Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene

  • Authors:
    • Jiacui Zhang
    • Keping Jiao
    • Jing Liu
    • Yu Xia
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China, Department of Respiratory Medicine, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China, Department of Endocrine Medicine, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
  • Pages: 6071-6080
    |
    Published online on: September 3, 2018
       https://doi.org/10.3892/ol.2018.9382
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The nuclear factor, erythroid 2 like 2 (Nrf2)/antioxidant response element (ARE) pathway has an important role in the drug resistance of adenocarcinoma, and may act via different mechanisms, including the mitogen‑activated protein kinase (MAPK) pathway. However, it has remained elusive whether metformin affects Nrf2 and regulates Nrf2/ARE in adenocarcinoma. In the present study, reverse‑transcription quantitative polymerase chain reaction, cell transfection, western blot analysis, a Cell Counting kit‑8 assay and apoptosis detection were used to investigate the above in the A549 cell line and cisplatin‑resistant A549 cells (A549/DDP). The results indicated that Nrf2, glutathione S‑transferase α 1 (GSTA1) and ATP‑binding cassette subfamily C member 1 (ABCC1) were dose‑dependently reduced by metformin, and that the effect in A549 cells was greater than that in A549/DDP cells. Treatment with metformin decreased the proliferation and increased the apoptosis of A549 cells to a greater extent than that of A549/DDP cells, and the effect was dose‑dependent. After transfection of A549/DDP cells with Nrf2 short hairpin RNA (shRNA), GSTA1 and ABCC1 were markedly decreased, compared with the shRNA‑control group of A549/DDP, and low dose‑metformin reduced the proliferation and increased apoptosis of A549/DDP cells. Metformin inhibited the Akt and extracellular signal‑regulated kinase (ERK)1/2 pathways in A549 cells and activated the p38 MAPK and c‑Jun N‑terminal kinase (JNK) pathways. Furthermore, in the presence of metformin, inhibitors of the p38 MAPK and JNK signaling pathway at different concentrations did not affect the levels of Nrf2, but inhibitors of the Akt and ERK1/2 pathway at different doses reduced the expression of Nrf2. In addition, inhibitors of p38 MAPK and JNK did not affect the effect of metformin on Nrf2, while inhibitors of Akt and ERK1/2 dose‑dependently enhanced the inhibitory effects of metformin in A549 cells. In conclusion, metformin inhibits the phosphoinositide‑3 kinase/Akt and ERK1/2 signaling pathways in A549 cells to reduce the expression of Nrf2, GSTA1 and ABCC1. Metformin also reverses the resistance of A549/DDP cells to platinum drugs, inhibits the proliferation and promotes apoptosis of drug‑resistant cells. These results may provide a theoretical basis and therapeutic targets for the clinical treatment of tumors.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sporn MB and Liby KT: Nrf2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer. 12:564–571. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Zhao Q, Mao A, Yan J, Sun C, Di C, Zhou X, Li H, Guo R and Zhang H: Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells. Int J Oncol. 48:765–773. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Chen Z1, Ye X, Tang N, Shen S, Li Z, Niu X, Lu S and Xu L: The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. Br J Pharmacol. 171:3196–3211. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Biswas M and Chan JY: Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol. 244:16–20. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Li SS, Chen ZY, Li J, Xu Z and Yang X: Research progress of Keap1/Nrf2/ARE signaling pathway in central nervous system diseases. Chinese Gen Pract. 3641–3644. 2014.

6 

Namani A, Li Y, Wang XJ and Tang X: Modulation of NRF2 signaling pathway by nuclear receptors: Implications for cancer. Biochim Biophys Acta. 1843:1875–1885. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Arnold P, Mojumder D, Detoledo J, Lucius R and Wilms H: Pathophys-iological processes in multiplesclerosis: Focus on nu-clear factor erythroid-2-related factor 2 and emerging pathways. Clin Pharmacol. 6:35–42. 2014.PubMed/NCBI

8 

Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Kumar H, Kim IS, More SV, Kim BW and Choi DK: Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 31:109–139. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N, et al: Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res. 15:3423–3432. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG and Biswal S: Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther. 9:336–346. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Yang X, Wang D, Ma Y, Xu X, Zhu Z, Wang X, Deng H, Li C, Chen M, Tong J, et al: Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol. 289:231–239. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Lubelska K, Milczarek M, Modzelewska K, Krzysztoń-Russjan J, Fronczyk K and Wiktorska K: Interactions between drugs and sulforaphane modulate the drug metabolism enzymatic system. Pharmacol Rep. 64:1243–1252. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N and Jiang T: Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 8:e634042013. View Article : Google Scholar : PubMed/NCBI

