|
1
|
DiMasi JA, Reichert JM, Feldman L and
Malins A: Clinical approval success rates for investigational
cancer drugs. Clin Pharmacol Ther. 94:329–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kola I and Landis J: Can the
pharmaceutical industry reduce attrition rates? Nat Rev Drug
Discov. 3:711–715. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rosfjord E, Lucas J, Li G and Gerber HP:
Advances in patient-derived tumor xenografts: From target
identification to predicting clinical response rates in oncology.
Biochem Pharmacol. 91:135–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chawla SP, Cranmer LD, Van Tine BA, Reed
DR, Okuno SH, Butrynski JE, Adkins DR, Hendifar AE, Kroll S and
Ganjoo KN: Van tine Phase II study of the safety and antitumor
activity of the hypoxia-activated prodrug TH-302 in combination
with doxorubicin in patients with advanced soft tissue sarcoma. J
Clin Oncol. 32:3299–3306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Schödel J, Grampp S, Maher ER, Moch H,
Ratcliffe PJ, Russo P and Mole DR: Hypoxia-inducible transcription
factors, and renal cancer. Eur Urol. 69:646–657. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Spranger S, Bao R and Gajewski TF:
Melanoma-intrinsic β-catenin signalling prevents anti-tumour
immunity. Nature. 523:231–235. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rivera LB and Bergers G: Cancer. Tumor
angiogenesis from foe to friend. Science. 349:694–695. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mungenast F and Thalhammer T: Estrogen
biosynthesis and action in ovarian cancer. Front Endocrinol
(Lausanne). 5:1922014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nwabo Kamdje AH, Seke Etet PF, Vecchio L,
Muller JM, Krampera M and Lukong KE: Signaling pathways in breast
cancer: Therapeutic targeting of the microenvironment. Cell Signal.
26:2843–2856. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Attard G, Parker C, Eeles RA, Schröder F,
Tomlins SA, Tannock I, Drake CG and de Bono JS: Prostate cancer.
Lancet. 387:70–82. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Huang M, Shen A, Ding J and Geng M:
Molecularly targeted cancer therapy: Some lessons from the past
decade. Trends Pharmacol Sci. 35:41–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sharpless NE and Depinho RA: The mighty
mouse: Genetically engineered mouse models in cancer drug
development. Nat Rev Drug Discov. 5:741–754. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang R, Jin S, Rao W, Song F, Yin Q, Wang
Y, Wang L, Xi Y, Zhang X, Wang M and Ge H: OVA12, a novel tumor
antigen, promotes cancer cell growth and inhibits
5-fluorouracil-induced apoptosis. Cancer Lett. 357:141–151. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Park H, Kim Y, Sul JW, Jeong IG, Yi HJ,
Ahn JB, Kang JS, Yun J, Hwang JJ and Kim CS: Synergistic anticancer
efficacy of MEK inhibition and dual PI3K/mTOR inhibition in
castration-resistant prostatecancer. Prostate. 75:1747–1759. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Girotti MR, Lopes F, Preece N,
Niculescu-Duvaz D, Zambon A, Davies L, Whittaker S, Saturno G,
Viros A, Pedersen M, et al: Paradox-breaking RAF inhibitors that
also target SRC are effective in drug-resistant BRAF mutant
melanoma. Cancer Cell. 27:85–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wykosky J, Hu J, Gomez GG, Taylor T, Villa
GR, Pizzo D, VandenBerg SR, Thorne AH, Chen CC, Mischel PS, et al:
A urokinase receptor-Bim signaling axis emerges during EGFR
inhibitor resistance in mutant EGFR glioblastoma. Cancer Res.
