|
1
|
Yao S, Cheng M, Zhang Q, Wasik M, Kelsh R
and Winkler C: Anaplastic lymphoma kinase is required for
neurogenesis in the developing central nervous system of zebrafish.
PLoS One. 8:e637572013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Morris SW, Kirstein MN, Valentine MB,
Dittmer KG, Shapiro DN, Saltman DL and Look AT: Fusion of a kinase
gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's
lymphoma. Science. 263:1281–1284. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Morris SW, Kirstein MN, Valentine MB,
Dittmer K, Shapiro DN, Look AT and Saltman DL: Fusion of a kinase
gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's
lymphoma. Science. 267:316–317. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Soda M, Choi YL, Enomoto M, Takada S,
Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K,
Hatanaka H, et al: Identification of the transforming EML4-ALK
fusion gene in non-small-cell lung cancer. Nature. 448:561–566.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mariño-Enríquez A and Dal Cin P: ALK as a
paradigm of oncogenic promiscuity: Different mechanisms of
activation and different fusion partners drive tumors of different
lineages. Cancer Genet. 206:357–373. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ninomiya H, Kato M, Sanada M, Takeuchi K,
Inamura K, Motoi N, Nagano H, Nomura K, Sakao Y, Okumura S, et al:
Allelotypes of lung adenocarcinomas featuring ALK fusion
demonstrate fewer onco- and suppressor gene changes. BMC Cancer.
13:82013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bunting SF and Nussenzweig A: End-joining,
translocations and cancer. Nat Rev Cancer. 13:443–454. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shaw AT and Engelman JA: ALK in lung
cancer: Past, present, and future. J Clin Oncol. 31:1105–1111.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cui S, Zhang W, Xiong L, Pan F, Niu Y, Chu
T, Wang H, Zhao Y and Jiang L: Use of capture-based next-generation
sequencing to detect ALK fusion in plasma cell-free DNA of patients
with non-small-cell lung cancer. Oncotarget. 8:2771–2780.
2017.PubMed/NCBI
|
|
10
|
Pekar-Zlotin M, Hirsch FR, Soussan-Gutman
L, Ilouze M, Dvir A, Boyle T, Wynes M, Miller VA, Lipson D, Palmer
GA, et al: Fluorescence in situ hybridization,
immunohistochemistry, and next-generation sequencing for detection
of EML4-ALK rearrangement in lung cancer. Oncologist. 20:316–322.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hofman P, Ilie M, Hofman V, Roux S, Valent
A, Bernheim A, Alifano M, Leroy-Ladurie F, Vaylet F, Rouquette I,
et al: Immunohistochemistry to identify EGFR mutations or ALK
rearrangements in patients with lung adenocarcinoma. Ann Oncol.
23:1738–1743. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li T, Maus MK, Desai SJ, Beckett LA,
Stephens C, Huang E, Hsiang J, Zeger G, Danenberg KD, Astrow SH and
Gandara DR: Large-scale screening and molecular characterization of
EML4-ALK fusion variants in archival non-small-cell lung cancer
tumor specimens using quantitative reverse transcription polymerase
chain reaction assays. J Thorac Oncol. 9:18–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jaffe ES, Harris NL, Stein H and Vardiman
JW: Pathology and genetics of tumours of haematopoietic and
lymphoid tissues. IARC Press. 2001.
|
|
14
|
Cheson BD, Fisher RI, Barrington SF,
Cavalli F, Schwartz LH, Zucca E, Lister TA; Alliance, Australasian
Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group;
European Mantle Cell Lymphoma Consortium, ; et al: Recommendations
for initial evaluation, staging, and response assessment of Hodgkin
and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol.
32:3059–3068. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Medeiros LJ and Elenitobajohnson KS:
Anaplastic large cell lymphoma. Am J Clin Pathol. 127:707–722.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gustafson S, Medeiros LJ, Kalhor N and
Buesoramos CE: Anaplastic large cell lymphoma: Another entity in
the differential diagnosis of small round blue cell tumors. Ann
Diagn Pathol. 13:413–427. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Damm-Welk C, Pillon M, Woessmann W and
Mussolin L: Prognostic factors in paediatric anaplastic large cell
lymphoma: Role of ALK. Front Biosci (Schol Ed). 7:205–216. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Holla VR, Elamin YY, Bailey AM, Johnson
AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA,
Shaw KR, et al: ALK: A tyrosine kinase target for cancer therapy.
Cold Spring Harb Mol Case Stud. 3:a0011152017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Savage KJ, Harris NL, Vose JM, Ullrich F,
Jaffe ES, Connors JM, Rimsza L, Pileri SA, Chhanabhai M, Gascoyne
RD, et al: ALK-anaplastic large-cell lymphoma is clinically and
immunophenotypically different from both ALK+ ALCL and peripheral
T-cell lymphoma, not otherwise specified: Report from the
International peripheral T-cell lymphoma project. Blood.
