Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2019 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2019 Volume 18 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells

  • Authors:
    • Takuya Kajimura
    • Shun Sato
    • Akihiro Murakami
    • Maki Hayashi‑Okada
    • Kengo Nakashima
    • Kotaro Sueoka
    • Norihiro Sugino
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
    Copyright: © Kajimura et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1503-1512
    |
    Published online on: May 31, 2019
       https://doi.org/10.3892/ol.2019.10429
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Carbonyl reductase 1 (CBR1) has been reported to be involved in cancer progression. Recently, we found that CBR1 overexpression inhibited malignant behaviors and the epithelial mesenchymal transition (EMT) in uterine cervical cancer. It remained unclear whether this was also the case in uterine leiomyosarcoma (uLMS), which is derived from mesenchymal cells and is a much more malignant gynecological tumor. A number of previous studies suggested that malignant behaviors are associated with EMT, even in mesenchymal malignant tumors. In the present study, we investigated whether CBR1 inhibits malignant behaviors and EMT in uLMS. We established clones of uLMS cells (SKN cells) and uterine sarcoma cells (MES‑SA cells) that overexpressed CBR1. Cell proliferative, migratory and invasive activities were suppressed by CBR1 overexpression, accompanied by increases in the expressions of epithelial markers (E‑cadherin and cytokeratin) and decreases in the expressions of mesenchymal markers (N‑cadherin and fibronectin), suggesting that CBR1 overexpression inhibits malignant behaviors and EMT in uLMS cells. In addition, transforming growth factor‑β (TGF‑β) production and the subsequent signaling and phosphorylation of Smad were suppressed in the clones. To investigate the association between TGF‑β and EMT, SKN cells were treated with TGF‑β or a TGF‑β receptor blocker (SB431542). EMT was promoted by TGF‑β and inhibited by SB431542. In conclusion, this is the first study, to the best of the authors' knowledge, showing that CBR1 overexpression inhibits malignant behaviors and EMT in uLMS cells. The present study provided novel insight demonstrating that the suppressive effect of CBR1 is mediated through TGF‑β signaling.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Zang Y, Gu L, Zhang Y, Wang Y and Xue F: Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis. Oncol Lett. 15:9361–9368. 2018.PubMed/NCBI

2 

Ricci S, Stone RL and Fader AN: Uterine leiomyosarcoma: Epidemiology, contemporary treatment strategies and the impact of uterine morcellation. Gynecol Oncol. 145:208–216. 2017. View Article : Google Scholar : PubMed/NCBI

3 

George S, Barysauskas C, Serrano C, Oduyebo T, Rauh-Hain JA, Del Carmen MG, Demetri GD and Muto MG: Retrospective cohort study evaluating the impact of intraperitoneal morcellation on outcomes of localized uterine leiomyosarcoma. Cancer. 120:3154–3158. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Raine-Bennett T, Tucker LY, Zaritsky E, Littell RD, Palen T, Neugebauer R, Axtell A, Schultze PM, Kronbach DW, Embry-Schubert J, et al: Occult uterine sarcoma and leiomyosarcoma: Incidence of and survival associated with morcellation. Obstet Gynecol. 127:29–39. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Einstein MH, Barakat RR, Chi DS, Sonoda Y, Alektiar KM, Hensley ML and Abu-Rustum NR: Management of uterine malignancy found incidentally after supracervical hysterectomy or uterine morcellation for presumed benign disease. Int J Gynecol Cancer. 18:1065–1070. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Oduyebo T, Rauh-Hain AJ, Meserve EE, Seidman MA, Hinchcliff E, George S, Quade B, Nucci MR, Del Carmen MG and Muto MG: The value of re-exploration in patients with inadvertently morcellated uterine sarcoma. Gynecol Oncol. 132:360–365. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Parker WH, Fu YS and Berek JS: Uterine sarcoma in patients operated on for presumed leiomyoma and rapidly growing leiomyoma. Obstet Gynecol. 83:414–418. 1994.PubMed/NCBI