75:394–404. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khaled WT and Liu P: Cancer mouse models:
Past, present and future. Semin Cell Dev Biol. 27:54–60. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hajitou A, Lev DC, Hannay JA, Korchin B,
Staquicini FI, Soghomonyan S, Alauddin MM, Benjamin RS, Pollock RE,
Gelovani JG, et al: A preclinical model for predicting drug
response in soft-tissue sarcoma with targeted AAVP molecular
imaging. Proc Natl Acad Sci USA. 105:4471–4476. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hu B, Nandhu MS, Sim H, Agudelo-Garcia PA,
Saldivar JC, Dolan CE, Mora ME, Nuovo GJ, Cole SE and Viapiano MS:
Fibulin-3 promotes glioma growth and resistance through a novel
paracrine regulation of Notch signaling. Cancer Res. 72:3873–3885.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kung PP, Martinez R, Zhu Z, Zager M,
Blasina A, Rymer I, Hallin J, Xu M, Carroll C, Chionis J, et al:
Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a
critical role in triple-negative breast cancer. Mol Cancer Ther.
13:2104–2115. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Saland E, Boutzen H, Castellano R, Pouyet
L, Griessinger E, Larrue C, de Toni F, Scotland S, David M,
Danet-Desnoyers G, et al: A robust and rapid xenograft model to
assess efficacy of chemotherapeutic agents for human acute myeloid
leukemia. Blood Cancer J. 5:e2972015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Santel A, Aleku M, Röder N, Möpert K,
Durieux B, Janke O, Keil O, Endruschat J, Dames S, Lange C, et al:
Atu027 prevents pulmonary metastasis in experimental and
spontaneous mouse metastasis models. Clin Cancer Res. 16:5469–5480.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lee SH, Hong JH, Park HK, Park JS, Kim BK,
Lee JY, Jeong JY, Yoon GS, Inoue M, Choi GS and Lee IK: Colorectal
cancer-derived tumor spheroids retain the characteristics of
original tumors. Cancer Lett. 367:34–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang X and Lewis MT: Establishment of
patient-derived xenograft (PDX) models of human breast cancer. Curr
Protoc Mouse Biol. 3:21–29. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chou J, Fitzgibbon MP, Mortales CL,
Towlerton AM, Upton MP, Yeung RS, McIntosh MW and Warren EH:
Phenotypic and transcriptional fidelity of patient-derived colon
cancer xenografts in immune-deficient mice. PLoS One. 8:e798742013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cho YB, Hong HK, Choi YL, Oh E, Joo KM,
Jin J, Nam DH, Ko YH and Lee WY: Colorectal cancer patient-derived
xenografted tumors maintain characteristic features of the original
tumors. J Surg Res. 187:502–509. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Eirew P, Steif A, Khattra J, Ha G, Yap D,
Farahani H, Gelmon K, Chia S, Mar C, Wan A, et al: Dynamics of
genomic clones in breast cancer patient xenografts at single-cell
resolution. Nature. 518:422–426. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Emes RD, Goodstadt L, Winter EE and
Ponting CP: Comparison of the genomes ofhuman and mouse lays the
foundation of genome zoology. Hum Mol Genet. 12:701–709. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pelleitier M and Montplaisir S: The nude
mouse: A model of deficient T-cell function. Methods Achiev Exp
Pathol. 7:149–166. 1975.PubMed/NCBI
|
|
31
|
Lapidot T, Fajerman Y and Kollet O:
Immune-deficient SCID and NOD/SCID mice models as functional assays
for studying normal and malignant human hematopoiesis. J Mol Med.
75:664–673. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shultz LD, Lyons BL, Burzenski LM, Gott B,
Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, et al:
Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R
gamma null mice engrafted with mobilized human hemopoietic stem
cells. J Immunol. 174:6477–6489. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gupta GP and Massagué J: Cancer
metastasis: Building a framework. Cell. 127:679–695. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alunni-Fabbroni M and Sandri MT:
Circulating tumour cells in clinical practice: Methods of detection
and possible characterization. Methods. 50:289–297. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Allard WJ, Matera J, Miller MC, Repollet
M, Connelly MC, Rao C, Tibbe AG, Uhr JW and Terstappen LW: Tumor
cells circulate in the peripheral blood of all major carcinomas but
not in healthy subjects or patients with nonmalignant diseases.