111:5496–5504. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Roskoski R Jr: Anaplastic lymphoma kinase
(ALK): Structure, oncogenic activation, and pharmacological
inhibition. Pharmacol Res. 68:68–94. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Delsol G, Lamant L, Mariamé B, Pulford K,
Dastugue N, Brousset P, Rigal-Huguet F, al Saati T, Cerretti DP,
Morris SW and Mason DY: A new subtype of large B-cell lymphoma
expressing the ALK kinase and lacking the 2; 5 translocation.
Blood. 89:1483–1490. 1997.PubMed/NCBI
|
|
22
|
Laurent C, Do C, Gascoyne RD, Lamant L,
Ysebaert L, Laurent G, Delsol G and Brousset P: Anaplastic lymphoma
kinase-positive diffuse large B-cell lymphoma: A rare
clinicopathologic entity with poor prognosis. J Clin Oncol.
27:4211–4216. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gascoyne RD, Lamant L, Martin-Subero JI,
Lestou VS, Harris NL, Müller-Hermelink HK, Seymour JF, Campbell LJ,
Horsman DE, Auvigne I, et al: ALK-positive diffuse large B-cell
lymphoma is associated with Clathrin-ALK rearrangements: Report of
6 cases. Blood. 102:2568–2573. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Van Roosbroeck K, Cools J, Dierickx D,
Thomas J, Vandenberghe P, Stul M, Delabie J, De Wolf-Peeters C,
Marynen P and Wlodarska I: ALK-positive large B-cell lymphomas with
cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 95:509–513.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bedwell C, Rowe D, Moulton D, Jones G,
Bown N and Bacon CM: Cytogenetically complex SEC31A-ALK fusions are
recurrent in ALK-positive large B-cell lymphomas. Haematologica.
96:343–346. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Takeuchi K, Soda M, Togashi Y, Ota Y,
Sekiguchi Y, Hatano S, Asaka R, Noguchi M and Mano H:
Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large
B-cell lymphoma. Haematologica. 96:464–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
D'Amore ES, Visco C, Menin A, Famengo B,
Bonvini P and Lazzari E: STAT3 pathway is activated in ALK-positive
large B-cell lymphoma carrying SQSTM1-ALK rearrangement and
provides a possible therapeutic target. Am J Surg Pathol.
37:780–786. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ettinger DS, Akerley W, Borghaei H, Chang
AC, Cheney RT, Chirieac LR, D'Amico TA, Demmy TL, Ganti AK,
Govindan R, et al: Non-small cell lung cancer. J Natl Compr Canc
Netw. 10:1236–1271. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Koivunen JP, Mermel C, Zejnullahu K,
Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas
R, et al: EML4-ALK fusion gene and efficacy of an ALK kinase
inhibitor in lung cancer. Clin Cancer Res. 14:4275–4283. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rodig SJ, Mino-Kenudson M, Dacic S, Yeap
BY, Shaw A, Barletta JA, Stubbs H, Law K, Lindeman N, Mark E, et
al: Unique clinicopathologic features characterize ALK-rearranged
lung adenocarcinoma in the western population. Clin Cancer Res.
15:5216–5223. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shaw AT, Yeap BY, Mino-Kenudson M,
Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S,
McDermott U, et al: Clinical features and outcome of patients with
non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol.
27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li Y, Li Y, Yang T, Wei S, Wang J, Wang M,
Wang Y, Zhou Q, Liu H and Chen J: Clinical significance of EML4-ALK
fusion gene and association with EGFR and KRAS gene mutations in
208 Chinese patients with non-small cell lung cancer. PLoS One.
8:e520932013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shaozhang Z, Xiaomei L, Aiping Z, Jianbo
H, Xiangqun S and Qitao Y: Detection of EML4-ALK fusion genes in
non-small cell lung cancer patients with clinical features
associated with EGFR mutations. Genes Chromosomes Cancer.
51:925–932. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang X, Zhang S, Yang X, Yang J, Zhou Q,
Yin L, An S, Lin J, Chen S, Xie Z, et al: Fusion of EML4 and ALK is
associated with development of lung adenocarcinomas lacking EGFR
and KRAS mutations and is correlated with ALK expression. Mol
Cancer. 9:1882010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wong DW, Leung EL, So KK, Tam IY, Sihoe
AD, Cheng LC, Ho KK, Au JS, Chung LP and Pik Wong M: University of
Hong Kong Lung Cancer Study Group: The EML4-ALK fusion gene is
involved in various histologic types of lung cancers from
nonsmokers with wild-type EGFR and KRAS. Cancer. 115:1723–1733.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Guo Y, Ma J, Lyu X, Liu H, Wei B, Zhao J,
Fu S, Ding L and Zhang J: Non-small cell lung cancer with EML4-ALK
translocation in Chinese male never-smokers is characterized with
early-onset. BMC Cancer. 14:8342014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ou SH, Bartlett CH, Mino-Kenudson M, Cui J
and Iafrate AJ: Crizotinib for the treatment of ALK-rearranged
non-small cell lung cancer: A success story to usher in the second
decade of molecular targeted therapy in oncology. Oncologist.
