.
29:5437–5446. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Alexandrow MG and Moses H: Transforming
growth factor b and cell cycle regulation. Cancer Res.
55:1452–1457. 1995.PubMed/NCBI
|
|
33
|
Kim T, Cui R, Jeon YJ, Fadda P, Alder H
and Croce CM: MYC-repressed long noncoding RNAs antagonize
MYC-induced cell proliferation and cell cycle progression.
Oncotarget. 6:18780–18789. 2015.PubMed/NCBI
|
|
34
|
Chen CR, Kang Y, Siegel PM and Massagué J:
E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to
c-myc repression. Cell. 110:19–32. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Massague J: TGFbeta in Cancer. Cell.
134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pardali K and Moustakas A: Actions of
TGF-beta as tumor suppressor and pro-metastatic factor in human
cancer. Biochim Biophys Acta. 1775:21–62. 2007.PubMed/NCBI
|
|
37
|
Sorrentino A, Thakur N, Grimsby S,
Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH and
Landström M: The type I TGF-beta receptor engages TRAF6 to activate
TAK1 in a receptor kinase-independent manner. Nat Cell Biol.
10:1199–1207. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yamashita M, Fatyol K, Jin C, Wang X, Liu
Z and Zhang YE: TRAF6 mediates smad-independent activation of JNK
and p38 by TGF-beta. Mol Cell. 31:918–924. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang S, Ekman M, Thakur N, Bu S,
Davoodpour P, Grimsby S, Tagami S, Heldin CH and Landström M:
TGFbeta1-induced activation of ATM and p53 mediates apoptosis in a
Smad7-dependent manner. Cell Cycle. 5:2787–2795. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jang CW, Chen CH, Chen CC, Chen JY, Su YH
and Chen RH: TGF-beta induces apoptosis through Smad-mediated
expression of DAP-kinase. Nat Cell Biol. 4:51–58. 2001. View Article : Google Scholar
|
|
41
|
Korchynskyi O and ten Dijke P:
Identification and functional characterization of distinct
critically important bone morphogenetic protein-specific response
elements in the Id1 promoter. J Biol Chem. 277:4883–4891. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kang Y, Chen CR and Massagué J: A
self-enabling TGFbeta response coupled to stress signaling: Smad
engages stress response factor ATF3 for Id1 repression in
epithelial cells. Mol Cell. 11:915–926. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bian Y, Terse A, Du J, Hall B, Molinolo A,
Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM and Kulkarni
AB: Progressive tumor formation in mice with conditional deletion
of TGF-beta signaling in head and neck epithelia is associated with
activation of the PI3K/Akt pathway. Cancer Res. 69:5918–5926. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu S, Ye D, Guo W, Yu W, He Y, Hu J, Wang
Y, Zhang L, Liao Y, Song H, et al: G9a is essential for
EMT-mediated metastasis and maintenance of cancer stem cell-like
characters in head and neck squamous cell carcinoma. Oncotarget.
6:6887–6901. 2015.PubMed/NCBI
|
|
45
|
Smith A, Teknos TN and Pan Q: Epithelial
to mesenchymal transition in head and neck squamous cell carcinoma.
Oral Oncol. 49:287–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sun L, Diamond ME, Ottaviano AJ, Joseph
MJ, Ananthanarayan V and Munshi HG: Transforming growth factor-beta
1 promotes matrix metalloproteinase-9-mediated oral cancer invasion
through snail expression. Mol Cancer Res. 6:10–20. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Qiao B, Johnson NW and Gao J:
Epithelial-mesenchymal transition in oral squamous cell carcinoma
triggered by transforming growth factor-beta1 is Snail
family-dependent and correlates with matrix metalloproteinase-2 and
−9 expressions. Int J Oncol. 37:663–668. 2010.PubMed/NCBI
|
|
48
|
Yu C, Liu Y, Huang D, Dai Y, Cai G, Sun J,
Xu T, Tian Y and Zhang X: TGF-β1 mediates epithelial to mesenchymal
transition via the TGF-β/Smad pathway in squamous cell carcinoma of
the head and neck. Oncol Rep. 25:15812011.PubMed/NCBI
|
|
49
|
Hoot KE, Lighthall J, Han G, Lu SL, Li A,
Ju W, Kulesz-Martin M, Bottinger E and Wang XJ:
Keratinocyte-specific Smad2 ablation results in increased
epithelial-mesenchymal transition during skin cancer formation and
progression. J Clin Invest. 118:2722–2732. 2008.PubMed/NCBI
|
|
50
|
Sinpitaksakul SN, Pimkhaokham A,
Sanchavanakit N and Pavasant P: TGF-beta1 induced MMP-9 expression
in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res
Commun. 371:713–718. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Joseph MJ, Dangi-Garimella S, Shields MA,
Diamond ME, Sun L, Koblinski JE and Munshi HG: Slug is a downstream
mediator of transforming growth factor-beta1-induced matrix
metalloproteinase-9 expression and invasion of oral cancer cells. J
Cell Biochem. 108:726–736. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Richter P, Umbreit C, Franz M and Berndt
A, Grimm S, Uecker A, Böhmer FD, Kosmehl H and Berndt A: EGF/TGFβ1
co-stimulation of oral squamous cell carcinoma cells causes an
epithelial-mesenchymal transition cell phenotype expressing laminin
332. J Oral Pathol Med. 40:46–54. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Korc M: Smad4: Gatekeeper gene in head and
neck squamous cell carcinoma. J Clin Invest. 119:3208–3211.