15 

Son YO, Pratheeshkumar P, Roy RV, Hitron JA, Wang L, Zhang Z and Shi X: Nrf2/p62 signaling in apoptosis resistance and its Role in cadmium-induced carcinogenesis. J Biol Chem. 289:28660–28675. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Ma X, Zhang J, Liu S, Huang Y, Chen B and Wang D: Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol. 69:485–494. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Lee D, Bae J, Kim YK, Gil M, Lee JY, Park CS and Lee KJ: Inhibitory effects of berberine on lipopolysaccharide-induced inducible nitric oxide synthase and the high-mobility group box 1 release in macrophages. Biochem Biophys Res Commun. 431:506–511. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Cong ZX, Wang HD, Wang JW, Zhou Y, Pan H, Zhang DD and Zhu L: ERK and PI3K signaling cascades induce Nrf2 activation and regulate cell viability partly through Nrf2 in human glioblastoma cells. Oncol Rep. 30:715–716. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Sun Z, Huang Z and Zhang DD: Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One. 4:e65882009. View Article : Google Scholar : PubMed/NCBI

20 

Levy S, Jaiswal AK and Forman HJ: The role of c-Jun phosphorylation in EpRE activation of phase II genes. Free Radic Biol Med. 47:1172–1179. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Abazeed ME, Adams DJ, Hurov KE, Tamayo P, Creighton CJ, Sonkin D, Giacomelli AO, Du C, Fries DF, Wong KK, et al: Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res. 73:6289–6298. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Yip PY: Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res. 4:165–176. 2015.PubMed/NCBI

23 

Romero IL, McCormick A, McEwen KA, Park S, Karrison T, Yamada SD, Pannain S and Lengyel E: Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet Gynecol. 119:61–67. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Lai SW, Liao KF, Chen PC, Tsai PY, Hsieh DP and Chen CC: Antidiabetes drugs correlate with decreased risk of lung cancer: A population-based observation in Taiwan. Clin Lung Cancer. 13:143–148. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Kobayashi M, Kato K, Iwama H, Fujihara S, Nishiyama N, Mimura S, Toyota Y, Nomura T, Nomura K, Tani J, et al: Antitumor effect of metformin in esophageal cancer: In vitro study. Int J Oncol. 42:517–524. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Kato K, Gong J, Iwama H, Kitanaka A, Tani J, Miyoshi H, Nomura K, Mimura S, Kobayashi M, Aritomo Y, et al: The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol Cancer Ther. 11:549–560. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Colquhoun AJ, Venier NA, Vandersluis AD, Besla R, Sugar LM, Kiss A, Fleshner NE, Pollak M, Klotz LH and Venkateswaran V: Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis. 15:346–352. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Ashinuma H, Takiguchi Y, Kitazono S, Kitazono-Saitoh M, Kitamura A, Chiba T, Tada Y, Kurosu K, Sakaida E, Sekine I, et al: Antiproliferative action of metformin in human lung cancer cell lines. Oncol Rep. 28:8–14. 2012.PubMed/NCBI

29 

Koeck S, Amann A, Huber JM, Gamerith G, Hilbe W and Zwierzina H: The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol Lett. 11:2946–2952. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Yue W, Yang CS, DiPaola RS and Tan XL: Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res (Phila). 7:388–397. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Ferla R, Haspinger E and Surmacz E: Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett. 4:1077–1081. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE and Thor AD: Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle. 8:2031–2040. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Vazquez-Martin A, Oliveras-Ferraros C and Menendez JA: The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle. 8:88–96. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Hanna RK, Zhou C, Malloy KM, Sun L, Zhong Y, Gehrig PA and Bae-Jump VL: Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol. 125:458–469. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE, Saad MJ and Carvalheira JB: Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res. 17:3993–4005. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN and Bruchim I: In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol. 110:246–250. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Yu C, Jiao Y, Xue J, Zhang Q, Yang H, Xing L, Chen G, Wu J, Zhang S, Zhu W and Cao J: Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci. 13:1560–1569. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Rodenak-Kladniew B, Castro A, Stärkel P, De Saeger C, de Bravo García M and Crespo R: Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 199:48–59. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, Jeong HG and Kang KW: Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med. 45:537–546. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Vollrath V, Wielandt AM, Iruretagoyena M and Chianale J: Role of NrO in the regulation of the Mrp2 (ABCC2) gene. Biochem J. 395:599–609. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Tang X, Wang H, Fan L, Wu X, Xin A, Ren H and Wang XJ: Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med. 50:1599–1609. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Hwang YP, Choi JH, Choi JM, Chung YC and Jeong HG: Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity. Food Chem Toxicol. 49:2081–2089. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Soeur J, Eilstein J, Léreaux G, Jones C and Marrot L: Skin resistance to oxidative stress induced by resveratrol: From Nrf2 activation to GSH biosynthesis. Free Radic Biol Med. 78:213–223. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Meyer Zu, Schwabedissen HE, Grube M, Heydrich B, Linnemann K, Fusch C, Kroemer HK and Jedlitschky G: Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: Effects of gestational age and cellular differentiation. Am J Pathol. 166:39–48. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Lu BC, Li J, Yu WF, Zhang GZ, Wang HM and Ma HM: Elevated expression of Nrf2 mediates multidrug resistance in CD133+ head and neck squamous cell carcinoma stem cells. Oncol Lett. 12:4333–4338. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Wang J, Liu X and Jiang W: Co-transfection of MRP and bcl-2 antisense S-oligodeoxynucleotides reduces drug resistance in cisplatin-resistant lung cancer cells. Chin Med J (Engl). 113:957–960. 2000.PubMed/NCBI