17:1351–1375. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rikova K, Guo A, Zeng Q, Possemato A, Yu
J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global survey
of phosphotyrosine signaling identifies oncogenic kinases in lung
cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Takeuchi K, Choi YL, Togashi Y, Soda M,
Hatano S, Inamura K, Takada S, Ueno T, Yamashita Y, Satoh Y, et al:
KIF5B-ALK, a novel fusion oncokinase identified by an
immunohistochemistry-based diagnostic system for ALK-positive lung
cancer. Clin Cancer Res. 15:3143–3149. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Togashi Y, Soda M, Sakata S, Sugawara E,
Hatano S, Asaka R, Nakajima T, Mano H and Takeuchi K: KLC1-ALK: A
novel fusion in lung cancer identified using a formalin-fixed
paraffin-embedded tissue only. PLoS One. 7:e313232012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nishino M, Klepeis VE, Yeap BY, Bergethon
K, Morales-Oyarvide V, Dias-Santagata D, Yagi Y, Mark EJ, Iafrate
AJ and Mino-Kenudson M: Histologic and cytomorphologic features of
ALK-rearranged lung adenocarcinomas. Mod Pathol. 25:1462–1472.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lee JK, Kim TM, Koh Y, Lee SH, Kim DW,
Jeon YK, Chung DH, Yang SC, Kim YT, Kim YW, et al: Differential
sensitivities to tyrosine kinase inhibitors in NSCLC harboring EGFR
mutation and ALK translocation. Lung Cancer. 77:460–463. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang J, Zhang X, Su J, Chen H, Tian H,
Huang Y, Xu C and Wu YL: Concomitant EGFR mutation and EML4-ALK
gene fusion in non-small cell lung cancer. J Clin Oncol. 29 Suppl
15:S10517. 2011. View Article : Google Scholar
|
|
45
|
Popat S, Vieira de Araújo A, Min T,
Swansbury J, Dainton M, Wotherspoon A, Lim E, Nicholson AG and
O'Brien ME: Lung adenocarcinoma with concurrent exon 19 EGFR
mutation and ALK rearrangement responding to erlotinib. J Thorac
Oncol. 6:1962–1963. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kris MG, Johnson BE, Kwiatkowski DJ,
Iafrate AJ, Wistuba II, Aronson SL, Engelman JA, Shyr Y, Khuri FR,
Rudin CM, et al: Identification of driver mutations in tumor
specimens from 1,000 patients with lung adenocarcinoma: The NCI's
lung cancer mutation consortium (LCMC). J Clin Oncol.
29:CRA75062011. View Article : Google Scholar
|
|
47
|
Leuschner I: Inflammatory myofibroblastic
tumor. Pathologe. 31:106–108. 2010.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Coffin CM, Watterson J, Priest JR and
Dehner LP: Extrapulmonary inflammatory myofibroblastic tumor
(inflammatory pseudotumor). A clinicopathologic and
immunohistochemical study of 84 cases. Am J Surg Pathol.
19:859–872. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Coffin CM, Hornick JL and Fletcher CD:
Inflammatory myofibroblastic tumor: Comparison of
clinicopathologic, histologic, and immunohistochemical features
including ALK expression in atypical and aggressive cases. Am J
Surg Pathol. 31:509–520. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sokai A, Enaka M, Sokai R, Mori S, Mori S,
Gunji M, Fujino M and Ito M: Pulmonary inflammatory myofibroblastic
tumor harboring EML4-ALK fusion gene. Jpn J Clin Oncol. 44:93–96.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Griffin CA, Hawkins AL, Dvorak C, Henkle
C, Ellingham T and Perlman EJ: Recurrent involvement of 2p23 in
inflammatory myofibroblastic tumors. Cancer Res. 59:2776–2780.
1999.PubMed/NCBI
|
|
52
|
Chun YS, Wang L, Nascimento AG, Moir CR
and Rodeberg DA: Pediatric inflammatory myofibroblastic tumor:
Anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr
Blood Cancer. 45:796–801. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Busam KJ, Kutzner H, Cerroni L and Wiesner
T: Clinical and pathologic findings of Spitz nevi and atypical
Spitz tumors with ALK fusions. Am J Surg Pathol. 38:925–933. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wiesner T, He J, Yelensky R, Esteve-Puig
R, Botton T, Yeh I, Lipson D, Otto G, Brennan K, Murali R, et al:
Kinase fusions are frequent in Spitz tumours and spitzoid
melanomas. Nat Commun. 5:31162014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yeh I, de la Fouchardiere A, Pissaloux D,
Mully TW, Garrido MC, Vemula SS, Busam KJ, LeBoit PE, McCalmont TH
and Bastian BC: Clinical, histopathologic, and genomic features of
Spitz tumors with ALK fusions. Am J Surg Pathol. 39:581–591. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Seo AN, Yoon G and Ro JY:
Clinicopathologic and molecular pathology of collecting duct
carcinoma and related renal cell carcinomas. Adv Anat Pathol.