2009.PubMed/NCBI
|
|
54
|
Saha D, Datta PK and Beauchamp RD:
Oncogenic ras represses transforming growth factor-beta/Smad
signaling by degrading tumor suppressor Smad4. J Biol Chem.
276:29531–29537. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Iglesias M, Frontelo P, Gamallo C and
Quintanilla M: Blockade of Smad4 in transformed keratinocytes
containing a Ras oncogene leads to hyperactivation of the
Ras-dependent Erk signalling pathway associated with progression to
undifferentiated carcinomas. Oncogene. 19:4134–4145. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hannigan A, Smith P, Kalna G, Lo Nigro C,
Orange C, O'Brien DI, Shah R, Syed N, Spender LC, Herrera B, et al:
Epigenetic downregulation of human disabled homolog 2 switches
TGF-beta from a tumor suppressor to a tumor promoter. J Cli Invest.
120:2842–2857. 2010. View Article : Google Scholar
|
|
57
|
Wang D, Song H, Evans JA, Lang JC,
Schuller DE and Weghorst CM: Mutation and downregulation of the
transforming growth factor beta type II receptor gene in primary
squamous cell carcinomas of the head and neck. Carcinogenesis.
18:2285–2290. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Freudlsperger C, Bian Y, Contag Wise S,
Burnett J, Coupar J, Yang X, Chen Z and Van Waes C: TGF-β and NF-κB
signal pathway cross-talk is mediated through TAK1 and SMAD7 in a
subset of head and neck cancers. Oncogene. 32:1549–1559. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Burnet FM: Immunological aspects of
malignant disease. Lancet. 1:1171–1174. 1967. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang L: TGFbeta and cancer metastasis: An
inflammation link. Cancer Metastasis Rev. 29:263–271. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Steinman RM and Cohn ZA: Identification of
a novel cell type in peripheral lymphoid organs of mice. I.
Morphology, quantitation, tissue distribution. J Exp Med.
137:1142–1162. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Banchereau J and Steinman RM: Dendritic
cells and the control of immunity. Nature. 392:245–252. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Duray A, Demoulin S, Hubert P, Delvenne P
and Saussez S: Immune suppression in head and neck cancers: A
review. Clin Dev Immunol. 2010:7016572010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wrzesinski SH, Wan YY and Flavell RA:
Transforming growth factor-beta and the immune response:
implications for anticancer therapy. Clin Cancer Res. 13:5262–5270.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Khazaie K and von Boehmer H: The impact of
CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and
cancer. Semin Cancer Biol. 16:124–136. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Curry JM, Sprandio J, Cognetti D,
Luginbuhl A, Bar-ad V, Pribitkin E and Tuluc M: Tumor
microenvironment in head and neck squamous cell carcinoma. Semin
Oncol. 41:217–234. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
El-Rouby DH: Association of macrophages
with angiogenesis in oral verrucous and squamous cell carcinomas. J
Oral Pathol Med. 39:559–564. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu SY, Chang LC, Pan LF, Hung YJ, Lee CH
and Shieh YS: Clinicopathologic significance of tumor cell-lined
vessel and microenvironment in oral squamous cell carcinoma. Oral
Oncol. 44:277–285. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Marcus B, Arenberg D, Lee J, Kleer C,
Chepeha DB, Schmalbach CE, Islam M, Paul S, Pan Q, Hanash S, et al:
Prognostic factors in oral cavity and oropharyngeal squamous cell
carcinoma. Cancer. 101:2779–2787. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Flavell R, Sanjabi S, Wrzesinski S and
Licona-Limón P: The polarization of immune cells in the tumour
environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Akira S and Takeda K: Toll-like receptor
signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Seya T, Akazawa T, Uehori J, Matsumoto M,
Azuma I and Toyoshima K: Role of toll-like receptors and their
adaptors in adjuvant immunotherapy for cancer. Anticancer Res.