8 

Harris JA, Swenson CW, Uppal S, Kamdar N, Mahnert N, As-Sanie S and Morgan DM: Practice patterns and postoperative complications before and after US Food and Drug Administration safety communication on power morcellation. Am J Obstet Gynecol. 214:e1–98.e13. 2016. View Article : Google Scholar

9 

Ducie JA and Leitao MM Jr: The role of adjuvant therapy in uterine leiomyosarcoma. Expert Rev Anticancer Ther. 16:45–55. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Amant F, Lorusso D, Mustea A, Duffaud F and Pautier P: Management strategies in advanced uterine leiomyosarcoma: Focus on trabectedin. Sarcoma. 2015:7041242015. View Article : Google Scholar : PubMed/NCBI

11 

Kapp DS, Shin JY and Chan JK: Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: Emphasis on impact of lymphadenectomy and oophorectomy. Cancer. 112:820–830. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Zivanovic O, Leitao MM, Iasonos A, Jacks LM, Zhou Q, Abu-Rustum NR, Soslow RA, Juretzka MM, Chi DS, Barakat RR, et al: Stage-specific outcomes of patients with uterine leiomyosarcoma: A comparison of the international Federation of gynecology and obstetrics and American joint committee on cancer staging systems. J Clin Oncol. 27:2066–2072. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Penning TM and Drury JE: Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys. 464:241–250. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Mindnich RD and Penning TM: Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum Genomics. 3:362–370. 2009.PubMed/NCBI

15 

Wermuth B, Bohren KM, Heinemann G, von Wartburg JP and Gabbay KH: Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. J Biol Chem. 263:16185–16188. 1988.PubMed/NCBI

16 

Ismail E, Al-Mulla F, Tsuchida S, Suto K, Motley P, Harrison PR and Birnie GD: Carbonyl reductase: A novel metastasis-modulating function. Cancer Res. 60:1173–1176. 2000.PubMed/NCBI

17 

Murakami A, Fukushima C, Yoshidomi K, Sueoka K, Nawata S, Yokoyama Y, Tsuchida S, Ismail E, Al-Mulla F and Sugino N: Suppression of carbonyl reductase expression enhances malignant behaviour in uterine cervical squamous cell carcinoma: Carbonyl reductase predicts prognosis and lymph node metastasis. Cancer Lett. 311:77–84. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Murakami A, Yakabe K, Yoshidomi K, Sueoka K, Nawata S, Yokoyama Y, Tsuchida S, Al-Mulla F and Sugino N: Decreased carbonyl reductase 1 expression promotes malignant behaviours by induction of epithelial mesenchymal transition and its clinical significance. Cancer Lett. 323:69–76. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Osawa Y, Yokoyama Y, Shigeto T, Futagami M and Mizunuma H: Decreased expression of carbonyl reductase 1 promotes ovarian cancer growth and proliferation. Int J Oncol. 46:1252–1258. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Umemoto M, Yokoyama Y, Sato S, Tsuchida S, Al-Mulla F and Saito Y: Carbonyl reductase as a significant predictor of survival and lymph node metastasis in epithelial ovarian cancer. Br J Cancer. 85:1032–1036. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Nishimoto Y, Murakami A, Sato S, Kajimura T, Nakashima K, Yakabe K, Sueoka K and Sugino N: Decreased carbonyl reductase 1 expression promotes tumor growth via epithelial mesenchymal transition in uterine cervical squamous cell carcinomas. Reprod Med Biol. 17:173–181. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Miura R, Yokoyama Y, Shigeto T, Futagami M and Mizunuma H: Inhibitory effect of carbonyl reductase 1 on ovarian cancer growth via tumor necrosis factor receptor signaling. Int J Oncol. 47:2173–2180. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Perl AK, Wilgenbus P, Dahl U, Semb H and Christofori G: A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 392:190–193. 1998. View Article : Google Scholar : PubMed/NCBI