24:65–77. 2017.PubMed/NCBI
|
|
57
|
Stöhr CG, Amann K and Hartmann A:
Histopathologie des Nierenzellkarzinoms. Der Urologe. 52:942–948.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sukov WR, Hodge JC, Lohse CM, Akre MK,
Leibovich BC, Thompson RH and Cheville JC: ALK alterations in adult
renal cell carcinoma: Frequency, clinicopathologic features and
outcome in a large series of consecutively treated patients. Mod
Pathol. 25:1516–1525. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mariño-Enríquez A, Ou WB, Weldon CB,
Fletcher JA and Pérez-Atayde AR: ALK rearrangement in sickle cell
trait-associated renal medullary carcinoma. Genes Chromosomes
Cancer. 50:146–153. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Debelenko LV, Raimondi SC, Daw N,
Shivakumar BR, Huang D, Nelson M and Bridge JA: Renal cell
carcinoma with novel VCL-ALK fusion: New representative of
ALK-associated tumor spectrum. Mod Pathol. 24:430–442. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Xing M: Molecular pathogenesis and
mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Smallridge RC and Copland JA: Anaplastic
thyroid carcinoma: Pathogenesis and emerging therapies. Clin Oncol
(R Coll Radiol). 22:486–497. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kelly LM, Barila G, Liu P, Evdokimova VN,
Trivedi S, Panebianco F, Gandhi M, Carty SE, Hodak SP, Luo J, et
al: Identification of the transforming STRN-ALK fusion as a
potential therapeutic target in the aggressive forms of thyroid
cancer. Proc Natl Acad Sci USA. 111:4233–4238. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Baudin E and Schlumberger M: New
therapeutic approaches for metastatic thyroid carcinoma. Lancet
Oncol. 8:148–156. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chou A, Fraser S, Toon CW, Clarkson A,
Sioson L, Farzin M, Cussigh C, Aniss A, O'Neill C, Watson N, et al:
A detailed clinicopathologic study of ALK-translocated papillary
thyroid carcinoma. Am J Surg Pathol. 39:652–659. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rassouli FB, Matin MM and Saeinasab M:
Cancer stem cells in human digestive tract malignancies. Tumor
Biol. 37:7–21. 2016. View Article : Google Scholar
|
|
67
|
Jazii FR, Najafi Z, Malekzadeh R, Conrads
TP, Ziaee AA, Abnet C, Yazdznbod M, Karkhane AA and Salekdeh GH:
Identification of squamous cell carcinoma associated proteins by
proteomics and loss of beta tropomyosin expression in esophageal
cancer. World J Gastroenterol. 14:7104–7112. 2006. View Article : Google Scholar
|
|
68
|
Aisner DL, Nguyen TT, Paskulin DD, Le AT,
Haney J, Schulte N, Chionh F, Hardingham J, Mariadason J, Tebbutt
N, et al: ROS1 and ALK fusions in colorectal cancer, with evidence
of intratumoral heterogeneity for molecular drivers. Mol Cancer
Res. 12:111–118. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Amatu A, Somaschini A, Cerea G, Bosotti R,
Valtorta E, Buonandi P, Marrapese G, Veronese S, Luo D, Hornby Z,
et al: Novel CAD-ALK gene rearrangement is drugable by entrectinib
in colorectal cancer. Br J Cancer. 113:1730–1734. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ying J, Lin C, Wu J, Guo L, Qiu T, Ling Y,
Shan L, Zhou H, Zhao D, Wang J, et al: Anaplastic lymphoma kinase
rearrangement in digestive tract cancer: Implication for targeted
therapy in Chinese population. PLoS One. 10:e01447312015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lin E, Li L, Guan Y, Soriano R, Rivers CS,
Mohan S, Pandita A, Tang J and Modrusan Z: Exon array profiling
detects EML4-ALK fusion in breast, colorectal, and non-small cell
lung cancers. Mol Cancer Res. 7:1466–1476. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Röttgers S, Gombert M, Teigler-Schlegel A,
Busch K, Gamerdinger U, Slany R, Harbott J and Borkhardt A: ALK
fusion genes in children with atypical myeloproliferative leukemia.
Leukemia. 24:1197–1200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ren H, Tan ZP, Zhu X, Crosby K, Haack H,
Ren JM, Beausoleil S, Moritz A, Innocenti G, Rush J, et al:
Identification of anaplastic lymphoma kinase as a potential
therapeutic target in ovarian cancer. Cancer Res. 72:3312–3323.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bilsland JG, Wheeldon A, Mead A,
Znamenskiy P, Almond S, Waters KA, Thakur M, Beaumont V, Bonnert
TP, Heavens R, et al: Behavioral and neurochemical alterations in
mice deficient in anaplastic lymphoma kinase suggest therapeutic
potential for psychiatric indications. Neuropsychopharmacology.