23:4369–4376. 2003.PubMed/NCBI
|
|
73
|
Standiford TJ, Kuick R, Bhan U, Chen J,
Newstead M and Keshamouni VG: TGF-β-induced IRAK-M expression in
tumor-associated macrophages regulates lung tumor growth. Oncogene.
30:2475–2484. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Schantz SP, Shillitoe EJ, Brown B and
Campbell B: Natural killer cell activity and head and neck cancer:
A clinical assessment. J Natl Cancer Inst. 77:869–875.
1986.PubMed/NCBI
|
|
75
|
Schantz SP and Goepfert H: Multimodality
therapy and distant metastases. The impact of natural killer cell
activity. Arch Otolaryngol Head Neck Surg. 113:1207–1213. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wahl SM, Wen J and Moutsopoulos NM: The
kiss of death: Interrupted by NK-cell close encounters of another
kind. Trends Immunol. 27:161–164. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zwirner NW, Fuertes MB, Girart MV, Domaica
CI and Rossi LE: Cytokine-driven regulation of NK cell functions in
tumor immunity: Role of the MICA-NKG2D system. Cytokine Growth
Factor Rev. 18:159–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Klöss S, Chambron N, Gardlowski T, Weil S,
Koch J, Esser R, Pogge von Strandmann E, Morgan MA, Arseniev L,
Seitz O and Köhl U: Cetuximab reconstitutes pro-inflammatory
cytokine secretions and tumor-infiltrating capabilities of
sMICA-inhibited NK cells in HNSCC tumor spheroids. Front Immunol.
6:5432015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ghiringhelli F, Menard C, Martin F and
Zitvogel L: The role of regulatory T cells in the control of
natural killer cells: Relevance during tumor progression. Immunol
Rev. 214:229–238. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Buessow SC, Paul RD and Lopez DM:
Influence of mammary tumor progression on phenotype and function of
spleen and in situ lymphocytes in mice. J Natl Cancer Inst.
73:249–255. 1984.PubMed/NCBI
|
|
81
|
Chen WC, Lai CH, Chuang HC, Lin PY and
Chen MF: Inflammation-induced myeloid-derived suppressor cells
associated with squamous cell carcinoma of the head and neck. Head
Neck. 39:347–355. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mao L, Deng WW, Yu GT, Bu LL, Liu JF, Ma
SR, Wu L, Kulkarni AB, Zhang WF and Sun ZJ: Inhibition of SRC
family kinases reduces myeloid-derived suppressor cells in head and
neck cancer. Int J Cancer. 140:1173–1185. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pyzer AR, Cole L, Rosenblatt J and Avigan
DE: Myeloid-derived suppressor cells as effectors of immune
suppression in cancer. Int J Cancer. 139:1915–1926. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Russell SM, Lechner MG, Gong L, Megiel C,
Liebertz DJ, Masood R, Correa AJ, Han J, Puri RK, Sinha UK, et al:
USC-HN2, a new model cell line for recurrent oral cavity squamous
cell carcinoma with immunosuppressive characteristics. Oral Oncol.
47:810–817. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Filipazzi P, Huber V and Rivoltini L:
Phenotype, function and clinical implications of myeloid-derived
suppressor cells in cancer patients. Cancer Immunol Immunother.
61:255–263. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tu E, Chia PZ and Chen W: TGFβ in T cell
biology and tumor immunity: Angel or devil? Cytokine Growth Factor
Rev. 25:423–435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wolfraim LA, Walz TM, James Z, Fernandez T
and Letterio JJ: p21Cip1 and p27Kip1 act in synergy to alter the
sensitivity of naive T cells to TGF-beta-mediated G1 arrest through
modulation of IL-2 responsiveness. J Immunol. 173:3093–3102. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tone Y, Furuuchi K, Kojima Y, Tykocinski
ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3
expression through its enhancer. Nat Immunol. 9:194–202. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ivanov II, McKenzie BS, Zhou L, Tadokoro
CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan
nuclear receptor RORgammat directs the differentiation program of
proinflammatory IL-17+ T helper cells. Cell.