26 

Banyard J and Bielenberg DR: The role of EMT and MET in cancer dissemination. Connect Tissue Res. 56:403–413. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Kahlert UD, Joseph JV and Kruyt FAE: EMT- and MET-related processes in nonepithelial tumors: Importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol. 11:860–877. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Song C, Liu W and Li J: USP17 is upregulated in osteosarcoma and promotes cell proliferation, metastasis, and epithelial-mesenchymal transition through stabilizing SMAD4. Tumour Biol. 39:10104283177171382017. View Article : Google Scholar : PubMed/NCBI

29 

Zeng SX, Cai QC, Guo CH, Zhi LQ, Dai X, Zhang DF and Ma W: High expression of TRIM29 (ATDC) contributes to poor prognosis and tumor metastasis by inducing epithelial-mesenchymal transition in osteosarcoma. Oncol Rep. 38:1645–1654. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Sannino G, Marchetto A, Kirchner T and Grünewald TGP: Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial transition in mesenchymal tumors: A paradox in sarcomas? Cancer Res. 77:4556–4561. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Kong G, Jiang Y, Sun X, Cao Z, Zhang G, Zhao Z, Zhao Y, Yu Q and Cheng G: Irisin reverses the IL-6 induced epithelial-mesenchymal transition in osteosarcoma cell migration and invasion through the STAT3/Snail signaling pathway. Oncol Rep. 38:2647–2656. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Peng C, Zhao H, Song Y, Chen W, Wang X, Liu X, Zhang C, Zhao J, Li J, Cheng G, et al: SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. J Exp Clin Cancer Res. 36:1412017. View Article : Google Scholar : PubMed/NCBI

33 

Tang J, Shen L, Yang Q and Zhang C: Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 47:427–434. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Zavadil J and Böttinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Qi Y, Wang N, He Y, Zhang J, Zou H, Zhang W, Gu W, Huang Y, Lian X, Hu J, et al: Transforming growth factor-β1 signaling promotes epithelial-mesenchymal transition-like phenomena, cell motility, and cell invasion in synovial sarcoma cells. PLoS One. 12:e01826802017. View Article : Google Scholar : PubMed/NCBI

36 

Yoshidomi K, Murakami A, Yakabe K, Sueoka K, Nawata S and Sugino N: Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. J Obstet Gynaecol Res. 40:1188–1196. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Murakami A, Nakagawa T, Kaneko M, Nawata S, Takeda O, Kato H and Sugino N: Suppression of SCC antigen promotes cancer cell invasion and migration through the decrease in E-cadherin expression. Int J Oncol. 29:1231–1235. 2006.PubMed/NCBI

38 

Nakagawa T, Murakami A, Torii M, Nawata S, Takeda O and Sugino N: E-cadherin increases squamous cell carcinoma antigen expression through phosphatidylinositol-3 kinase-Akt pathway in squamous cell carcinoma cell lines. Oncol Rep. 18:175–179. 2007.PubMed/NCBI

39 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G and ten Dijke P: The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66:2202–2209. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Morizane R, Fujii S, Monkawa T, Hiratsuka K, Yamaguchi S, Homma K and Itoh H: miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep. 4:45782014. View Article : Google Scholar : PubMed/NCBI

42 

Valcourt U, Kowanetz M, Niimi H, Heldin CH and Moustakas A: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 16:1987–2002. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Ghahhari NM and Babashah S: Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 51:1638–1649. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Liu QQ, Chen K, Ye Q, Jiang XH and Sun YW: Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway. Cancer Cell Int. 16:572016. View Article : Google Scholar : PubMed/NCBI

45 

Qi Y, Wang CC, He YL, Zou H, Liu CX, Pang LJ, Hu JM, Jiang JF, Zhang WJ and Li F: The correlation between morphology and the expression of TGF-β signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas. Int J Clin Exp Pathol. 6:2787–2799. 2013.PubMed/NCBI