33:685–700. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Camidge DR, Bang YJ, Kwak EL, Iafrate AJ,
Varella-Garcia M, Fox SB, Riely GJ, Solomon B, Ou SH, Kim DW, et
al: Activity and safety of crizotinib in patients with ALK-positive
non-small-cell lung cancer: Updated results from a phase 1 study.
Lancet Oncol. 13:1011–1019. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kwak EL, Bang YJ, Camidge DR, Shaw AT,
Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, et al:
Anaplastic lymphoma kinase inhibition in non-small-cell lung
cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó
L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F, et al:
Crizotinib versus chemotherapy in advanced ALK-positive lung
cancer. N Engl J Med. 368:2385–2394. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa
K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, et al:
First-line crizotinib versus chemotherapy in ALK-positive lung
cancer. N Engl J Med. 371:2167–2177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Godbert Y, Henriques de Figueiredo B,
Bonichon F, Chibon F, Hostein I, Pérot G, Dupin C, Daubech A,
Belleannée G, Gros A, et al: Remarkable response to crizotinib in
woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid
carcinoma. J Clin Oncol. 33:e84–e87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Choi YL, Soda M, Yamashita Y, Ueno T,
Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H,
et al: EML4-ALK mutations in lung cancer that confer resistance to
ALK inhibitors. N Engl J Med. 363:1734–1739. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Heuckmann JM, Hölzel M, Sos ML, Heynck S,
Balke-Want H, Koker M, Peifer M, Weiss J, Lovly CM, Grütter C, et
al: ALK mutations conferring differential resistance to
structurally diverse ALK inhibitors. Clin Cancer Res. 17:7394–7401.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Doebele RC, Pilling AB, Aisner DL,
Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ,
Heasley LE, Franklin WA, et al: Mechanisms of resistance to
crizotinib in patients with ALK gene rearranged non-small cell lung
cancer. Clin Cancer Res. 18:1472–1482. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Katayama R, Shaw AT, Khan TM,
Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT,
Benes C, et al: Mechanisms of acquired crizotinib resistance in
ALK-rearranged lung cancers. Sci Transl Med. 4:120ra1172012.
View Article : Google Scholar
|
|
84
|
Sasaki T, Okuda K, Zheng W, Butrynski J,
Capelletti M, Wang L, Gray NS, Wilner K, Christensen JG, Demetri G,
et al: The neuroblastoma associated F1174L ALK mutation causes
resistance to an ALK kinase inhibitor in ALK translocated cancers.
Cancer Res. 70:10038–10043. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Crystal AS, Shaw AT, Sequist LV, Friboulet
L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A,
Greninger P, et al: Patient-derived models of acquired resistance
can identify effective drug combinations for cancer. Science.
346:1480–1486. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ji C, Zhang L, Cheng Y, Patel R, Wu H,
Zhang Y, Wang M, Ji S, Belani CP, Yang JM and Ren X: Induction of
autophagy contributes to crizotinib resistance in ALK-positive lung
cancer. Cancer Biol Ther. 15:570–577. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mengoli MC, Barbieri F, Bertolini F, Tiseo
M and Rossi G: K-RAS mutations indicating primary resistance to
crizotinib in ALK-rearranged adenocarcinomas of the lung: Report of
two cases and review of the literature. Lung Cancer. 93:55–58.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sequist LV, Gettinger S, Senzer NN,
Martins RG, Jänne PA, Lilenbaum R, Gray JE, Iafrate AJ, Katayama R,
Hafeez N, et al: Activity of IPI-504, a novel heat-shock protein 90
inhibitor, in patients with molecularly defined non-small-cell lung
cancer. J Clin Oncol. 28:4953–4960. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Normant E, Paez G, West KA, Lim AR, Slocum
KL, Tunkey C, McDougall J, Wylie AA, Robison K, Caliri K, et al:
The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and
induces tumor regression in ALK-driven NSCLC models. Oncogene.
30:2581–2586. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Shaw AT, Kim DW, Mehra R, Tan DS, Felip E,
Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, et al:
Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J
Med. 370:1189–1197. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kodama T, Tsukaguchi T, Satoh Y, Yoshida
M, Watanabe Y, Kondoh O and Sakamoto H: Alectinib shows potent
antitumor activity against RET-rearranged non-small cell lung
cancer. Mol Cancer Ther. 13:2910–2918. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sakamoto H, Tsukaguchi T, Hiroshima S,
Kodama T, Kobayashi T, Fukami TA, Oikawa N, Tsukuda T, Ishii N and
Aoki Y: CH5424802, a selective ALK inhibitor capable of blocking
the resistant gatekeeper mutant. Cancer Cell. 19:679–690. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shaw AT, Gandhi L, Gadgeel S, Riely GJ,
Cetnar J, West H, Camidge DR, Socinski MA, Chiappori A, Mekhail T,
et al: Alectinib in ALK-positive, crizotinib-resistant,
non-small-cell lung cancer: A single-group, multicentre, phase 2
trial. Lancet Oncol. 17:234–242. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zou HY, Friboulet L, Kodack DP, Engstrom
LD, Li Q, West M, Tang RW, Wang H, Tsaparikos K, Wang J, et al:
PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first
and second generation ALK inhibitors in preclinical models. Cancer
Cell. 28:70–81. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang WS, Liu S, Zou D, Thomas M, Wang Y,
Zhou T, Romero J, Kohlmann A, Li F, Qi J, et al: Discovery of
Brigatinib (AP26113), a phosphine oxide-containing, potent, orally
active inhibitor of anaplastic lymphoma kinase. J Med Chem.