126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Schaefer C, Kim GG, Albers A, Hoermann K,
Myers EN and Whiteside TL: Characteristics of CD4+CD25+ regulatory
T cells in the peripheral circulation of patients with head and
neck cancer. Br J Cancer. 92:913–920. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Boucek J, Mrkvan T, Chovanec M, Kuchar M,
Betka J, Boucek V, Hladikova M, Betka J, Eckschlager T and Rihova
B: Regulatory T cells and their prognostic value for patients with
squamous cell carcinoma of the head and neck. J Cell Mol Med.
14:426–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Strauss L, Bergmann C, Szczepanski M,
Gooding W, Johnson JT and Whiteside TL: A unique subset of
CD4+CD25highFoxp3+ T cells secreting interleukin-10 and
transforming growth factor-beta1 mediates suppression in the tumor
microenvironment. Clin Cancer Res. 13:4345–4354. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Bergmann C, Strauss L, Wang Y, Szczepanski
MJ, Lang S, Johnson JT and Whiteside TL: T regulatory type 1 cells
in squamous cell carcinoma of the head and neck: Mechanisms of
suppression and expansion in advanced disease. Clin Cancer Res.
14:3706–3715. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li C, Zhao Y and Zhang W and Zhang W:
Increased prevalence of T(H)17 cells in the peripheral blood of
patients with head and neck squamous cell carcinoma. Oral Surg Oral
Med Oral Pathol Oral Radiol Endod. 112:81–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Stockinger B, Veldhoen M and Martin B:
Th17 T cells: Linking innate and adaptive immunity. Semin Immunol.
19:353–361. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Laad A, Kode J, Chavan S, Rao R, Fakih AR
and Chiplunkar S: Limiting dilution analysis of proliferating and
cytotoxic lymphocytes in the peripheral blood and tumours of oral
cancer patients. Eur J Cancer B Oral Oncol. 32B:1–342. 1996.
|
|
97
|
Sweeny L, Liu Z, Lancaster W, Hart J,
Hartman YE and Rosenthal EL: Inhibition of fibroblasts reduced head
and neck cancer growth by targeting fibroblast growth factor
receptor. Laryngoscope. 122:1539–1544. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wheeler SE, Shi H, Lin F, Dasari S,
Bednash J, Thorne S, Watkins S, Joshi R and Thomas SM: Enhancement
of head and neck squamous cell carcinoma proliferation, invasion,
and metastasis by tumor-associated fibroblasts in preclinical
models. Head Neck. 36:385–392. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lim KP, Cirillo N, Hassona Y, Wei W,
Thurlow JK, Cheong SC, Pitiyage G, Parkinson EK and Prime SS:
Fibroblast gene expression profile reflects the stage of tumour
progression in oral squamous cell carcinoma. J Pathol. 223:459–469.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Takahashi H, Sakakura K, Kawabata-Iwakawa
R, Rokudai S, Toyoda M, Nishiyama M and Chikamatsu K:
Immunosuppressive activity of cancer-associated fibroblasts in head
and neck squamous cell carcinoma. Cancer Immunol Immunother.
64:1407–1417. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Rosenthal E, McCrory A, Talbert M, Young
G, Murphy-Ullrich J and Gladson C: Elevated expression of TGF-beta1
in head and neck cancer-associated fibroblasts. Mol Carcinog.
40:116–121. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xu BJ, Yan W, Jovanovic B, An AQ, Cheng N,
Aakre ME, Yi Y, Eng J, Link AJ and Moses HL: Quantitative analysis
of the secretome of TGF-beta signaling-deficient mammary
fibroblasts. Proteomics. 10:2458–2470. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Meng W, Xia Q, Wu L, Chen S, He X, Zhang
L, Gao Q and Zhou H: Downregulation of TGF-beta receptor types II
and III in oral squamous cell carcinoma and oral
carcinoma-associated fibroblasts. BMC Cancer. 11:882011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bhowmick NA, Chytil A, Plieth D, Gorska
AE, Dumont N, Shappell S, Washington MK, Neilson EG and Moses HL:
TGF-beta signaling in fibroblasts modulates the oncogenic potential
of adjacent epithelia. Science. 303:848–851. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Nema R, Vishwakarma S, Agarwal R, Panday
RK and Kumar A: Emerging role of sphingosine-1-phosphate signaling
in head and neck squamous cell carcinoma. Onco Targets Ther.
9:3269–3280. 2016.PubMed/NCBI
|