Clin Cancer Res. 10:6897–6904. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin
W, Kumar D, Goodman JC, Groves MD and Marchetti D: The
Identification and characterization of breast cancer CTCs competent
for brain metastasis. Sci Transl Med. 5:180ra482013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yu M, Bardia A, Aceto N, Bersani F, Madden
MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al:
Cancer therapy. Ex vivo culture of circulating breast tumor cells
for individualized testing of drug susceptibility. Science.
345:216–220. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bertotti A, Migliardi G, Galimi F, Sassi
F, Torti D, Isella C, Corà D, Di Nicolantonio F, Buscarino M, Petti
C, et al: A molecularly annotated platform of patient-derived
xenografts (‘xenopatients’) identifies HER2 as an effective
therapeutic target in cetuximab-resistant colorectal cancer. Cancer
Discov. 1:508–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hughes AD, Marshall JR, Keller E, Powderly
JD, Greene BT and King MR: Differential drug responses of
circulating tumor cells within patient blood. Cancer Lett.
352:28–35. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hodgkinson CL, Morrow CJ, Li Y, Metcalf
RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris
K, et al: Tumorigenicity and genetic profiling of circulating
tumorcells in small-cell lung cancer. Nat Med. 20:897–903. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cancer Genome Atlas Network, .
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Peters LJ: Radiation therapy tolerance
limits. For one or for all?-Janeway Lecture. Cancer. 77:2379–2385.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
van Dijk LK, Boerman OC, Kaanders JH and
Bussink J: PET Imaging in head and neck cancer patients to monitor
treatment response: A future role for EGFR-targeted imaging. Clin
Cancer Res. 21:3602–3609. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Stebbing J, Paz K, Schwartz GK, Wexler LH,
Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, et
al: Patient-derived xenografts for individualized care in advanced
sarcoma. Cancer. 120:2006–2015. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Garralda E, Paz K, López-Casas PP, Jones
S, Katz A, Kann LM, López-Rios F, Sarno F, Al-Shahrour F, Vasquez
D, et al: Integrated next-generation sequencing and avatar mouse
models for personalized cancer treatment. Clin Cancer Res.
20:2476–2484. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jones N, Bonnet F, Sfar S, Lafitte M,
Lafon D, Sierankowski G, Brouste V, Banneau G, Tunon de Lara C,
Debled M, et al: Comprehensive analysis of PTEN status in breast
carcinomas. Int J Cancer. 133:323–334. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Berg JS, Amendola LM, Eng C, Van Allen E,
Gray SW, Wagle N, Rehm HL, DeChene ET, Dulik MC, Hisama FM, et al:
Processes and preliminary outputs for identification of actionable
genes as incidental findings in genomic sequence data in the
Clinical Sequencing Exploratory Research Consortium. Genet Med.
15:860–867. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Garraway LA and Jänne PA: Circumventing
cancer drug resistance in the era of personalized medicine. Cancer
Discov. 2:214–226. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chiron M, Bagley RG, Pollard J, Mankoo PK,
Henry C, Vincent L, Geslin C, Baltes N and Bergstrom DA:
Differential antitumor activity of aflibercept and bevacizumab in
patient-derived xenograft models of colorectal cancer. Mol Cancer
Ther. 13:1636–1644. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Monsma DJ, Cherba DM, Eugster EE, Dylewski
DL, Davidson PT, Peterson CA, Borgman AS, Winn ME, Dykema KJ, Webb
CP, et al: Melanoma patient derived xenografts acquire distinct
Vemurafenib resistance mechanisms. Am J Cancer Res. 5:1507–1518.