59:4948–4964. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
George SK, Vishwamitra D, Manshouri R, Shi
P and Amin HM: The ALK inhibitor ASP3026 eradicates NPM-ALK+ T-cell
anaplastic large-cell lymphoma in vitro and in a systemic xenograft
lymphoma model. Oncotarget. 5:5750–5763. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lee J, Kim HC, Hong JY, Wang K, Kim SY,
Jang J, Kim ST, Park JO, Lim HY, Kang WK, et al: Detection of novel
and potentially actionable anaplastic lymphoma kinase (ALK)
rearrangement in colorectal adenocarcinoma by immunohistochemistry
screening. Oncotarget. 6:24320–24332. 2015.PubMed/NCBI
|
|
98
|
Lovly CM, Heuckmann JM, de Stanchina E,
Chen H, Thomas RK, Liang C and Pao W: Insights into ALK-driven
cancers revealed through development of novel ALK tyrosine kinase
inhibitors. Cancer Res. 71:4920–4931. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sang J, Acquaviva J, Friedland JC, Smith
DL, Sequeira M, Zhang C, Jiang Q, Xue L, Lovly CM, Jimenez JP, et
al: Targeted inhibition of the molecular chaperone Hsp90 overcomes
ALK inhibitor resistance in non-small cell lung cancer. Cancer
Discov. 3:430–443. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bonvini P, Gastaldi T, Falini B and
Rosolen A: Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a
novel Hsp90-client tyrosine kinase: Down-regulation of NPM-ALK
expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma
cells by the Hsp90 antagonist 17-allylamino,
17-demethoxygeldanamycin. Cancer Res. 62:1559–1566. 2002.PubMed/NCBI
|
|
101
|
Bloomfield M and Duesberg P: Inherent
variability of cancer-specific aneuploidy generates metastases. Mol
Cytogenet. 9:902016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Heng HH, Regan SM, Liu G and Ye CJ: Why it
is crucial to analyze non clonal chromosome aberrations or NCCAs?
Mol Cytogenet. 9:152016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Ye CJ, Regan S, Liu G, Alemara S and Heng
HH: Understanding aneuploidy in cancer through the lens of system
inheritance, fuzzy inheritance and emergence of new genome systems.
Mol Cytogenet. 11:312018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bloomfield M and Duesberg P: Is cancer
progression caused by gradual or simultaneous acquisitions of new
chromosomes? Mol Cytogenet. 11:42018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Horne SD, Pollick SA and Heng HH:
Evolutionary mechanism unifies the hallmarks of cancer. Int J
Cancer. 136:2012–2021. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tort F, Pinyol M, Pulford K, Roncador G,
Hernandez L, Nayach I, Kluin-Nelemans HC, Kluin P, Touriol C,
Delsol G, et al: Molecular characterization of a new ALK
translocation involving moesin (MSN-ALK) in anaplastic large cell
lymphoma. Lab Invest. 81:419–426. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lamant L, Gascoyne RD, Duplantier MM,
Armstrong F, Raghab A, Chhanabhai M, Rajcan-Separovic E, Raghab J,
Delsol G and Espinos E: Non-muscle myosin heavy chain (MYH9): A new
partner fused to ALK in anaplastic large cell lymphoma. Genes
Chromosomes Cancer. 37:427–432. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Cools J, Wlodarska I, Somers R, Mentens N,
Pedeutour F, Maes B, De Wolf-Peeters C, Pauwels P, Hagemeijer A and
Marynen P: Identification of novel fusion partners of ALK, the
anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and
inflammatory myofibroblastic tumor. Genes Chromosomes Cancer.
34:354–362. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Feldman AL, Vasmatzis G, Asmann YW, Davila
J, Middha S, Eckloff BW, Johnson SH, Porcher JC, Ansell SM and
Caride A: Novel TRAF1-ALK fusion identified by deep RNA sequencing
of anaplastic large cell lymphoma. Genes Chromosomes Cancer.
52:1097–1102. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Trinei M, Lanfrancone L, Campo E, Pulford
K, Mason DY, Pelicci PG and Falini B: A new variant anaplastic
lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of
ALK-positive anaplastic large cell lymphoma. Cancer Res.