46 

Dwivedi SK, McMeekin SD, Slaughter K and Bhattacharya R: Role of TGF-β signaling in uterine carcinosarcoma. Oncotarget. 6:14646–14655. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Horbelt D, Denkis A and Knaus P: A portrait of transforming growth factor β superfamily signalling: Background matters. Int J Biochem Cell Biol. 44:469–474. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Yang J, Eddy JA, Pan Y, Hategan A, Tabus I, Wang Y, Cogdell D, Price ND, Pollock RE, Lazar AJ, et al: Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug. Mol Cell Proteomics. 11:2405–2413. 2010. View Article : Google Scholar

49 

Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C and Zhang Z: miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget. 8:10274–10286. 2017.PubMed/NCBI

50 

Zhang M, Wang D, Zhu T and Yin R: RASSF4 overexpression inhibits the proliferation, invasion, EMT, and Wnt signaling pathway in osteosarcoma cells. Oncol Res. 25:83–91. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Zhang D, Jiang F, Wang X and Li G: Downregulation of Ubiquitin-Specific protease 22 inhibits proliferation, invasion, and Epithelial-mesenchymal transition in osteosarcoma cells. Oncol Res. 25:743–751. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Guo X, Zhang J, Pang J, He S, Li G, Chong Y, Li C, Jiao Z, Zhang S and Shao M: MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb. Tumour Biol. 37:9181–9187. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Zhang D, Wang S, Chen J, Liu H, Lu J, Jiang H, Huang A and Chen Y: Fibulin-4 promotes osteosarcoma invasion and metastasis by inducing epithelial to mesenchymal transition via the PI3K/Akt/mTOR pathway. Int J Oncol. 50:1513–1530. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Somarelli JA, Shetler S, Jolly MK, Wang X, Bartholf Dewitt S, Hish AJ, Gilja S, Eward WC, Ware KE, Levine H, et al: Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of MicroRNA 200s and GRHL2. Mol Cell Biol. 36:2503–2513. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Yang J, Du X, Wang G, Sun Y, Chen K, Zhu X, Lazar AJ, Hunt KK, Pollock RE and Zhang W: Mesenchymal to epithelial transition in sarcomas. Eur J Cancer. 50:593–601. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Yi EY, Park SY, Jung SY, Jang WJ and Kim Y: Mitochondrial dysfunction induces EMT through the TGF-β/Smad/Snail signaling pathway in Hep3B hepatocellular carcinoma cells. Int J Oncol. 47:1845–1853. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kajimura T, Sato S, Murakami A, Hayashi‑Okada M, Nakashima K, Sueoka K and Sugino N: Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells. Oncol Lett 18: 1503-1512, 2019.
APA
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., & Sugino, N. (2019). Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells. Oncology Letters, 18, 1503-1512. https://doi.org/10.3892/ol.2019.10429
MLA
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., Sugino, N."Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells". Oncology Letters 18.2 (2019): 1503-1512.
Chicago
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., Sugino, N."Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells". Oncology Letters 18, no. 2 (2019): 1503-1512. https://doi.org/10.3892/ol.2019.10429
Copy and paste a formatted citation
x
Spandidos Publications style
Kajimura T, Sato S, Murakami A, Hayashi‑Okada M, Nakashima K, Sueoka K and Sugino N: Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells. Oncol Lett 18: 1503-1512, 2019.
APA
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., & Sugino, N. (2019). Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells. Oncology Letters, 18, 1503-1512. https://doi.org/10.3892/ol.2019.10429
MLA
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., Sugino, N."Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells". Oncology Letters 18.2 (2019): 1503-1512.
Chicago
Kajimura, T., Sato, S., Murakami, A., Hayashi‑Okada, M., Nakashima, K., Sueoka, K., Sugino, N."Overexpression of carbonyl reductase 1 inhibits malignant behaviors and epithelial mesenchymal transition by suppressing TGF‑β signaling in uterine leiomyosarcoma cells". Oncology Letters 18, no. 2 (2019): 1503-1512. https://doi.org/10.3892/ol.2019.10429
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team