48 

Neubauer H, Stefanova M, Solomayer E, Meisner C, Zwirner M, Wallwiener D and Fehm T: Predicting resistance to platinum-containing chemotherapy with the ATP tumor chemosensitivity assay in primary ovarian cancer. Anticancer Res. 28:949–955. 2008.PubMed/NCBI

49 

Meijerman I, Beijnen JH and Schellens JH: Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat Rev. 34:505–520. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Stein SC, Woods A, Jones NA, Davison MD and Carling D: The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 345:437–443. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Tsuji K, Kisu I, Banno K, Yanokura M, Ueki A, Masuda K, Kobayashi Y, Yamagami W, Nomura H, Susumu N and Aoki D: Metformin: A possible drug for treatment of endometrial cancer. Open J Obstet Gynecol. 2:1–6. 2012. View Article : Google Scholar

52 

Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M and Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 21:6082–6090. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Rattan R, Graham RP, Maguire JL, Giri S and Shridhar V: Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia. 13:483–491. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, Yu K, Ruddy DA, Aguirre AJ, Kim JW, et al: KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. Elife. 6:pii: e18970. 2017. View Article : Google Scholar

55 

Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al: COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39:(Database Issue). D945–D950. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Samatar AA and Poulikakos PI: Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 13:928–942. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Pilot-Storck F, Chopin E, Rual JF, Baudot A, Dobrokhotov P, Robinson-Rechavi M, Brun C, Cusick ME, Hill DE, Schaeffer L, et al: Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor. Mol Cell Proteomics. 9:1578–1593. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Aksamitiene E, Kiyatkin A and Kholodenko BN: Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: A fine balance. Biochem Soc Trans. 40:139–146. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Fruman DA and Rommel C: P13K and cancer: Lessons, challenges and opportunities. Nat Rev Drug Discov. 13:140–156. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, et al: Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 3:192–222. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, de Stanchina E, et al: Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov. 4:334–347. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J and Rosen N: AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 19:58–71. 2011. View Article : Google Scholar : PubMed/NCBI

65 

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, et al: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: How mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 3:1068–1111. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, Diefenbacher M, Stamp G and Downward J: RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell. 153:1050–1063. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Zhang HK, Xu TJ, Ju YH and Yu AM: PI3K/AKT and MAPK/ERK pathways induce cell cycle arrest and apoptosis in A549 cell through the regulation of FOXO1 transcription factor. J China Med Univ. 908–911. 2012.

68 

Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q and Chen Y: Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol. 9:832016. View Article : Google Scholar : PubMed/NCBI

69 

Tian Y, Liu Q, He X, Yuan X, Chen Y, Chu Q and Wu K: Emerging roles of Nrf2 signal in non-small cell lung cancer. J Hematol Oncol. 9:142016. View Article : Google Scholar : PubMed/NCBI

70 

Singer E, Judkins J, Salomonis N, Matlaf L, Soteropoulos P, McAllister S and Soroceanu L: Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis. 6:e16012015. View Article : Google Scholar : PubMed/NCBI

71 

Del Vecchio CA, Feng Y, Sokol ES, Tillman EJ, Sanduja S, Reinhardt F and Gupta PB: De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 12:e10019452014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang J, Jiao K, Liu J and Xia Y: Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol Lett 16: 6071-6080, 2018.
APA
Zhang, J., Jiao, K., Liu, J., & Xia, Y. (2018). Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncology Letters, 16, 6071-6080. https://doi.org/10.3892/ol.2018.9382
MLA
Zhang, J., Jiao, K., Liu, J., Xia, Y."Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene". Oncology Letters 16.5 (2018): 6071-6080.
Chicago
Zhang, J., Jiao, K., Liu, J., Xia, Y."Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene". Oncology Letters 16, no. 5 (2018): 6071-6080. https://doi.org/10.3892/ol.2018.9382
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang J, Jiao K, Liu J and Xia Y: Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol Lett 16: 6071-6080, 2018.
APA
Zhang, J., Jiao, K., Liu, J., & Xia, Y. (2018). Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncology Letters, 16, 6071-6080. https://doi.org/10.3892/ol.2018.9382
MLA
Zhang, J., Jiao, K., Liu, J., Xia, Y."Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene". Oncology Letters 16.5 (2018): 6071-6080.
Chicago
Zhang, J., Jiao, K., Liu, J., Xia, Y."Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene". Oncology Letters 16, no. 5 (2018): 6071-6080. https://doi.org/10.3892/ol.2018.9382
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team