60:793–798. 2000.PubMed/NCBI
|
|
111
|
Bridge JA, Kanamori M, Ma Z, Pickering D,
Hill DA, Lydiatt W, Lui MY, Colleoni GW, Antonescu CR, Ladanyi M
and Morris SW: Fusion of the ALK gene to the clathrin heavy chain
gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol.
159:411–415. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Iyevleva AG, Raskin GA, Tiurin VI,
Sokolenko AP, Mitiushkina NV, Aleksakhina SN, Garifullina AR,
Strelkova TN, Merkulov VO, Ivantsov AO, et al: Novel ALK fusion
partners in lung cancer. Cancer Lett. 362:116–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Hernández L, Pinyol M, Hernández S, Beà S,
Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, et al:
TRK-fused gene (TFG) is a new partner of ALK in anaplastic large
cell lymphoma producing two structurally different TFG-ALK
translocations. Blood. 94:3265–3268. 1999.PubMed/NCBI
|
|
114
|
Liang X, Meech SJ, Odom LF, Bitter MA,
Ryder JW, Hunger SP, Lovell MA, Meltesen L, Wei Q, Williams SA, et
al: Assessment of t(2;5)(p23;q35) translocation and variants in
pediatric ALK+ anaplastic large cell lymphoma. Am J Clin Pathol.
121:496–506. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Lawrence B, Perez-Atayde A, Hibbard MK,
Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher
CD and Fletcher JA: TPM3-ALK and TPM4-ALK oncogenes in inflammatory
myofibroblastic tumors. Am J Pathol. 157:377–384. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lamant L, Dastugue N, Pulford K, Delsol G
and Mariamé B: A new fusion gene TPM3-ALK in anaplastic large cell
lymphoma created by a (1;2)(q25;p23) translocation. Blood.
93:3088–3095. 1999.PubMed/NCBI
|
|
117
|
Onoda T, Kanno M, Sato H, Takahashi N,
Izumino H, Ohta H, Emura T, Katoh H, Ohizumi H, Ohtake H, et al:
Identification of novel ALK rearrangement A2M-ALK in a neonate with
fetal lung interstitial tumor. Genes Chromosomes Cancer.
53:865–874. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ou SH, Klempner SJ, Greenbowe JR, Azada M,
Schrock AB, Ali SM, Ross JS, Stephens PJ and Miller VA:
Identification of a novel HIP1-ALK fusion variant in non-small-cell
lung cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations
in two ALK-rearranged NSCLC patients with resistance to Alectinib.
J Thorac Oncol. 9:1821–1825. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun
H, Qian M, Sheng W, Ozeck M, Wang Z, et al: HIP1-ALK, a novel ALK
fusion variant that responds to crizotinib. J Thorac Oncol.
9:285–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Choi YL, Lira ME, Hong M, Kim RN, Choi SJ,
Song JY, Pandy K, Mann DL, Stahl JA, Peckham HE, et al: A novel
fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol.
9:563–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim
D, Ji Y, Kim DH, Park WY, Shin HT, et al: Identification of driving
ALK fusion genes and genomic landscape of medullary thyroid cancer.
PLoS Genet. 11:e10054672015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang X, Krishnan C, Nguyen E, Meyer KJ,
Oliveira JL, Yang P, Yi ES, Yaszemski MJ, Maran A, Erickson-Johnson
MR and Oliveira AM: Fusion of dynactin 1 (DCTN1) to ALK in
inflammatory myofibroblastic tumor. Lab Invest. 2011.
|
|
123
|
Shimada Y, Kohno T, Ueno H, Ino Y, Hayashi
H, Nakaoku T, Sakamoto Y, Kondo S, Morizane C, Shimada K, et al: An
oncogenic ALK fusion and an RRAS mutation in KRAS mutation-negative
pancreatic ductal adenocarcinoma. Oncologist. 22:158–164. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Takeuchi K, Soda M, Togashi Y, Sugawara E,
Hatano S, Asaka R, Okumura S, Nakagawa K, Mano H and Ishikawa Y:
Pulmonary inflammatory myofibroblastic tumor expressing a novel
fusion, PPFIBP1-ALK: Reappraisal of Anti-ALK immunohistochemistry
as a tool for novel ALK fusion identification. Clin Cancer Res.