2015.PubMed/NCBI
|
|
51
|
Clohessy JG and Pandolfi PP: Mouse
hospital and co-clinical trial project-from bench to bedside. Nat
Rev Clin Oncol. 12:491–498. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lunardi A and Pandolfi PP: A co-clinical
platform to accelerate cancer treatment optimization. Trends Mol
Med. 21:1–5. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen Z, Akbay E, Mikse O, Tupper T, Cheng
K, Wang Y, Tan X, Altabef A, Woo SA, Chen L, et al: Co-clinical
trials demonstrate superiority of crizotinib to chemotherapy in
ALK-rearranged non-small cell lungcancer and predict strategies to
overcome resistance. Clin Cancer Res. 20:1204–1211. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kwong LN, Boland GM, Frederick DT, Helms
TL, Akid AT, Miller JP, Jiang S, Cooper ZA, Song X, Seth S, et al:
Co-clinical assessment identifies patterns of BRAF inhibitor
resistance in melanoma. J Clin Invest. 125:1459–1470. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Malaney P, Nicosia SV and Davé V: One
mouse, one patient paradigm: New avatars of personalized cancer
therapy. Cancer Lett. 344:1–12. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nardella C, Lunardi A, Patnaik A, Cantley
LC and Pandolfi PP: The APL paradigm and the ‘co-clinical trial’
project. Cancer Discov. 1:108–116. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen Z, Cheng K, Walton Z, Wang Y, Ebi H,
Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al: A murine lung
cancer co-clinical trial identifies genetic modifiers of
therapeutic response. Nature. 483:613–617. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cassidy JW, Caldas C and Bruna A:
Maintaining tumor heterogeneity in patient-derived tumor
xenografts. Cancer Res. 75:2963–2968. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Morton JJ, Bird G, Keysar SB, Astling DP,
Lyons TR, Anderson RT, Glogowska MJ, Estes P, Eagles JR, Le PN, et
al: XactMice: Humanizing mouse bone marrow enables microenvironment
reconstitution in a patient-derived xenograft model of head and
neck cancer. Oncogene. 35:290–300. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Julien S, Merino-Trigo A, Lacroix L,
Pocard M, Goéré D, Mariani P, Landron S, Bigot L, Nemati F,
Dartigues P, et al: Characterization of a large panel of
patient-derived tumor xenografts representing the clinical
heterogeneity of human colorectal cancer. Clin Cancer Res.
18:5314–5328. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hidalgo M, Amant F, Biankin AV, Budinská
E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo
GM, et al: Patient-derived xenograft models: An emerging platform
for translational cancer research. Cancer Discov. 4:998–1013. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cottu P, Marangoni E, Assayag F, de
Cremoux P, Vincent-Salomon A, Guyader Ch, de Plater L, Elbaz C,
Karboul N, Fontaine JJ, et al: Modeling of response to endocrine
therapy in a panel of human luminal breast cancer xenografts.
Breast Cancer Res Treat. 133:595–606. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
DeRose YS, Wang G, Lin YC, Bernard PS,
Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, et al:
Tumor grafts derived from women with breast cancer authentically
reflect tumor pathology, growth, metastasis and disease outcomes.
Nat Med. 17:1514–1520. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang X, Claerhout S, Prat A, Dobrolecki
LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano
M, et al: A renewable tissue resource of phenotypically stable,
biologically and ethnically diverse, patient-derived human breast
cancer xenograft models. Cancer Res. 73:4885–4897. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kabos P, Finlay-Schultz J, Li C, Kline E,
Finlayson C, Wisell J, Manuel CA, Edgerton SM, Harrell JC, Elias A
and Sartorius CA: Patient-derived luminal breast cancer xenografts
retain hormone receptor heterogeneity and help define unique
estrogen-dependent gene signatures. Breast Cancer Res Treat.