17:3341–3348. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Panagopoulos I, Nilsson T, Domanski HA,
Isaksson M, Lindblom P, Mertens F and Mandahl N: Fusion of the
SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int
J Cancer. 118:1181–1186. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ouchi K, Miyachi M, Tsuma Y, Tsuchiya K,
Iehara T, Konishi E, Yanagisawa A and Hosoi H: FN1: A novel fusion
partner of ALK in an inflammatory myofibroblastic tumor. Pediatric
Blood Cancer. 62:909–911. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Ma Z, Hill DA, Collins MH, Morris SW,
Sumegi J, Zhou M, Zuppan C and Bridge JA: Fusion of ALK to the
Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic
tumor. Genes Chromosomes Cancer. 37:98–105. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kusano H, Togashi Y, Akiba J, Moriya F,
Baba K, Matsuzaki N, Yuba Y, Shiraishi Y, Kanamaru H, Kuroda N, et
al: Two cases of renal cell carcinoma harboring a novel STRN-ALK
fusion gene. Am J Surg Pathol. 40:761–769. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lovly CM, Mcdonald NT, Chen H,
Ortiz-Cuaran S, Heukamp LC, Yan Y, Florin A, Ozretić L, Lim D, Wang
L, et al: Rationale for co-targeting IGF-1R and ALK inALKfusion
positive lung cancer. Nat Med. 20:1027–1034. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Di Paolo D, Yang D, Pastorino F, Emionite
L, Cilli M, Daga A, Destafanis E, Di Fiore A, Piaggio F, Brignole
C, et al: New therapeutic strategies in neuroblastoma: Combined
targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs
against ALK. Oncotarget. 6:28774–28789. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Seto T, Kiura K, Nishio M, Nakagawa K,
Maemondo M, Inoue A, Hida T, Yamamoto N, Yoshioka H, Harada M, et
al: CH5424802 (RO5424802) for patients with ALK-rearranged advanced
non-small-cell lung cancer (AF-001JP study): A single-arm,
open-label, phase 1–2 study. Lancet Oncol. 14:590–598. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gadgeel SM, Gandhi L, Riely GJ, Chiappori
AA, West HL, Azada MC, Morcos PN, Lee RM, Garcia L, Yu L, et al:
Safety and activity of alectinib against systemic disease and brain
metastases in patients with crizotinib-resistant ALK-rearranged
non-small-cell lung cancer (AF-002JG): Results from the
dose-finding portion of a phase 1/2 study. Lancet Oncol.
15:1119–1128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Johnson TW, Richardson PF, Bailey S,
Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D,
et al: Discovery of
(10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile
(PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma
kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain
exposure and broad-spectrum potency against ALK-resistant
mutations. J Med Chem. 57:4720–4744. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mologni L, Ceccon M, Pirola A, Chiriano G,
Piazza R, Scapozza L and Gambacorti-Passerini C: NPM/ALK mutants
resistant to ASP3026 display variable sensitivity to alternative
ALK inhibitors but succumb to the novel compound PF-06463922.
Oncotarget. 6:5720–5734. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Basit S, Ashraf Z, Lee K and Latif M:
First macrocyclic 3rd-generation ALK inhibitor for treatment of
ALK/ROS1 cancer: Clinical and designing strategy update of
lorlatinib. Eur J Med Chem. 134:348–356. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Katayama R, Khan TM, Benes C, Lifshits E,
Ebi H, Rivera VM, Shakespeare WC, Iafrate AJ, Engelman JA and Shaw
AT: Therapeutic strategies to overcome crizotinib resistance in
non-small cell lung cancers harboring the fusion oncogene EML4-ALK.
Proc Natl Acad Sci USA. 108:7535–7540. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Ceccon M, Mologni L, Bisson W, Scapozza L
and Gambacorti-Passerini C: Crizotinib-resistant NPM-ALK mutants
confer differential sensitivity to unrelated Alk inhibitors. Mol
Cancer Res. 11:122–132. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Cheng M, Quail MR, Gingrich DE, Ott GR, Lu
L, Wan W, Albom MS, Angeles TS, Aimone LD, Cristofani F, et al:
CEP-28122, a highly potent and selective orally active inhibitor of
anaplastic lymphoma kinase with antitumor activity in experimental
models of human cancers. Mol Cancer Ther. 11:670–679. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Arkenau HT, Sachdev JC, Mita MM,
Dziadziuszko R, Lin CC, Yang JC, Infante JR, Anthony SP,
Voskoboynik M, Su WC, et al: Phase (Ph) 1/2a study of TSR-011, a
potent inhibitor of ALK and TRK, in advanced solid tumors including
crizotinib-resistant ALK positive non-small cell lung cancer. J
Clin Oncol. 33:8063. 2015.
|
|
140
|
Mori M, Ueno Y, Konagai S, Fushiki H,
Shimada I, Kondoh Y, Saito R, Mori K, Shindou N, Soga T, et al: The
selective anaplastic lymphoma receptor tyrosine kinase inhibitor
ASP3026 induces tumor regression and prolongs survival in non-small
cell lung cancer model mice. Mol Cancer Ther. 13:329–340. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Katayama R, Friboulet L, Koike S,
Lockerman EL, Khan TM, Gainor JF, Iafrate AJ, Takeuchi K, Taiji M,
Okuno Y, et al: Two novel ALK mutations mediate acquired resistance
to the next-generation ALK inhibitor alectinib. Clin Cancer Res.
20:5686–5696. 2014. View Article : Google Scholar : PubMed/NCBI
|