135:415–432. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Petrillo LA, Wolf DM, Kapoun AM, Wang NJ,
Barczak A, Xiao Y, Korkaya H, Baehner F, Lewicki J, Wicha M, et al:
Xenografts faithfully recapitulate breast cancer-specific gene
expression patterns of parent primary breast tumors. Breast Cancer
Res Treat. 135:913–922. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Moro M, Bertolini G, Tortoreto M,
Pastorino U, Sozzi G and Roz L: Patient-derived xenografts of non
small cell lung cancer: Resurgence of an old model for
investigation of modern concepts of tailored therapy and cancer
stem cells. J Biomed Biotechnol. 2012:5685672012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nakajima T, Geddie W, Anayama T, Ko HM, da
Cunha Santos G, Boerner S, Wang T, Wang YH, Li M, Pham NA, et al:
Patient-derived tumor xenograft models established from samples
obtained by endobronchial ultrasound-guided transbronchial needle
aspiration. Lung Cancer. 89:110–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dangles-Marie V, Pocard M, Richon S,
Weiswald LB, Assayag F, Saulnier P, Judde JG, Janneau JL, Auger N,
Validire P, et al: Establishment of human colon cancer cell lines
from fresh tumors versus xenografts: Comparison of success rate and
cell line features. Cancer Res. 67:398–407. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Puig I, Chicote I, Tenbaum SP, Arqués O,
Herance JR, Gispert JD, Jimenez J, Landolfi S, Caci K, Allende H,
et al: A personalized preclinical model to evaluate the metastatic
potential of patient-derived colon cancer initiating cells. Clin
Cancer Res. 19:6787–6801. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Peng S, Creighton CJ, Zhang Y, Sen B,
Mazumdar T, Myers JN, Lai SY, Woolfson A, Lorenzi MV, Bell D, et
al: Tumor grafts derived from patients with head and neck squamous
carcinoma authentically maintain the molecular and histologic
characteristics of human cancers. J Transl Med. 11:1982013.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Priolo C, Agostini M, Vena N, Ligon AH,
Fiorentino M, Shin E, Farsetti A, Pontecorvi A, Sicinska E and Loda
M: Establishment and genomic characterization of mouse xenografts
of human primary prostate tumors. Am J Pathol. 176:1901–1913. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wetterauer C, Vlajnic T, Schüler J,
Gsponer JR, Thalmann GN, Cecchini M, Schneider J, Zellweger T,
Pueschel H, Bachmann A, et al: Early development of human lymphomas
in a prostate cancer xenograft program using triple knock-out
immunocompromised mice. Prostate. 75:585–592. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Boone JD, Dobbin ZC, Straughn JM Jr and
Buchsbaum DJ: Ovarian and cervical cancer patient derived
xenografts: The past, present, and future. Gynecol Oncol.
138:486–491. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bankert RB, Balu-Iyer SV, Odunsi K, Shultz
LD, Kelleher RJ Jr, Barnas JL, Simpson-Abelson M, Parsons R and
Yokota SJ: Humanized mouse model of ovarian cancer recapitulates
patient solid tumor progression, ascites formation, and metastasis.
PLoS one. 6:e244202011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Han C, Shen J, Wang H, Yu L, Qian X, Liu B
and Guan W: Personalized primary tumor xenograft model established
for the pre-clinical trial to guide postoperative chemotherapy. Med
Hypotheses. 79:705–708. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xue A, Julovi SH, Samra JS, et al:
Establishment of patient-derived subrenal capsule xenograft of
pancreatic cancersin NOD/SCID mice: Potential models for drug
responses of personalized chemotherapy. Proceedings of the
Australian Health and Medical Research Congress (AHMRC). 2012.
|
|
78
|
Pavía-Jiménez A, Tcheuyap VT and
Brugarolas J: Establishing a human renal cell carcinoma tumorgraft
platform for preclinical drug testing. Nat Protoc. 9:1848–1859.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mohseni MJ, Amanpour S, Muhammadnejad S,
Sabetkish S, Muhammadnejad A, Heidari R, Haddadi M, Mazaheri Z,
Vasei M and Kajbafzadeh AM: Establishment of a patient-derived
Wilms' tumor xenograft model: A promising tool for individualized
cancer therapy. J Pediatr Urol. 10:123–129. 2014. View Article : Google Scholar : PubMed/NCBI
|